RESEARCH ARTICLE | SEPTEMBER 13 2023

Essential spectrum of a family of 3 × 3 operator matrices: Location of the branches

[Nargiza A. Tosheva](javascript:;) **■**

Check for updates

AIP Conf. Proc. 2764, 030003 (2023) <https://doi.org/10.1063/5.0170399>

Articles You May Be Interested In

[Completing the dark matter solutions in degenerate Kaluza-Klein theory](https://pubs.aip.org/aip/jmp/article/60/4/042501/620355/Completing-the-dark-matter-solutions-in-degenerate)

J. Math. Phys. (April 2019)

[Gibbs measures based on 1d \(an\)harmonic oscillators as mean-field limits](https://pubs.aip.org/aip/jmp/article/59/4/041901/309356/Gibbs-measures-based-on-1d-an-harmonic-oscillators)

J. Math. Phys. (April 2018)

[An upper diameter bound for compact Ricci solitons with application to the Hitchin–Thorpe inequality. II](https://pubs.aip.org/aip/jmp/article/59/4/043507/309426/An-upper-diameter-bound-for-compact-Ricci-solitons)

J. Math. Phys. (April 2018)

14 September 2023 10:01:51

14 September 2023 10:01:5

500 kHz or 8.5 GHz? And all the ranges in between. Lock-in Amplifiers for your periodic signal measurements

Essential Spectrum of a Family of 3×3 Operator Matrices: Location of the Branches

Nargiza A. Tosheva^{a)}

Bukhara State University, M.Iqbol street 11, Bukhara, Uzbekistan.

a)*Corresponding author: nargiza_n@mail.ru*

Abstract. In the article we have considered a family $\mathscr{A}(K)$, $K \in \mathbf{T}^d := (-\pi; \pi]^d$ of operator matrices of order three. They arise in the spectral analysis problem of the so called lattice truncated spin-boson Hamiltonian with at most two bosons. The position and structure of two-particle as well three-particle branches (subsets) of $\sigma_{\text{e}ss}(\mathscr{A}(K))$ are investigated.

INTRODUCTION

There is an important quantum-mechanical model so called he spin-boson model which depicts the interaction between a photon field and a two-level atom. We suggest to [1] and [2] for the best reviews respectively from mathematical and physical outcomes. Regardless of whether the fundamental space is a dD torus or the dD euclidian space \mathbb{R}^d , the total spin-boson model is an endless operator framework in Fock space with a finite *N* of bosons for which comprehensive results are exceedingly difficult to get in. We discuss the projection to the truncated Fock space with a finite *N* of bosons as one approach. The truncated standard spin-boson model was fully investigated [3] in for tiny values of the parameter α for $N = 1, 2$. The case $N = 3$ was assumed in [4]. There was proof of the existence of constructed wave operators as well as its asymptotic completeness. When *N* is an arbitrary it was studied in [5] and [6]. For sufficiently tiny coupling constants, the spectral properties of the truncated spin-boson matrix A_N was learned using a Mourre type estimate. The discrete spectrum of the truncated spin-boson matrix with two photons in \mathbb{R}^d is finite for all values of coupling $\alpha > 0$, according to [7].

In [8] a lattice matrix \mathcal{B}_2 – so-called truncated lattice spin-boson matrix with at most two photons are analyzed. The position of the $\sigma_{\text{ess}}(\mathscr{B}_2)$ is depicted. The finiteness of the number of eigenvalues below the bottom of any coupling constant's essential spectrum is established. Considering a general lattice matrix and estimating the essential spectrum's left boundary the results are achieved.

Because of boundedness and self-adjointness the spectrum of the lattice matrix \mathcal{B}_2 is more intricate than the continuous case. The two-particle and three-particle branches of the $\sigma_{\rm ess}(\mathscr{B}_2)$ in the continuous case are made up of semi interval $[\kappa, \infty)$ with quantity $\kappa < 0$. As a result (see [3]), finding the eigenvalues in the case of at most 1 photon suffices to elucidate the $\sigma_{\text{ess}}(\mathcal{B}_2)$ of this matrix, and the approach employed to carry out is not difficult. The two-particle and three-particle branches of the essential spectrum in the lattice scenario are made up of finite-length intervals that may or may not intersect. We obtain a natural question: Are there eigenvalues located between the branches, and if so, how many are there? As a result, analyzing the essential spectrum as well as the \mathcal{B}_2 conditions are important.

In [9] the essential spectrum of the matrix \mathcal{B}_2 is investigated in detail with respect to the dimension d $\in \mathbb{N}$ and the values of coupling $\alpha > 0$.

In the following article we have considered the matrix family $\mathscr{A}(K)$, $K \in \mathbf{T}^d$ (3 × 3 operator matrices), related the system of particles where the number of particles isn't conserved. For the analysis of the lattice truncated spin-boson matrix with two bosons, the matrix family $\mathscr{A}(K)$ is required. Obtained matrix of order 6 is unitary equivalent to a diagonal matrix of order 2 with two copies of the case of $\mathscr{A}(K)$ on the diagonal, as shown in see [8]. As a result, the the set $\sigma_{\text{ess}}(\mathscr{A}(K))$ and finiteness of $\sigma_{\text{disc}}(\mathscr{A}(K))$ are determined by spectral information on the matrix family $\mathscr{A}(K)$.

It is easy to see that matrix family $\mathscr{A}(K)$ has almost same spectral properties of the three lattice particle Hamiltonian $H(K)$, known us as lattice analog of the standard three-particle Schrödinger operator, arising in lattice field theory [10], [11] and solid state physics models (see [12] – [13]).

The three-particle discrete Schrödinger operator $H(K)$, $K \in \mathbf{T}^3$ is discussed in [14, 15]. The finiteness of the number of eigenvalues of $H(K)$ is proven for all sufficiently small nonzero values of K , and the limit relation

$$
\lim_{|K| \to 0} \frac{N(K)}{|\log|K||} = U_0 \left(0 < U_0 < \infty\right) \tag{1}
$$

 14 September 2023 10:01:5114 September 2023 10:01:5

is given for the number $N(K)$ of negative eigenvalues of $H(K)$.

Advanced Technologies in Chemical, Construction and Mechanical Sciences AIP Conf. Proc. 2764, 030003-1–030003-9; https://doi.org/10.1063/5.0170399 Published by AIP Publishing. 978-0-7354-4650-2/\$30.00

The spectral properties of $\mathscr{A}(K_0)$ for a fixed K_0 were studied in [16, 17, 18, 19, 20, 21, 22, 23, 24], see also the references therein. In [25], [26] was founded a finite set $\Lambda \subset T^3$ to demonstrate the existence of an infinitely many discrete eigenvalues of the matrix family $\mathscr{A}(K)$ for all $K \in \Lambda$, when the associated Friedrichs model has a virtual level at 0. In addition, it is shown that if for the generalized Friedrichs model the number 0 is an eigenvalue or the number 0 is the regular type point for positive definite Friedrichs model, the matrix $\mathscr{A}(K)$ have finitely many negative discrete eigenvalues for every $K \in \Lambda$.

However, with regard to the spectral parameter *K*, the asymptotic formula of the form (1) was not established. It is critical to determine the structure and location of the matrix family $\mathscr{A}(K)$ in order to reach this type of result. To this purpose, the geometric position of two-particle as well three-particle branches of the $\sigma_{\text{ess}}(\mathscr{A}(K))$ is investigated in this paper.

The article is dealt with as follows: an introduction to the whole investigation is given in Section 1. In Section 2, the matrix family $\mathscr{A}(K)$, $K \in \mathbf{T}^d$ are described as the family of self-adjoint bounded linear operators in the direct sum of zero-particle subspace, one-particle subspace and two-particle subspace of the bosonic Fock space and the most important aims of the work are pointed. In Section 3, we studied the so called channel operator $\mathcal{A}_{ch}(K)$ relative to $\mathscr{A}(K)$ and analyzed its spectrum using a family of generalized Friedrichs model. In the text Section a more detailed data on the position of $\sigma_{\text{ess}}(\mathcal{A}(K))$ and its branches is given.

FAMILY OF OPERATOR MATRICES OF ORDER 3 AND ITS RELATION WITH THE LATTICE SPIN-BOSON MATRIX

First of all we will determine some setting, they are useful within this work. As T^d we denote the dD torus. Channel 1 $-\mathcal{H}_0 := \mathbb{C}$, channel $2 - \mathcal{H}_1 := L^2(\mathbb{T}^d)$ and channel $3 - \mathcal{H}_2 := L^2_{sym}((\mathbb{T}^d)^2)$ is a subspace of $L^2((\mathbb{T}^d)^2)$ containing all symmetric functions. The direct sum of these three channels, that is, the spaces \mathcal{H}_0 , \mathcal{H}_1 and \mathcal{H}_2 will be denoted by \mathcal{H} , i.e., $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2$. Usually \mathcal{H}_0 is called zero-particle subspace, \mathcal{H}_1 is called one-particle subspace and \mathcal{H}_2 is called two-particle subspace of the bosonic (or symmetric) Fock space $\mathcal{F}_s(L^2(\mathbf{T}^d))$ with respect to $L^2(\mathbf{T}^d)$. The components *F* of \mathcal{H} have a form $F = (F_0, F_1, F_2)$ with $F_i \in \mathcal{H}_i$, $i = 0, 1, 2$ and for $F = (F_0, F_1, F_2), G = (G_0, G_1, G_2) \in$ \mathcal{H} we have the equality

$$
(F,G) := F_0 \overline{G_0} + \int_{\mathbf{T}^d} F_1(x) \overline{G_1(x)} dx + \int_{(\mathbf{T}^d)^2} F_2(x,y) \overline{G_2(x,y)} dx dy.
$$

It is well known that each linear bounded operator always can be presented as a 3×3 operator matrix, if its domain is decomposed into three components [27].

In this work a family

$$
\mathscr{A}(K) := \begin{pmatrix} A_{00}(K) & A_{01} & 0 \\ A_{01}^* & A_{11}(K) & A_{12} \\ 0 & A_{12}^* & A_{22}(K) \end{pmatrix}, \quad K \in \mathbf{T}^d
$$
 (2)

is considered in H . Here for $n = 0, 1, 2$ the diagonal elements $A_{nn}(K)$: $H_n \to H_n$ and for $n < m, n, m = 0, 1, 2$ the off-diagonal elements $A_{nm}: \mathcal{H}_m \to \mathcal{H}_n$ are defined as

$$
A_{00}(K)g_0 = u_0(K)g_0, \quad A_{01}g_1 = \int_{\mathbf{T}^d} \varphi_0(s)g_1(s)ds,
$$

\n
$$
(A_{11}(K)g_1)(x) = u_1(K;x)g_1(x), \quad (A_{12}g_2)(x) = \int_{\mathbf{T}^d} \varphi_1(s)g_2(x,s)ds,
$$

\n
$$
(A_{22}(K)g_2)(x,y) = u_2(K;x,y)g_2(x,y), \quad g_i \in \mathcal{H}_k, \quad k = 0, 1, 2.
$$

Throughout the article it is assumed that the functions with real-values $u_0(\cdot)$, $\varphi_k(\cdot)$, $k = 0, 1$; $u_1(\cdot; \cdot)$ and $u_2(\cdot; \cdot, \cdot)$ are continuous on \mathbf{T}^d ; $(\mathbf{T}^d)^2$ and $(\mathbf{T}^d)^3$, respectively. Moreover, for $K \in \mathbf{T}^d$ the assertion $u_2(K; x, y) = u_2(K; x, y)$ is valid for all $x, y \in \mathbf{T}^d$.

Then the boundedness and self-adjointness of $\mathscr{A}(K)$ in \mathscr{H} can be shown easily.

After direct calculations we get

$$
A_{01}^* : \mathcal{H}_0 \to \mathcal{H}_1, \quad (A_{01}^* g_0)(x) = \varphi_0(x) g_0, \quad g_0 \in \mathcal{H}_0;
$$

$$
A_{12}^* : \mathcal{H}_1 \to \mathcal{H}_2, \quad (A_{12}^* g_1)(x, y) = \frac{1}{2} (\varphi_1(x) g_1(y) + \varphi_1(y) g_1(x)), \quad g_1 \in \mathcal{H}_1.
$$

These operators have a wide application in quantum mechanics.

Let us now study the relation of $\mathscr{A}(K)$ to the lattice truncated spin boson matrix \mathscr{B}_2 with at most two photons. We remember that the operator \mathcal{B}_2 acts in $\mathbb{C}^2 \otimes \mathcal{H}$:

$$
\mathscr{B}_2:=\left(\begin{array}{ccc}\mathscr{B}_{00}&\mathscr{B}_{01}&0\\ \mathscr{B}_{01}^*&\mathscr{B}_{11}&\mathscr{B}_{12}\\ 0&\mathscr{B}_{12}^*&\mathscr{B}_{22}\end{array}\right),
$$

with elements

$$
\mathscr{B}_{00}g_0^{(s)} = \varepsilon s g_0^{(s)}, \quad \mathscr{B}_{01}g_1^{(s)} = \alpha \int_{\mathbf{T}^d} v(t)g_1^{(-s)}(t)dt,
$$

$$
(\mathscr{B}_{11}g_1^{(s)})(x) = (\varepsilon s + w(x))g_1^{(s)}(x), \quad (\mathscr{B}_{12}g_2^{(s)})(x) = \alpha \int_{\mathbf{T}^d} v(t)g_2^{(-s)}(x,t)dt,
$$

$$
(\mathscr{B}_{22}g_2^{(s)})(x,y) = (\varepsilon s + w(x) + w(y))g_2^{(s)}(x,y), \quad g = \{g_0^{(s)}, g_1^{(s)}, g_2^{(s)}; s = \pm \} \in \mathbf{C}^2 \otimes \mathcal{H}.
$$

Here $\varepsilon > 0$; $w(\cdot)$ (dispersion function) is an analytic on T^d with real values; the function $v(\cdot)$ is an analytic on T^d with real values; $\alpha > 0$ (coupling constant) is a real number.

To learn the spectrum of \mathscr{B}_2 , we determine two (with discrete parameter) matrices $\mathscr{B}_2^{(s)}$, s = \pm , in \mathscr{H} as

$$
\mathscr{B}^{(\mathrm{s})}_{2} \coloneqq \left(\begin{array}{ccc} \widehat{\mathscr{B}}^{(\mathrm{s})}_{00} & \widehat{\mathscr{B}}_{01} & 0 \\ \widehat{\mathscr{B}}^{*}_{01} & \widehat{\mathscr{B}}^{(\mathrm{s})}_{11} & \widehat{\mathscr{B}}_{12} \\ 0 & \widehat{\mathscr{B}}^{*}_{12} & \widehat{\mathscr{B}}^{(\mathrm{s})}_{22} \end{array} \right)
$$

with the entries

$$
\widehat{\mathscr{B}}_{00}^{(s)}g_0 = \varepsilon s g_0, \quad \widehat{\mathscr{B}}_{01}g_1 = \alpha \int_{\mathbf{T}^d} v(t)g_1(t)dt,
$$

\n
$$
(\widehat{\mathscr{B}}_{11}^{(s)}g_1)(x) = (-\varepsilon s + w(x))g_1(x), \quad (\widehat{\mathscr{B}}_{12}g_2)(x) = \alpha \int_{\mathbf{T}^d} v(t)g_2(x,t)dt,
$$

\n
$$
(\widehat{\mathscr{B}}_{22}^{(s)}g_2)(x,y) = (\varepsilon s + w(x) + w(x))g_2(x,y), \quad (g_0, g_1, g_2) \in \mathcal{H}.
$$

The following relations between subsets of the spectrum of \mathcal{B}_2 and $\mathcal{B}_2^{(s)}$ are proven in [8]: The equality $\sigma(\mathscr{B}_2) = \sigma(\mathscr{B}_2^{(+)}) \cup \sigma(\mathscr{B}_2^{(-)})$ holds. Moreover,

$$
\sigma_{ess}(\mathscr{B}_2)=\sigma_{ess}(\mathscr{B}_2^{(+)})\cup\sigma_{ess}(\mathscr{B}_2^{(-)}),\quad \sigma_p(\mathscr{B}_2)=\sigma_p(\mathscr{B}_2^{(+)})\cup\sigma_p(\mathscr{B}_2^{(-)}).
$$

Since the subset of $\sigma_{disc}(\mathcal{B}_2^{(s)})$ can be lie inside of $\sigma_{ess}(\mathcal{B}_2)$ we obtain the result

$$
\sigma_{disc}(\mathscr B_2)\subseteq \sigma_{disc}(\mathscr B_2^{(+)})\cup \sigma_{disc}(\mathscr B_2^{(-)}).
$$

It is easy to check that if

$$
w_0(K_0^{(s)}) = \varepsilon s
$$
, $w_1(K_0^{(s)}; p) = -\varepsilon s + w(p)$, $w_2(K_0^{(s)}; p, q) = \varepsilon s + w(p) + w(q)$

for some $K_0^{(s)} \in \mathbf{T}^d$ and $v_i(p) = \alpha v(p)$, $i = 0, 1$, then $\mathscr{A}(K_0^{(s)}) = \mathscr{B}_2^{(s)}$. Therefore, using a connection between the operators \mathscr{B}_2 and $\mathscr{A}(K_0^{(s)})$, $s = \pm$, the results for \mathscr{B}_2 can be obtained by considering a more general family of operator matrices $\mathscr{A}(K)$, $K \in \mathbf{T}^d$.

A FAMILY OF CHANNEL OPERATORS AND ITS SPECTRUM

In the following we consider a family of channel operators $\mathcal{A}_{ch}(K)$, $K \in \mathbf{T}^d$ related with $\mathcal{A}(K)$ and learn its spectrum.

We construct the operator $\mathcal{A}_{ch}(K)$ in $L^2(\mathbf{T}^d) \oplus L^2((\mathbf{T}^d)^2)$ using the rule

$$
\mathscr{A}_{\text{ch}}(K) := \left(\begin{array}{cc} A_{11}(K) & \frac{1}{\sqrt{2}} A_{12} \\ \frac{1}{\sqrt{2}} A_{12}^* & A_{22}(K) \end{array} \right), \quad K \in \mathbf{T}^d.
$$
 (3)

With respect to the domain in the considered case the operator A_{12}^* is acting as

$$
A_{12}^*: L^2(\mathbf{T}^d) \to L^2((\mathbf{T}^d)^2), \quad (A_{12}^*g_1)(x,y) = \varphi_1(q)g_1(p), \quad g_1 \in L^2(\mathbf{T}^d).
$$

The boundedness and self-adjointness of $\mathcal{A}_{ch}(K)$ in $L^2(\mathbf{T}^d) \oplus L^2((\mathbf{T}^d)^2)$ easily follows from the definition. For a bounded function $\gamma(\cdot)$ on T^d we consider multiplication operator U_γ by

$$
U_{\gamma}\left(\begin{array}{c}f_1(x)\\f_2(x,y)\end{array}\right)=\left(\begin{array}{c}\gamma(x)f_1(x)\\ \gamma(x)f_2(x,y)\end{array}\right),\left(\begin{array}{c}f_1\\f_2\end{array}\right)\in L^2(\mathbf{T}^d)\oplus L^2((\mathbf{T}^d)^2).
$$

One can easily check that $\mathcal{A}_{ch}(K)U_{\gamma} = U_{\gamma}\mathcal{A}_{ch}(K)$. By this reason the assertion

$$
L^{2}(\mathbf{T}^{d})\oplus L^{2}((\mathbf{T}^{d})^{2})=\int_{\mathbf{T}^{d}}\oplus(\mathscr{H}_{0}\oplus\mathscr{H}_{1})dk
$$
\n(4)

yields the following decomposition

$$
\mathscr{A}_{\text{ch}}(K) = \int_{\mathbf{T}^d} \oplus \widehat{\mathscr{A}}(K,k)dk.
$$
 (5)

Here the fibered operators $\widehat{\mathscr{A}}(K,k)$ are defined in $\mathscr{H}_0 \oplus \mathscr{H}_1$ as operator matrices 2 × 2

$$
\widehat{\mathscr{A}}(K,k) := \begin{pmatrix} \widehat{A}_{00}(K,k) & \widehat{A}_{01} \\ \widehat{A}_{01}^* & \widehat{A}_{11}(K,k) \end{pmatrix},\tag{6}
$$

with components

$$
\widehat{A}_{00}(K,k)g_0 = u_1(K,k)g_0, \widehat{A}_{01}g_1 = \frac{1}{\sqrt{2}} \int_{\mathbf{T}^d} \varphi_1(t)g_1(t)dt,
$$

$$
(\widehat{A}_{11}(K,k)g_1)(y) = u_2(K;k,y)g_1(y), \quad g_l \in \mathcal{H}_l, \quad l = 0, 1.
$$

In this case

$$
\widehat{A}_{01}^* : \mathscr{H}_0 \to \mathscr{H}_1, \quad (\widehat{A}_{01}^* g_0)(x) = \frac{1}{\sqrt{2}} \varphi_1(x) g_0, \quad g_0 \in \mathscr{H}_0.
$$

Note that in the direct integral expansion (4) the identical layers appear. Applying theorem about the spectrum of decomposable operators [13] we obtain the relation

$$
\sigma(\mathscr{A}_{\text{ch}}(K)) = \bigcup_{k \in \mathbf{T}^d} \sigma(\widehat{\mathscr{A}}(K,k)).
$$
\n(7)

Thus, learning the spectrum of a channel operator $\mathcal{A}_{ch}(K)$ is reduced to learning the spectrum of a family of generalized Friedrichs models, which is simple than $\widehat{\mathscr{A}}(K, k)$ and easy to study. No we start to study the spectrum of $\widehat{\mathscr{A}}(K,k)$.

Let

$$
\widehat{\mathscr{A}_0}(K,k) := \left(\begin{array}{cc} 0 & 0 \\ 0 & \widehat{A}_{11}(K,k) \end{array}\right).
$$

Then for the operator $\widehat{\mathscr{A}}(K,k)-\widehat{\mathscr{A}_0}(K,k)$ we have $(\widehat{\mathscr{A}}(K,k)-\widehat{\mathscr{A}_0}(K,k))^* = \widehat{\mathscr{A}}(K,k)-\widehat{\mathscr{A}_0}(K,k)$ and $\text{rank}(\widehat{\mathscr{A}}(K,k)-\widehat{\mathscr{A}_0}(K,k)^*)$ $\widehat{\mathcal{A}_0}(K,k)$ = 2. Taking into account these facts and Weyl's theorem we obtain

$$
\sigma_{\rm ess}(\mathscr{A}(K,k))=[E_{\min}(K,k);E_{\max}(K,k)],
$$

here

$$
E_{\min}(K,k) := \min_{q \in \mathbf{T}^d} w_2(K;k,q) \quad \text{and} \quad E_{\max}(K,k) := \max_{q \in \mathbf{T}^d} w_2(K;k,q).
$$

We determine the Fredholm determinant $\Delta_K(k;\cdot)$ of $\widehat{\mathscr{A}}(K,k)$ in $\mathbb{C}\setminus [E_{\min}(K,k);E_{\max}(K,k)]$ by

$$
\Delta_K(k; z) := w_1(K; k) - z - \frac{1}{2} I_K(k; z), \quad I_K(k; z) := \int_{\mathbf{T}^d} \frac{\varphi_1^2(s) ds}{w_2(K; k, s) - z}.
$$

We have the following lemma [17].

Lemma 1. The quantity $z(K, k) \in \mathbb{C} \setminus [E_{\min}(K, k); E_{\max}(K, k)]$ is an discrete eigenvalue of $\widehat{\mathscr{A}}(K, k)$ iff $\Delta_K(k; z(K, k))$ = 0.

By Lemma 1 the discrete spectrum of $\widehat{\mathscr{A}}(K,k)$ satisfies the equality

$$
\sigma_{\text{disc}}(\widehat{\mathscr{A}}(K,k)) = \{ z \in \mathbf{C} \setminus [E_{\min}(K,k); E_{\max}(K,k)] : \Delta_K(k; z) = 0 \}.
$$

In the following we formulate lemma about the eigenvalues of $\widehat{\mathscr{A}}(K, k)$.

Lemma 2. The matrix $\widehat{\mathscr{A}}(K,k)$ hasn't more than 1 simple discrete eigenvalue located on the left hand side (respectively right hand side) of $E_{min}(K, k)$ (respectively $E_{max}(K, k)$).

The proof of Lemma 2 is an elementary.

Introduce the following notations

$$
m_K := \min_{p,q \in \mathbf{T}^d} w_2(K; p, q), \quad M_K := \max_{p,q \in \mathbf{T}^d} w_2(K; p, q),
$$

$$
\Lambda_K := \bigcup_{k \in \mathbf{T}^d} \sigma_{disc}(\widehat{\mathscr{A}}(K,k)), \quad \Sigma_K := [m_K; M_K] \cup \Lambda_K.
$$

Definition of the set Λ_K and the equality

$$
\bigcup_{k \in \mathbf{T}^d} [E_{\min}(K,k); E_{\max}(K,k)] = [m_K; M_K]
$$

imply equality

$$
\bigcup_{k \in \mathbf{T}^d} \sigma(\widehat{\mathscr{A}}(K,k)) = \Sigma_K. \tag{8}
$$

Now, the equalities (7) and (8) imply that the spectrum of the matrix $\mathcal{A}_{ch}(K)$ is a purely essential and the relation $\sigma(\mathcal{A}_{ch}(K)) = \Sigma_K$ holds for its spectrum.

POSITION OF SUBSETS OF THE ESSENTIAL SPECTRUM

Main results of the work:

Theorem 1. The equality $\sigma_{\text{ess}}(\mathscr{A}(K)) = \sigma(\mathscr{A}_{\text{ch}}(K))$ is valid. In addition, the set $\sigma(\mathscr{A}_{\text{ch}}(K))$ consists of at most 3 segments.

It is remarkable that the channel operator $\mathcal{A}_{ch}(K)$ defined as above has a simpler structure than the operator $\mathcal{A}(K)$, therefore, Theorem 1 plays an key role in other investigation of the spectrum of $\mathscr{A}(K)$.

Let us introduce the following notations:

$$
E_{\min}^{(l)}(K) := \min \{ \Lambda_K \cap (-\infty; m_K] \}, \quad E_{\max}^{(l)}(K) := \max \{ \Lambda_K \cap (-\infty; m_K] \},
$$

\n
$$
E_{\min}^{(r)}(K) := \min \{ \Lambda_K \cap [M_K; +\infty) \}, \quad E_{\max}^{(r)}(K) := \max \{ \Lambda_K \cap [M_K; +\infty) \},
$$

\n
$$
\sigma_{\text{two}}^{(l)}(K) := [E_{\min}^{(l)}(K); E_{\max}^{(l)}(K)], \quad \sigma_{\text{two}}^{(r)}(K) := [E_{\min}^{(r)}(K); E_{\max}^{(r)}(K)].
$$

Since the function $I_K(k; \cdot)$ is increasing in the intervals $(-\infty; m_K)$ and $(M_K; +\infty)$ for any fixed $K, k \in \mathbb{T}^d$, by the Lebesgue theorem a finite or infinite limits

$$
\lim_{z \to m_K - 0} I_K(k; z) = I_K(k; m_K) \text{ and } \lim_{z \to M_K + 0} I_K(k; z) = I_K(k; M_K)
$$

are exist.

Let $I_{K_0}(k_0; m_{K_0}) = +\infty$ for some $K_0, k_0 \in \mathbb{T}^d$. Then

$$
\lim_{z \to m_{K_0}-0} \Delta_{K_0}(k_0; z) = \Delta_{K_0}(k_0; m_{K_0}) = -\infty,
$$

hence from the equality

$$
\lim_{z \to -\infty} \Delta_{K_0}(k_0; z) = +\infty
$$

and Lemma 1 it follows that there exists an unique eigenvalue $z(K_0, k_0)$ in $(-\infty; m_{K_0})$. Using the definitions of Λ_K and $E_{\min}^{(l)}(K)$ we obtain that $E_{\min}^{(l)}(K_0) < m_{K_0}$. Analogously, if $I_{K_1}(k_1; m_{K_1}) = -\infty$ for some $K_1, k_1 \in \mathbf{T}^d$, then $E_{\max}^{(r)}(K_0) > m_{K_0}$.

Next we suppose that for all $K, k \in \mathbf{T}^d$ there exist finite integrals $I_K(k; m_K)$ and $I_K(k; M_K)$, that is, $|I_K(k; m_K)| < \infty$ and $|I_K(k;M_K)| < \infty$. In this case the functions $\Delta_K(\cdot; m_K)$ and $\Delta_K(\cdot; M_K)$ are continuous on T^d .

In the following three theorems the location of $\sigma_{\text{ess}}(\mathscr{A}(K))$ and its structure can be exactly described.

Theorem 2. *Let* $K \in \mathbf{T}^d$ *be a fixed and* $\min_{k \in \mathbf{T}^d} \Delta_K(k; m_K) \geq 0$. *Then*

$$
\sigma_{\rm ess}(\mathscr{A}(K))=\left\{\begin{array}{l}[m_K;M_K]\text{, if } \max_{k\in \mathbb{T}^d}\Delta_K(k\,;M_K)\leq 0;\\ \left[m_K;E_{\max}^{(r)}(K)\right]\text{, if } \min_{k\in \mathbb{T}^d}\Delta_K(k\,;M_K)\leq 0\text{ and } \max_{k\in \mathbb{T}^d}\Delta_K(k\,;M_K)>0;\\ \left[m_K;M_K\right]\cup\sigma_{\rm two}^{(r)}(K)\text{, if } \min_{k\in \mathbb{T}^d}\Delta_K(k\,;M_K)>0;\end{array}\right.
$$

moreover $E_{\min}^{(l)}(K) = m_K$.

Theorem 3. Assume $K \in \mathbf{T}^d$ and

$$
\min_{k \in \mathbf{T}^d} \Delta_K(k m_K) < 0, \quad \max_{k \in \mathbf{T}^d} \Delta_K(k m_K) \ge 0.
$$

Then for the $\sigma_{\text{ess}}(\mathscr{A}(K))$ *we have*

$$
\sigma_{\rm ess}(\mathscr{A}(K)) = \begin{cases}\n\left[E_{\min}^{(l)}(K); M_K\right], & \text{if } \max_{k \in \mathbb{T}^d} \Delta_K(k, M_K) \leq 0; \\
\left[E_{\min}^{(l)}(K); E_{\max}^{(r)}(K)\right], & \text{if } \min_{k \in \mathbb{T}^d} \Delta_K(k; M_K) \leq 0, \max_{k \in \mathbb{T}^d} \Delta_K(k; M_k) > 0; \\
\left[E_{\min}^{(l)}(K); M_K\right] \cup \sigma_{\rm two}^{(r)}(K), & \text{if } \min_{k \in \mathbb{T}^d} \Delta_K(k; M_K) > 0.\n\end{cases}
$$

Moreover $E_{\min}^{(l)}(K) < m_K$.

Theorem 4. Let $K \in \mathbf{T}^d$ *be a fixed and* max $k \in \mathbf{T}^d$ $\Delta_K(k|m_K)< 0$. Then the essential spectrum of $\mathscr{A}(K)$ has the following *structure*

$$
\sigma_{\mathrm{ess}}(\mathscr{A}(K)) = \begin{cases}\n\sigma_{\mathrm{two}}^{(l)}(K) \cup [m_K; M_K], & \text{if } \max_{k \in \mathbb{T}^d} \Delta_K(k; M_K) \leq 0; \\
\sigma_{\mathrm{two}}^{(l)}(K) \cup [m_K; E_{\max}^{(r)}(K)], & \text{if } \min_{k \in \mathbb{T}^d} \Delta_K(k; M_K) \leq 0, \max_{k \in \mathbb{T}^d} \Delta_K(k; M_K) > 0; \\
\sigma_{\mathrm{two}}^{(l)}(K) \cup [m_K; M_K] \cup \sigma_{\mathrm{two}}^{(r)}(K), & \text{if } \min_{k \in \mathbb{T}^d} \Delta_K(k; M_K) > 0.\n\end{cases}
$$

Moreover, $E_{\text{max}}^{(l)}(K) < m_K$.

Remark. We notice that in the first assertions of Theorems 2 – 4 we have $E_{\text{max}}^{(r)}(K) = M_K$; in the second assertions $E_{\max}^{(r)}(K) > M_K$; in the third assertions $E_{\min}^{(r)}(K) > M_K$.

Proof of Theorem 4. Assume $K \in \mathbf{T}^d$ and max $k \in \mathbf{T}^d$ $\Delta_K(k m_K) < 0.$

Since T^d is a compact set from continuity of $\Delta_K(\cdot; m_K)$ on T^d , for all $k \in T^d$ we have the inequality

 $\Delta_K(k;m_K) < 0.$

From the continuity and monotonicity of $\Delta_K(k;\cdot)$ on $(-\infty;m_K]$ and from

$$
\lim_{z \to -\infty} \Delta_K(k; z) = +\infty
$$

we conclude that there exist an unique point $z_K^{(l)}(k) \in (-\infty; m_K)$ with $\Delta_K(k; z_K^{(l)}(k) = 0$. Hence by Lemma 1 the point $z_K^{(l)}(k)$ is the eigenvalue of $\widehat{\mathcal{A}}(K,k)$ in $(-\infty; m_K)$. By assumptions $z_K^{(l)}$: $k \in \mathbf{T}^d \to z_K^{(l)}(k)$ is a continuous on \mathbf{T}^d with real value. Therefore, Im $z_K^{(l)}$ as subset of $(-\infty; m_K)$ is closed and connected, that is, Im $z_K^{(l)} = [E_{\min}^{(l)}(K); E_{\max}^{(l)}(K)]$ and $E_{\max}^{(l)}(K) < m_K$.

Let now max $\max_{k \in \mathbf{T}^d} \Delta_K(k; M_K) \leq 0$. Since \mathbf{T}^d is a compact set from the continuity of $\Delta_K(\cdot; M_K)$ on \mathbf{T}^d we have $\Delta_K(k; M_K) \leq 0$ for all $k \in \mathbb{T}^d$. One has $\lim_{z \to +\infty} \Delta_K(k; z) = -\infty$. Taking into account the monotonicity of $\Delta_K(k; z)$ on $(M_K; +\infty)$ we get that the function $\Delta_K(k; \cdot)$ hasn't zeros bigger than M_K . Then by the Lemma 1 the matrix $\widehat{\mathscr{A}}(K, k)$ hasn't discrete eigenvalues bigger than M_K . Hence, Theorem 1 implies that max $\sigma_{\text{ess}}(\mathscr{A}(K)) = M_K$, i.e.

$$
\sigma_{\rm ess}(\mathscr{A}(K)) = [E_{\min}^{(l)}(K); E_{\max}^{(l)}(K)] \cup [m_K; M_K] \quad \text{with} \quad E_{\max}^{(l)}(K) < m_K.
$$

Let us now suppose that

$$
\min_{k \in \mathbf{T}^d} \Delta_K(k; M_K) \le 0 \quad \text{and} \quad \max_{k \in \mathbf{T}^d} \Delta_K(k; M_K) > 0.
$$

Introduce the notation:

$$
D_K := \{k \in \mathbf{T}^d : \Delta_K(k; M_K) > 0\}.
$$

Since T^d is compact by the continuity of $\Delta_K(\cdot; m_K)$ on T^d we get that there are $p_K^{(1)}, p_K^{(2)} \in T^d$ such that the inequalities

$$
\min_{k \in \mathbf{T}^d} \Delta_K(k; M_K) = \Delta_K(p_K^{(1)}; M_K) \le 0,
$$

$$
\max_{k \in \mathbf{T}^d} \Delta_K(k; M_K) = \Delta_K(p_K^{(2)}; M_K) > 0
$$

are valid. It means voidness and openness of D_K with $D_K \neq \mathbf{T}^d$.

From continuity and monotonicity of $\Delta_K(k;\cdot)$ on $[M_K; +\infty)$ and from lim $\Delta_K(k; z) = -\infty$ we imply that there is a unique quantity $z_K^{(r)}(k) \in (M_K; +\infty)$ so that $\Delta_K(k; z_K^{(r)}(k)) = 0$ for any $k \in D_K$. By Lemma 1 the point $z_K^{(r)}(k)$ is the unique discrete eigenvalue of the matrix $\mathscr{A}(K, k)$ lying on r.h.s. of M_K .

For $z > M_K$ and $k \in \mathbf{T}^d \setminus D_K$ one have

$$
\Delta_K(k; z) < \Delta_K(k; M_K) \leq 0.
$$

Hence by Lemma 1 for each $k \in \mathbf{T}^d \setminus D_K$ the operator $\widehat{\mathscr{A}}(K, k)$ hasn't discrete eigenvalues bigger than M_K .

By the continuity of $v_1(\cdot)$, $w_1(\cdot; \cdot)$ and $w_2(\cdot; \cdot, \cdot)$ on its domain, we get the continuity of $z_K^{(r)}$: $k \in D_K \to z_K^{(r)}(k)$ on D_K .

From the boundedness of $\widehat{\mathscr{A}}(K,k)$ and from compactness of \mathbf{T}^d we get that there is $C_K > 0$ with $\sup_{k \in \mathbb{N}} ||\widehat{\mathscr{A}}(K,k)|| \leq$ *^k*∈T^d C_K and we receive

$$
\sigma(\widehat{\mathscr{A}}(K,k)) \subset [-C_K;C_K].
$$
\n(9)

 14 September 2023 10:01:5114 September 2023 10:01:51

For any $k \in \partial D_K = \{k \in \mathbf{T}^d : \Delta_K(k; M_K) = 0\}$ there exist $\{k_n(K)\} \subset D_K$ such that $k_n(K) \to k(K)$ as $n \to \infty$. Set $z_K^{(n)} := z_K^{(r)}(k_n(K))$. Then for any $\{k_n(K)\}\in D_K$ the inequality $z_K^{(n)} > M_K$ holds and from (9) we get $\{z_K^{(n)}\}\subset [M_K;C_K]$. Suppose $z_K^{(n)} \to z_K^{(0)}$ as $n \to \infty$ for some $z_K^{(0)} \in [M_K; C_K]$.

From the continuity of the function $\Delta_K(\cdot;\cdot)$ in $\mathbf{T}^d \times [M_K; +\infty)$ and $k_n(K) \to k(K)$ and $z_K^{(n)} \to z_K^{(0)}$ as $n \to \infty$ it follows that

$$
0 = \lim_{n \to +\infty} \Delta_K(k_n(K); z_K^{(n)}) = \Delta_K(k; z_K^{(0)}).
$$

By the monotonicity of $\Delta_K(k;\cdot)$ on $[M_K; +\infty)$ and by $k(K) \in \partial D_K$ we see that $\Delta_K(k; z_K^{(0)}) = 0$ if and only if $z_K^{(0)} =$ M_K .

For any $k \in \partial D_K$ we define

$$
z_K(k) = \lim_{k' \to k, k' \in D_K} z_K(k') = M_K.
$$

From the continuity of $z_K(\cdot)$ on $D_K \cup \partial D_K$ and $z_K(k) = M_K$ for all $k \in \partial D_K$ we conclude that

Im_{ZK}(·) = [
$$
M_K
$$
; $E_{\text{max}}^{(r)}(K)$], $E_{\text{max}}^{(r)}(K) > M_K$.

Then by Theorem 1 we get

$$
\sigma_{\rm ess}(\mathscr{A}(K)) = [E_{\min}^{(l)}(K); E_{\max}^{(l)}(K)] \cup [m_K; E_{\max}^{(r)}(K)] \text{ with } E_{\max}^{(r)}(K) > M_K.
$$

Finally, let min *^k*∈T^d $\Delta_K(k; M_K) > 0$. Similarly to the case max $\max_{k \in \mathbb{T}^d} \Delta_K(k \, m_K) < 0$, one can show that matrix $\mathscr{A}(K, k)$ have an unique discrete eigenvalue $z_K^{(r)}(k)$ in $(M_K; +\infty)$ and

Im
$$
z_K^{(r)} = [E_{\min}^{(r)}(K); E_{\max}^{(r)}(K)]
$$
 and $E_{\min}^{(r)}(K) > M_K$.

Therefore

$$
\sigma_{\rm ess}(\mathscr{A}(K)) = [E_{\min}^{(l)}(K); E_{\max}^{(l)}(K)] \cup [m_K; M_K] \cup [E_{\min}^{(r)}(K); E_{\max}^{(r)}(K)].
$$

Here $E_{\max}^{(l)}(K) < m_K$ and $E_{\min}^{(r)}(K) > M_K$.

We finish the proof of Theorem 4.

Sketch of the proof of Theorem 2. Let $K \in \mathbf{T}^d$ be a fixed and $\min_{k \in \mathbf{T}^d} \Delta_K(k; m_K) \ge 0$. Then for $z < m_K$ we receive

$$
\Delta_K(k; z) > \Delta_K(k; m_K) \geq 0.
$$

By Lemma 1 it means that the matrix $\widehat{\mathcal{A}}(K,k)$ hasn't eigenvalues smaller than m_K . Determination of Λ_K implies

$$
\Lambda_K \cap (-\infty; M_K] = [m_K; M_K].
$$

The rest of the proof is like the proof of Theorem 4.

Sketch of the proof of Theorem 3. Assume that $K \in \mathbf{T}^d$ is a fixed and

$$
\min_{k \in \mathbb{T}^d} \Delta_K(k m_K) < 0, \quad \max_{k \in \mathbb{T}^d} \Delta_K(k m_K) \ge 0.
$$

No likely the proof of the second assertion of Theorem 4 we get

$$
\Lambda_K \cap (-\infty; M_K] = [E_{\min}^{(l)}(K); M_K] \quad \text{with} \quad E_{\min}^{(l)}(K) < m_K.
$$

The rest of the proof runs as the proof of Theorem 4.

CONCLUSION

In the present paper the family $\mathscr{A}(K)$, $K \in \mathbf{T}^d := (-\pi; \pi]^d$ of the 3 × 3 block operator matrices is considered. Such matrices arise in the spectral analysis problem of the so called lattice truncated spin-boson Hamiltonian with at most two bosons. Exact relation between this family and the lattice spin-boson model is indicated. The corresponding channel operator is constructed and applying theorem about the spectrum of decomposable operators its spectrum is described. The position and structure of two-particle as well three-particle branches (subsets) of $\sigma_{\text{ex}}(\mathscr{A}(K))$ are investigated. In our analysis the key role is played the existence conditions of the eigenvalues of the generalized Friedrichs model.

REFERENCES

- 1. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, "Dynamics of the dissipative two-state system," [Rev.](https://doi.org/10.1103/RevModPhys.59.1) [Mod. Phys.](https://doi.org/10.1103/RevModPhys.59.1) 59, 1–85 (1987).
- 2. M. Hübner and H. Spohn, "Radiative decay: nonperturbative approaches," [Rev. Math. Phys.](https://doi.org/10.1142/S0129055X95000165) 7:3, 363–387 (1995).
- 3. R. A. Minlos and H. Spohn, "The three-body problem in radioactive decay: The case of one atom and at most two photons," [In American](https://doi.org/10.1090/trans2/177/09) [Mathematical Society Translations-Series](https://doi.org/10.1090/trans2/177/09) 2, 159–193 (1996).
- 4. Y. Zhukov and R. Minlos, "Spectrum and scattering in a spin-boson model with not more than three photons," [Theor. Math. Phys.](https://doi.org/10.1007/BF02069784) 103, 398–411 (1995).
- 5. M. Hübner and H. Spohn, "Spectral properties of the spin-boson hamiltonian," Ann. Inst. H. Poincaré Phys. Théor 62, 289–323 (1995).
- 6. M. Hübner and H. Spohn, "The spectrum of the spin-boson model," Operator Theory: Advances and Applications 70, 233–238 (1994).
- 7. O. O. Ibrogimov, "Spectral analysis of the spin-boson hamiltonian with two photons for arbitrary coupling," [Ann. Henri Poincaré](https://doi.org/10.1007/s00023-018-0725-z) 19, 3561– 3579 (2018).
- 8. M. Muminov, H. Neidhardt, and T. Rasulov, "On the spectrum of the lattice spin-boson hamiltonian for any coupling: 1d case," [J. Math. Phys.](https://doi.org/10.1063/1.4921169) 56, 053507 (2015).
- 9. T. K. Rasulov, "Branches of the essential spectrum of the lattice spin-boson model with at most two photons," [Theoretical and Mathematical](https://doi.org/10.1134/S0040577916020094) [Physics](https://doi.org/10.1134/S0040577916020094) 186:2, 251–267 (2016).
- 10. S. N. Lakaev and R. A. Minlos, "On bound states of the cluster operator," [Theor. and Math. Phys.](https://doi.org/10.1007/BF01018946) 39:1, 336–342 (1979).
- 11. V. A. Malishev and R. A. Minlos, *Linear infinite-particle operators. Translations of Mathematical Monographs* (American Mathematical Society, Providence, RI, 1995).
- 12. G. M. Graf and D. Schenker, "2-magnon scattering in the heisenberg model," Ann. Inst. H. Poincaré Phys.Theor 67:1, 91–107 (1997).
- 13. M. Reed and B. Simon, *Methods of modern mathematical physics. III: Scattering theory* (Academic Press, N.Y., 1979).
- 14. Z. I. Abdullaev and S. N. Lakaev, "Asymptotics of the discrete spectrum of the threeparticle schrödinger difference operator on a lattice," [Theor. Math. Phys.](https://doi.org/10.1023/A:1025061820767) 136:2, 1096–1109 (2003).
- 15. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, "Schrödinger operators on lattices. the efimov effect and discrete spectrum asymptotics," [Ann.](https://doi.org/10.1007/s00023-004-0181-9) [Henri Poincaré](https://doi.org/10.1007/s00023-004-0181-9) 5, 743–772 (2004).
- 16. S. N. Lakaev and T. K. Rasulov, "Efimov's effect in a model of perturbation theory of the essential spectrum," [Funct. Anal. Appl.](https://doi.org/10.1023/A:1022980112256) 37:1, 69–71 (2003).
- 17. S. Albeverio, S. N. Lakaev, and T. Rasulov, "On the spectrum of an hamiltonian in fock space. discrete spectrum asymptotics," [J. Stat. Phys.](https://doi.org/10.1007/s10955-006-9240-6) 127:2, 191–220 (2007).
- 18. S. A. va S. N. Lakaev va T. H. Rasulov, "The efimov effect for a model operator associated with the hamiltonian of a non conserved number of particles," Methods Funct. Anal. Topology 13:1, 1–16 (2007).
- 19. M. I. Muminov and T. H. Rasulov, "On the eigenvalues of a 2×2 block operator matrix," [Opuscula Math.](https://doi.org/10.7494/OpMath.2015.35.3.371) 35:3, 371–395 (2015).
- 20. M. I. Muminov and T. H. Rasulov, "Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix," Eurasian Math. 5:2, 60–77 (2014).
- 21. M. I. Muminov and T. H. Rasulov, "Embedded eigenvalues of a hamiltonian in bosonic fock space," Commun. Math. Analysis 17:1, 1–22 (2014).
- 22. T. H. Rasulov and E. B. Dilmurodov, "Eigenvalues and virtual levels of a family of 2×2 operator matrices," Methods of Functional Analysis and Topolog 25:1, 273–281 (2019).
- 23. T. H. Rasulov and E. B. Dilmurodov, "Analysis of the spectrum of a 2×2 operator matrix, discrete spectrum asymptotics," Nanosystems: Physics, Chemistry 11:2, 138–144 (2020).
- 24. T. H. Rasulov and E. B. Dilmurodov, "In nite number of eigenvalues of 2×2 operator matrices: Asymptotic discrete spectrum," [Theoret. and](https://doi.org/10.1134/S0040577920120028) [Math. Phys.](https://doi.org/10.1134/S0040577920120028) 205:3, 1564–1584 (2020).
- 25. M. I. Muminov and T. H. Rasulov, "On the number of eigenvalues of the family of operator matrices," Nanosystems: Physics, Chemistry, Mathematics 5:5, 619–625 (2014).
- 26. M. I. Muminov, T. H. Rasulov, and N. A. Tosheva, "Analysis of the discrete spectrum of the family of 3×3 operator matrices," Communications in Mathematical Analysis 23:1, 17–375 (2020).
- 27. C. Tretter, *Spectral theory of block operator matrices and applications* (Imperial College Press, 2008).
- 28. D. C. Mattis, "The few-body problem on lattice," [Rev. Modern Phys.](https://doi.org/10.1103/RevModPhys.58.361) 58:2, 361–379 (1986).
- 29. A. I. Mogilner, *The problem of a quasi-particles in solidstate physics I n; Application of Self-adjoint Extensions in Quantum Physics (P. Exner and P. Seba eds.) Lect. Notes Phys* (Springer-Verlag, Berlin, 1998).