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Abstract. In the article we have considered a family A (K), K ∈ Td := (−π;π]d of operator matrices of order three. They arise in
the spectral analysis problem of the so called lattice truncated spin-boson Hamiltonian with at most two bosons. The position and
structure of two-particle as well three-particle branches (subsets) of σess(A (K)) are investigated.

INTRODUCTION

There is an important quantum-mechanical model so called he spin-boson model which depicts the interaction between
a photon field and a two-level atom. We suggest to [1] and [2] for the best reviews respectively from mathematical and
physical outcomes. Regardless of whether the fundamental space is a dD torus or the dD euclidian space Rd, the total
spin-boson model is an endless operator framework in Fock space with a finite N of bosons for which comprehensive
results are exceedingly difficult to get in. We discuss the projection to the truncated Fock space with a finite N of
bosons as one approach. The truncated standard spin-boson model was fully investigated [3] in for tiny values of the
parameter α for N = 1,2. The case N = 3 was assumed in [4]. There was proof of the existence of constructed wave
operators as well as its asymptotic completeness. When N is an arbitrary it was studied in [5] and [6]. For sufficiently
tiny coupling constants,the spectral properties of the truncated spin-boson matrix AN was learned using a Mourre type
estimate. The discrete spectrum of the truncated spin-boson matrix with two photons in Rd is finite for all values of
coupling α > 0, according to [7].

In [8] a lattice matrix B2 – so-called truncated lattice spin-boson matrix with at most two photons are analyzed.
The position of the σess(B2) is depicted. The finiteness of the number of eigenvalues below the bottom of any
coupling constant’s essential spectrum is established. Considering a general lattice matrix and estimating the essential
spectrum’s left boundary the results are achieved.

Because of boundedness and self-adjointness the spectrum of the lattice matrix B2 is more intricate than the con-
tinuous case. The two-particle and three-particle branches of the σess(B2) in the continuous case are made up of semi
interval [κ,∞) with quantity κ < 0. As a result (see [3]), finding the eigenvalues in the case of at most 1 photon suf-
fices to elucidate the σess(B2) of this matrix, and the approach employed to carry out is not difficult. The two-particle
and three-particle branches of the essential spectrum in the lattice scenario are made up of finite-length intervals that
may or may not intersect. We obtain a natural question: Are there eigenvalues located between the branches, and if
so, how many are there? As a result, analyzing the essential spectrum as well as the B2 conditions are important.

In [9] the essential spectrum of the matrix B2 is investigated in detail with respect to the dimension d ∈ N and the
values of coupling α > 0.

In the following article we have considered the matrix family A (K), K ∈ Td (3×3 operator matrices), related the
system of particles where the number of particles isn’t conserved. For the analysis of the lattice truncated spin-boson
matrix with two bosons, the matrix family A (K) is required. Obtained matrix of order 6 is unitary equivalent to a
diagonal matrix of order 2 with two copies of the case of A (K) on the diagonal, as shown in see [8]. As a result, the
the set σess(A (K)) and finiteness of σdisc(A (K)) are determined by spectral information on the matrix family A (K).

It is easy to see that matrix family A (K) has almost same spectral properties of the three lattice particle Hamiltonian
H(K), known us as lattice analog of the standard three-particle Schrödinger operator, arising in lattice field theory [10],
[11] and solid state physics models (see [12] – [13]).

The three-particle discrete Schrödinger operator H(K), K ∈T3 is discussed in [14, 15]. The finiteness of the number
of eigenvalues of H(K) is proven for all sufficiently small nonzero values of K, and the limit relation

lim
|K|→0

N(K)

| log |K|| =U0 (0 <U0 < ∞) (1)

is given for the number N(K) of negative eigenvalues of H(K).
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The spectral properties of A (K0) for a fixed K0 were studied in [16, 17, 18, 19, 20, 21, 22, 23, 24], see also the
references therein. In [25], [26] was founded a finite set Λ ⊂ T3 to demonstrate the existence of an infinitely many
discrete eigenvalues of the matrix family A (K) for all K ∈ Λ, when the associated Friedrichs model has a virtual level
at 0. In addition, it is shown that if for the generalized Friedrichs model the number 0 is an eigenvalue or the number 0
is the regular type point for positive definite Friedrichs model, the matrix A (K) have finitely many negative discrete
eigenvalues for every K ∈ Λ.

However, with regard to the spectral parameter K, the asymptotic formula of the form (1) was not established. It
is critical to determine the structure and location of the matrix family A (K) in order to reach this type of result. To
this purpose, the geometric position of two-particle as well three-particle branches of the σess(A (K)) is investigated
in this paper.

The article is dealt with as follows: an introduction to the whole investigation is given in Section 1. In Section 2,
the matrix family A (K), K ∈ Td are described as the family of self-adjoint bounded linear operators in the direct sum
of zero-particle subspace, one-particle subspace and two-particle subspace of the bosonic Fock space and the most
important aims of the work are pointed. In Section 3, we studied the so called channel operator Ach(K) relative to
A (K) and analyzed its spectrum using a family of generalized Friedrichs model. In the text Section a more detailed
data on the position of σess(A (K)) and its branches is given.

FAMILY OF OPERATOR MATRICES OF ORDER 3 AND ITS RELATION WITH THE
LATTICE SPIN-BOSON MATRIX

First of all we will determine some setting, they are useful within this work. As Td we denote the dD torus. Channel 1
– H0 := C, channel 2 – H1 := L2(Td) and channel 3 – H2 := L2

sym((Td)2) is a subspace of L2((Td)2) containing all
symmetric functions. The direct sum of these three channels, that is, the spaces H0, H1 and H2 will be denoted by
H , i.e., H = H0 ⊕H1 ⊕H2. Usually H0 is called zero-particle subspace, H1 is called one-particle subspace and
H2 is called two-particle subspace of the bosonic (or symmetric) Fock space Fs(L2(Td)) with respect to L2(Td). The
components F of H have a form F = (F0,F1,F2) with Fi ∈Hi, i = 0,1,2 and for F = (F0,F1,F2),G = (G0,G1,G2)∈
H we have the equality

(F,G) := F0G0 +
∫

Td
F1(x)G1(x)dx+

∫
(Td)2

F2(x,y)G2(x,y)dxdy.

It is well known that each linear bounded operator always can be presented as a 3×3 operator matrix, if its domain
is decomposed into three components [27].

In this work a family

A (K) :=

⎛⎝ A00(K) A01 0
A∗

01 A11(K) A12

0 A∗
12 A22(K)

⎞⎠ , K ∈ Td (2)

is considered in H . Here for n = 0,1,2 the diagonal elements Ann(K) : Hn → Hn and for n < m, n,m = 0,1,2 the
off-diagonal elements Anm : Hm → Hn are defined as

A00(K)g0 = u0(K)g0, A01g1 =
∫

Td
ϕ0(s)g1(s)ds,

(A11(K)g1)(x) = u1(K;x)g1(x), (A12g2)(x) =
∫

Td
ϕ1(s)g2(x,s)ds,

(A22(K)g2)(x,y) = u2(K;x,y)g2(x,y), gi ∈ Hk, k = 0,1,2.

Throughout the article it is assumed that the functions with real-values u0(·), ϕk(·), k = 0,1; u1(·; ·) and u2(·; ·, ·)
are continuous on Td; (Td)2 and (Td)3, respectively. Moreover, for K ∈ Td the assertion u2(K;x,y) = u2(K;x,y) is
valid for all x,y ∈ Td.

Then the boundedness and self-adjointness of A (K) in H can be shown easily.
After direct calculations we get

A∗
01 : H0 → H1, (A∗

01g0)(x) = ϕ0(x)g0, g0 ∈ H0;

A∗
12 : H1 → H2, (A∗

12g1)(x,y) =
1

2
(ϕ1(x)g1(y)+ϕ1(y)g1(x)), g1 ∈ H1.
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These operators have a wide application in quantum mechanics.

Let us now study the relation of A (K) to the lattice truncated spin boson matrix B2 with at most two photons. We
remember that the operator B2 acts in C2 ⊗H :

B2 :=

⎛⎝ B00 B01 0
B∗

01 B11 B12

0 B∗
12 B22

⎞⎠ ,

with elements

B00g(s)0 = εsg(s)0 , B01g(s)1 = α
∫

Td
v(t)g(−s)

1 (t)dt,

(B11g(s)1 )(x) = (εs+w(x))g(s)1 (x), (B12g(s)2 )(x) = α
∫

Td
v(t)g(−s)

2 (x, t)dt,

(B22g(s)2 )(x,y) = (εs+w(x)+w(y))g(s)2 (x,y), g = {g(s)0 ,g(s)1 ,g(s)2 ; s =±} ∈ C2 ⊗H .

Here ε > 0; w(·) (dispersion function) is an analytic on Td with real values; the function v(·) is an analytic on Td

with real values; α > 0 (coupling constant) is a real number.

To learn the spectrum of B2, we determine two (with discrete parameter) matrices B
(s)
2 , s =±, in H as

B
(s)
2 :=

⎛⎜⎝ B̂
(s)
00 B̂01 0

B̂∗
01 B̂

(s)
11 B̂12

0 B̂∗
12 B̂

(s)
22

⎞⎟⎠
with the entries

B̂
(s)
00 g0 = εsg0, B̂01g1 = α

∫
Td

v(t)g1(t)dt,

(B̂
(s)
11 g1)(x) = (−εs+w(x))g1(x), (B̂12g2)(x) = α

∫
Td

v(t)g2(x, t)dt,

(B̂
(s)
22 g2)(x,y) = (εs+w(x)+w(x))g2(x,y), (g0,g1,g2) ∈ H .

The following relations between subsets of the spectrum of B2 and B
(s)
2 are proven in [8]:

The equality σ(B2) = σ(B
(+)
2 )∪σ(B

(−)
2 ) holds. Moreover,

σess(B2) = σess(B
(+)
2 )∪σess(B

(−)
2 ), σp(B2) = σp(B

(+)
2 )∪σp(B

(−)
2 ).

Since the subset of σdisc(B
(s)
2 ) can be lie inside of σess(B2) we obtain the result

σdisc(B2)⊆ σdisc(B
(+)
2 )∪σdisc(B

(−)
2 ).

It is easy to check that if

w0(K
(s)
0 ) = εs, w1(K

(s)
0 ; p) =−εs+w(p), w2(K

(s)
0 ; p,q) = εs+w(p)+w(q)

for some K(s)
0 ∈ Td and vi(p) = αv(p), i = 0,1, then A (K(s)

0 ) = B
(s)
2 . Therefore, using a connection between the

operators B2 and A (K(s)
0 ), s = ±, the results for B2 can be obtained by considering a more general family of

operator matrices A (K), K ∈ Td.

A FAMILY OF CHANNEL OPERATORS AND ITS SPECTRUM

In the following we consider a family of channel operators Ach(K), K ∈ Td related with A (K) and learn its spectrum.
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We construct the operator Ach(K) in L2(Td)⊕L2((Td)2) using the rule

Ach(K) :=

(
A11(K) 1√

2
A12

1√
2
A∗

12 A22(K)

)
, K ∈ Td. (3)

With respect to the domain in the considered case the operator A∗
12 is acting as

A∗
12 : L2(Td)→ L2((Td)2), (A∗

12g1)(x,y) = ϕ1(q)g1(p), g1 ∈ L2(Td).

The boundedness and self-adjointness of Ach(K) in L2(Td)⊕L2((Td)2) easily follows from the definition.
For a bounded function γ(·) on Td we consider multiplication operator Uγ by

Uγ

(
f1(x)

f2(x,y)

)
=

(
γ(x) f1(x)

γ(x) f2(x,y)

)
,

(
f1

f2

)
∈ L2(Td)⊕L2((Td)2).

One can easily check that Ach(K)Uγ =UγAch(K). By this reason the assertion

L2(Td)⊕L2((Td)2) =
∫

Td
⊕(H0 ⊕H1)dk (4)

yields the following decomposition

Ach(K) =
∫

Td
⊕Â (K,k)dk. (5)

Here the fibered operators Â (K,k) are defined in H0 ⊕H1 as operator matrices 2×2

Â (K,k) :=

(
Â00(K,k) Â01

Â∗
01 Â11(K,k)

)
, (6)

with components

Â00(K,k)g0 = u1(K,k)g0, Â01g1 =
1√
2

∫
Td

ϕ1(t)g1(t)dt,

(Â11(K,k)g1)(y) = u2(K;k,y)g1(y), gl ∈ Hl , l = 0,1.

In this case

Â∗
01 : H0 → H1, (Â∗

01g0)(x) =
1√
2

ϕ1(x)g0, g0 ∈ H0.

Note that in the direct integral expansion (4) the identical layers appear. Applying theorem about the spectrum of
decomposable operators [13] we obtain the relation

σ(Ach(K)) =
⋃

k∈Td

σ(Â (K,k)). (7)

Thus, learning the spectrum of a channel operator Ach(K) is reduced to learning the spectrum of a family of

generalized Friedrichs models, which is simple than Â (K,k) and easy to study. No we start to study the spectrum of

Â (K,k).
Let

Â0(K,k) :=

(
0 0

0 Â11(K,k)

)
.

Then for the operator Â (K,k)−Â0(K,k) we have (Â (K,k)−Â0(K,k))∗= Â (K,k)−Â0(K,k) and rank(Â (K,k)−
Â0(K,k)) = 2. Taking into account these facts and Weyl’s theorem we obtain

σess(Â (K,k)) = [Emin(K,k);Emax(K,k)],
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here

Emin(K,k) := min
q∈Td

w2(K;k,q) and Emax(K,k) := max
q∈Td

w2(K;k,q).

We determine the Fredholm determinant ΔK(k ; ·) of Â (K,k)) in C\ [Emin(K,k);Emax(K,k)] by

ΔK(k ;z) := w1(K;k)− z− 1

2
IK(k ;z), IK(k ;z) :=

∫
Td

ϕ2
1 (s)ds

w2(K;k,s)− z
.

We have the following lemma [17].

Lemma 1. The quantity z(K,k)∈C\ [Emin(K,k);Emax(K,k)] is an discrete eigenvalue of Â (K,k) iff ΔK(k ;z(K,k))=
0.

By Lemma 1 the discrete spectrum of Â (K,k) satisfies the equality

σdisc(Â (K,k)) = {z ∈ C\ [Emin(K,k);Emax(K,k)] : ΔK(k ;z) = 0}.

In the following we formulate lemma about the eigenvalues of Â (K,k).
Lemma 2. The matrix Â (K,k) hasn’t more than 1 simple discrete eigenvalue located on the left hand side

(respectively right hand side) of Emin(K,k) (respectively Emax(K,k)).
The proof of Lemma 2 is an elementary.

Introduce the following notations

mK := min
p,q∈Td

w2(K; p,q), MK := max
p,q∈Td

w2(K; p,q),

ΛK :=
⋃

k∈Td

σdisc(Â (K,k)), ΣK := [mK ;MK ]∪ΛK .

Definition of the set ΛK and the equality⋃
k∈Td

[Emin(K,k);Emax(K,k)] = [mK ;MK ]

imply equality ⋃
k∈Td

σ(Â (K,k)) = ΣK . (8)

Now, the equalities (7) and (8) imply that the spectrum of the matrix Ach(K) is a purely essential and the relation
σ(Ach(K)) = ΣK holds for its spectrum.

POSITION OF SUBSETS OF THE ESSENTIAL SPECTRUM

Main results of the work:

Theorem 1. The equality σess(A (K)) = σ(Ach(K)) is valid. In addition, the set σ(Ach(K)) consists of at most 3
segments.

It is remarkable that the channel operator Ach(K) defined as above has a simpler structure than the operator A (K),
therefore, Theorem 1 plays an key role in other investigation of the spectrum of A (K).

Let us introduce the following notations:

E(l)
min(K) := min{ΛK ∩ (−∞;mK ]} , E(l)

max(K) := max{ΛK ∩ (−∞;mK ]} ,
E(r)

min(K) := min{ΛK ∩ [MK ;+∞)} , E(r)
max(K) := max{ΛK ∩ [MK ;+∞)} ,

σ (l)
two(K) := [E(l)

min(K);E(l)
max(K)], σ (r)

two(K) := [E(r)
min(K);E(r)

max(K)].
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Since the function IK(k ; ·) is increasing in the intervals (−∞;mK) and (MK ;+∞) for any fixed K,k ∈ Td, by the
Lebesgue theorem a finite or infinite limits

lim
z→mK−0

IK(k ;z) = IK(k ;mK) and lim
z→MK+0

IK(k ;z) = IK(k ;MK)

are exist.
Let IK0

(k0 ;mK0
) = +∞ for some K0,k0 ∈ Td. Then

lim
z→mK0

−0
ΔK0

(k0 ;z) = ΔK0
(k0 ;mK0

) =−∞,

hence from the equality

lim
z→−∞

ΔK0
(k0 ;z) = +∞

and Lemma 1 it follows that there exists an unique eigenvalue z(K0,k0) in (−∞;mK0
). Using the definitions of

ΛK and E(l)
min(K) we obtain that E(l)

min(K0) < mK0
. Analogously, if IK1

(k1 ;mK1
) = −∞ for some K1,k1 ∈ Td, then

E(r)
max(K0)> mK0

.

Next we suppose that for all K,k ∈ Td there exist finite integrals IK(k ;mK) and IK(k ;MK), that is, |IK(k ;mK)|< ∞
and |IK(k ;MK)|< ∞. In this case the functions ΔK(· ;mK) and ΔK(· ;MK) are continuous on Td.

In the following three theorems the location of σess(A (K)) and its structure can be exactly described.
Theorem 2. Let K ∈ Td be a fixed and min

k∈Td
ΔK(k;mK)≥ 0. Then

σess(A (K)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[mK ;MK ] , if max

k∈Td
ΔK(k ;MK)≤ 0;[

mK ;E(r)
max(K)

]
, if min

k∈Td
ΔK(k ;MK)≤ 0 and max

k∈Td
ΔK(k ;MK)> 0;

[mK ;MK ]∪σ (r)
two(K), if min

k∈Td
ΔK(k ;MK)> 0;

moreover E(l)
min(K) = mK.

Theorem 3. Assume K ∈ Td and

min
k∈Td

ΔK(k mK)< 0, max
k∈Td

ΔK(k mK)≥ 0.

Then for the σess(A (K)) we have

σess(A (K)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
E(l)

min(K);MK

]
, if max

k∈Td
ΔK(k,MK)≤ 0;[

E(l)
min(K);E(r)

max(K)
]
, if min

k∈Td
ΔK(k ;MK)≤ 0, max

k∈Td
ΔK(k ;Mk)> 0;[

E(l)
min(K);MK

]
∪σ (r)

two(K), if min
k∈Td

ΔK(k ;MK)> 0.

Moreover E(l)
min(K)< mK.

Theorem 4. Let K ∈ Td be a fixed and max
k∈Td

ΔK(k mK)< 0. Then the essential spectrum of A (K) has the following

structure

σess(A (K)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ (l)

two(K)∪ [mK ;MK ] , if max
k∈Td

ΔK(k ;MK)≤ 0;

σ (l)
two(K)∪

[
mK ;E(r)

max(K)
]
, if min

k∈Td
ΔK(k ;MK)≤ 0, max

k∈Td
ΔK(k ;MK)> 0;

σ (l)
two(K)∪ [mK ;MK ]∪σ (r)

two(K), if min
k∈Td

ΔK(k ;MK)> 0.

Moreover, E(l)
max(K)< mK.
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Remark. We notice that in the first assertions of Theorems 2−4 we have E(r)
max(K) = MK; in the second assertions

E(r)
max(K)> MK; in the third assertions E(r)

min(K)> MK.

Proof of Theorem 4. Assume K ∈ Td and max
k∈Td

ΔK(k mK)< 0.

Since Td is a compact set from continuity of ΔK(· ;mK) on Td, for all k ∈ Td we have the inequality

ΔK(k ;mK)< 0.

From the continuity and monotonicity of ΔK(k ; ·) on (−∞;mK ] and from

lim
z→−∞

ΔK(k ;z) = +∞

we conclude that there exist an unique point z(l)K (k) ∈ (−∞;mK) with ΔK(k ;z(l)K (k) = 0. Hence by Lemma 1 the point

z(l)K (k is the eigenvalue of Â (K,k) in (−∞;mK). By assumptions z(l)K : k ∈ Td → z(l)K (k is a continuous on Td with

real value. Therefore, Imz
(l)
K as subset of (−∞;mK) is closed and connected, that is, Imz

(l)
K = [E(l)

min(K);E(l)
max(K)] and

E(l)
max(K)< mK .
Let now max

k∈Td
ΔK(k ;MK) ≤ 0. Since Td is a compact set from the continuity of ΔK(· ;MK) on Td we have

ΔK(k ;MK) ≤ 0 for all k ∈ Td. One has lim
z→+∞

ΔK(k ;z) = −∞. Taking into account the monotonicity of ΔK(k ; ·)
on (MK ;+∞) we get that the function ΔK(k ; ·) hasn’t zeros bigger than MK . Then by the Lemma 1 the matrix Â (K,k)
hasn’t discrete eigenvalues bigger than MK . Hence, Theorem 1 implies that maxσess(A (K)) = MK , i.e.

σess(A (K)) = [E(l)
min(K);E(l)

max(K)]∪ [mK ;MK ] with E(l)
max(K)< mK .

Let us now suppose that

min
k∈Td

ΔK(k ;MK)≤ 0 and max
k∈Td

ΔK(k ;MK)> 0.

Introduce the notation:

DK :≡ {k ∈ Td : ΔK(k ;MK)> 0}.

Since Td is compact by the continuity of ΔK(· ;mK) on Td we get that there are p(1)K , p(2)K ∈ Td such that the inequal-
ities

min
k∈Td

ΔK(k ;MK) = ΔK(p(1)K ;MK)≤ 0,

max
k∈Td

ΔK(k ;MK) = ΔK(p(2)K ;MK)> 0

are valid. It means voidness and openness of DK with DK �= Td.
From continuity and monotonicity of ΔK(k ; ·) on [MK ;+∞) and from lim

z→+∞
ΔK(k ;z) = −∞ we imply that there is

a unique quantity z(r)K (k) ∈ (MK ;+∞) so that ΔK(k ;z(r)K (k)) = 0 for any k ∈ DK . By Lemma 1 the point z(r)K (k) is the

unique discrete eigenvalue of the matrix Â (K,k) lying on r.h.s. of MK .
For z > MK and k ∈ Td \DK one have

ΔK(k ;z)< ΔK(k ;MK)≤ 0.

Hence by Lemma 1 for each k ∈ Td \DK the operator Â (K,k) hasn’t discrete eigenvalues bigger than MK .

By the continuity of v1(·), w1(·; ·) and w2(·; ·, ·) on its domain, we get the continuity of z(r)K : k ∈ DK → z(r)K (k) on
DK .

From the boundedness of Â (K,k) and from compactness of Td we get that there is CK > 0 with sup
k∈Td

‖Â (K,k)‖ ≤
CK and we receive

σ(Â (K,k))⊂ [−CK ;CK ]. (9)
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For any k ∈ ∂DK = {k ∈ Td : ΔK(k ;MK) = 0} there exist {kn(K)} ⊂ DK such that kn(K) → k(K) as n → ∞. Set

z(n)K := z(r)K (kn(K)). Then for any {kn(K)} ∈ DK the inequality z(n)K > MK holds and from (9) we get {z(n)K } ⊂ [MK ;CK ].

Suppose z(n)K → z(0)K as n → ∞ for some z(0)K ∈ [MK ;CK ].

From the continuity of the function ΔK(· ; ·) in Td× [MK ;+∞) and kn(K)→ k(K) and z(n)K → z(0)K as n → ∞ it follows
that

0 = lim
n→+∞

ΔK(kn(K) ;z(n)K ) = ΔK(k ;z(0)K ).

By the monotonicity of ΔK(k ; ·) on [MK ;+∞) and by k(K) ∈ ∂DK we see that ΔK(k ;z(0)K ) = 0 if and only if z(0)K =
MK .

For any k ∈ ∂DK we define

zK(k) = lim
k′→k,k′∈DK

zK(k′) = MK .

From the continuity of zK(·) on DK ∪∂DK and zK(k) = MK for all k ∈ ∂DK we conclude that

ImzK(·) = [MK ;E(r)
max(K)], E(r)

max(K)> MK .

Then by Theorem 1 we get

σess(A (K)) = [E(l)
min(K);E(l)

max(K)]∪ [mK ;E(r)
max(K)] with E(r)

max(K)> MK .

Finally, let min
k∈Td

ΔK(k ;MK) > 0. Similarly to the case max
k∈Td

ΔK(k mK) < 0, one can show that matrix Â (K,k) have

an unique discrete eigenvalue z(r)K (k) in (MK ;+∞) and

Imz(r)K = [E(r)
min(K);E(r)

max(K)] and E(r)
min(K)> MK .

Therefore

σess(A (K)) = [E(l)
min(K);E(l)

max(K)]∪ [mK ;MK ]∪ [E(r)
min(K);E(r)

max(K)].

Here E(l)
max(K)< mK and E(r)

min(K)> MK .
We finish the proof of Theorem 4.

Sketch of the proof of Theorem 2. Let K ∈ Td be a fixed and min
k∈Td

ΔK(k ;mK)≥ 0. Then for z < mK we receive

ΔK(k ;z)> ΔK(k ;mK)≥ 0.

By Lemma 1 it means that the matrix Â (K,k) hasn’t eigenvalues smaller than mK . Determination of ΛK implies

ΛK ∩ (−∞;MK ] = [mK ;MK ].

The rest of the proof is like the proof of Theorem 4.

Sketch of the proof of Theorem 3. Assume that K ∈ Td is a fixed and

min
k∈Td

ΔK(k mK)< 0, max
k∈Td

ΔK(k mK)≥ 0.

No likely the proof of the second assertion of Theorem 4 we get

ΛK ∩ (−∞;MK ] = [E(l)
min(K);MK ] with E(l)

min(K)< mK .

The rest of the proof runs as the proof of Theorem 4.
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CONCLUSION

In the present paper the family A (K), K ∈ Td := (−π;π]d of the 3× 3 block operator matrices is considered. Such
matrices arise in the spectral analysis problem of the so called lattice truncated spin-boson Hamiltonian with at most
two bosons. Exact relation between this family and the lattice spin-boson model is indicated. The corresponding
channel operator is constructed and applying theorem about the spectrum of decomposable operators its spectrum
is described. The position and structure of two-particle as well three-particle branches (subsets) of σess(A (K)) are
investigated. In our analysis the key role is played the existence conditions of the eigenvalues of the generalized
Friedrichs model.
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