

ABSTRACTS

of the international conference

MATHEMATICAL ANALYSIS AND ITS APPLICATIONS IN MODERN MATHEMATICAL PHYSICS

PART I

Samarkand September 23-24, 2022

MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN

SAMARKAND STATE UNIVERSITY NAMED AFTER SH.RASHIDOV MATHEMATICS INSTITUTE OF THE ACADEMY OF SCIENCE OF UZBEKISTAN

INTERNATIONAL CONFERENCE

MATHEMATICAL ANALYSIS AND ITS APPLICATIONS IN MODERN MATHEMATICAL PHYSICS

September 23-24, 2022; Samarkand, Uzbekistan

PART I

SAMARKAND - 2022

UDK 51:517

Mathematical analysis and its applications in modern mathematical physics: international scientific conference (September 23-24, 2022 y. Samarkand).

Chief Editor Lakaev S.N. - Samarkand, 2022 y.

The collection of abstracts of the reports of the international scientific conference "Mathematical analysis and its applications in modern mathematical physics" contains scientific reports on the following areas: Mathematical analysis, differential equations, mathematical physics, algebra, geometry, numerical mathematics, mathematical modeling, probability theory, mathematical statistics, mathematical engineering and information technologies .

It is intended for specialists in the field of physical and mathematical sciences and information technologies, teachers, doctoral students and undergraduates of universities.

EDITORIAL TEAM:

Chief Editor: Academician Lakaev S.N.

Members of the editorial board: Prof. Ikromov I.A.

Prof. Khasanov A.B.

Prof. Khalkhuzhaev A.M. Prof. Khushvaktov H.A.

Prof. Rasulov T.H Prof. Muminov Z.E

Responsible for the issue: Bozorov I.

Khamidov Sh. Abdukhakimov S. Almuratov F.

Khalkhuzhaev A.M., Usmonov L.S. On the number of the eigenvalues of the two-particle
Schrödinger operator on a lattice
$\textbf{Khalxujayev A.M., Khayitova K.G.} \ \text{Analytic description of the essential spectrum of A operator}$
matrix in fermionic fock space
Koʻchimov A., Kilichev N. Ikki oʻlchamli Fridrixs modelidagi operatorlar uchun manfiy xos
qiymatning mavjudligi72
Kuliev K., Kuchiboyeva D., Ismoilov M. Diskret Hardi tipidagi tengsizliklar73
Kuliev K.D., Kulieva G., Eshimova M.K. Reverse discrete Hardy type inequalities with variable
limits of summation
Lakaev S.N., Abdukhakimov S.Kh., Azizova M.A. On the number and location of eigenvalues
of the two particle Schrodinger operator on a lattice
Latipov H.M. Gershgorin ys bounds for a 4x4 operator matrix in cut Fock space
Mamatov T., Rashidov A. Mixed fractional differential operators in Holder spaces81
Masharipov S., Eshniyazov A. Invariant of nonlinear operators and their interpretation for
quadratic stochastic operators
Muminov M., Shadiev U. On existence eigenvalues of the generalized Friedrichs model 84
Muminov M.I., Jurakulova F.M. Description of the essential spectrum of operator matrix in
bosonic Fock space. One dimensional case85
Muminov Z., Ismoilov G. Asymptotics of the eigenvalue of a non-local discrete Schrodinger
operator on two-dimensional lattice
Muminov Z., Kulzhanov U., Ismoilov G. Three Dimensional One-Particle Shrödinger Operator
with Point Interaction
Mustafoyeva Z., Yarashova O'. Ground states for p-SOS model on the Cayley tree 90
Nodirov Sh., Raximov F. On the number of fixed points of a fourth degree operator
Qushaqov H., Yusupov I., Muhammadjonov A. About one monotonic function related
matrix93
Rahmatullaev M., Askarov J. Periodic Ground States for the one modified SOS model95
Rahmatullaev M., Pulatov B. On p-adic quasi Gibbs measure for the Potts model on a Cayley
tree of order two
Rahmatullaev M., Tukhtabaev A., Mamadjonov R. On p -adic generalized Gibbs measure
for the Ising model with external field on a Cayley tree
Rahmatullaev M.M., Karshiboev O.Sh. Description of the translation-invariant splitting Gibbs
measures for the three-state SOS model on the binary tree
Rasulov T., Sharipova M. Usual, quadratic and cubic numerical ranges corresponding to a 3×3
operator matrices
Rasulov T., Umirkulova G. Analysis of the essential spectrum of a Hamiltonian related to a
system of three particles on a1D lattice
Rasulov T.H. Dominance order of the diagonally dominant $n \times n$ operator matrices 109
Ruzhansky M., Safarov A.R., Khasanov G.A. Uniform estimates for oscillatory integrals with
homogeneous polynomial phases of degree $4\dots \dots 111$
Sadullayev A On Weierstrass preparation theorem
Satliqov Gʻ.R. Separat garmonik funksiyalar uchun oʻrta qiymat xossalari
Sattorov E.N. Rustamov S, Boboxonova G. On the continuation of solution of the generalized
Cauchy-riemann system with quaternion parameter
Sayliyeva G.R. Essential spectrum of a 3×3 operator matrix with non compact perturbation 116
Shokhrukh Kh. Yu. Bound states of Schrödinger-type operators on one and two dimensional
lattices
Shoyimardonov S.K. Occurrence of the Neimark-Sacker bifurcation in the phytoplankton-zoo-
plankton system
Tosheva N.A. Threshold analysis for the family of generalized Friedrichs models121
Xudayarov S.S. On invariant sets of a quadratic non-stochastic operator
Zagrebnov V. A. Comments on Chernoff and Trotter-Kato product formulae
•

2. Shoyimardonov S.K. Neimark-Sacker bifurcation and stability analysis in a discrete phytoplankton-zooplankton system with Holling type II functional response, arXiv:2207.01961 [math.DS]. P.1.16.

Threshold analysis for the family of generalized Friedrichs models Tosheva N.

Uzbekistan, Bukhara State University e-mail: nargiza_n@mail.ru

Operators known as generalized Friedrichs model [1] appear in a series of problems in analysis, mathematical physics and probability theory. In the present note we discuss the threshold analysis for the family of generalized Friedrichs models corresponding to a system of quasi-particles, where their number is finite, but not fixed.

Let \mathbb{C} be the field of complex numbers and $L_2(\mathbb{T}^3)$ be the Hilbert space of square integrable (complex) functions defined on the three-dimensional torus \mathbb{T}^3 . Denote by \mathcal{H} the direct sum of spaces $\mathcal{H}_0 := \mathbb{C}$ and $\mathcal{H}_1 := L_2(\mathbb{T}^3)$, that is, $\mathcal{H} := \mathcal{H}_0 \oplus \mathcal{H}_1$.

In the present note we consider a family of generalized Friedrichs models h(k), $k \in \mathbb{T}^3$, which acts in \mathcal{H} as

$$h(k) := \begin{pmatrix} h_{00}(k) & h_{01} \\ h_{01}^* & h_{11}(k) \end{pmatrix},$$

where

$$h_{00}(k)f_0 = (l_2\varepsilon(k) + 1)f_0, \quad h_{01}f_1 = \int_{\mathbb{T}^3} v(t)f_1(t)dt,$$

$$(h_{11}(k)f_1)(q) = E_k(q)f_1(q), \quad E_k(q) := l_1\varepsilon(q) + l_2\varepsilon(k-q)$$

with $l_1, l_2 > 0$ and the dispersion function $\varepsilon(\cdot)$ is defined by

$$\varepsilon(q) := \sum_{i=1}^{3} (1 - \cos(nq^{(i)})), \quad q = (q^{(1)}, q^{(2)}, q^{(3)}) \in \mathbb{T}^{3}, \quad n \in \mathbb{N}.$$

Here $f_i \in \mathcal{H}_i$, i = 0, 1; the function $v(\cdot)$ is either even or odd function on each variable and there exist all second order continuous partial derivatives of $v(\cdot)$ on \mathbb{T}^3 . Then the family of operators h(k), $k \in \mathbb{T}^3$ is bounded and self-adjoint in \mathcal{H} .

We remark that the operators h_{01} resp. h_{01}^* are called annihilation resp. creation operators, respectively.

Let Λ be a subset of \mathbb{T}^3 given by

$$\Lambda := \left\{ (p^{(1)}, p^{(2)}, p^{(3)}) : p^{(i)} \in \left\{ 0, \pm \frac{2}{n} \pi; \pm \frac{4}{n} \pi; \dots; \pm \frac{n'}{n} \pi \right\} \cup \Pi_n, \ i = 1, 2, 3 \right\},$$

where

$$n' := \left\{ \begin{array}{ll} n-2, \text{ if } n \text{ is even} \\ n-1, \text{ if } n \text{ is odd} \end{array} \right.$$
 and $\Pi_n := \left\{ \begin{array}{ll} \{\pi\}, \text{ if } n \text{ is even} \\ \emptyset, \text{ if } n \text{ is odd} \end{array} \right.$

Direct calculation shows that the cardinality of Λ is equal to n^3 and for any fixed $k \in \Lambda$ the function $E_k(\cdot)$ has the non-degenerate zero minimum at the points of Λ .

Using the Weyl theorem, for the essential spectrum of h(k) we obtain the equality $\sigma_{\text{ess}}(h(k)) = [E_{\min}(k); E_{\max}(k)]$, where the numbers $E_{\min}(k)$ and $E_{\max}(k)$ by the rule

$$E_{\min}(k) := \min_{q \in \mathbb{T}^3} E_k(q)$$
 and $E_{\max}(k) := \max_{q \in \mathbb{T}^3} E_k(q)$.

For any $k \in \mathbb{T}^3$ we define an analytic function $\Delta(k;\cdot)$ (the Fredholm determinant associated with the operator h(k)) in $\mathbb{C} \setminus [E_{\min}(k); E_{\max}(k)]$ by

$$\Delta(k;z) := l_2 \varepsilon(k) + 1 - z - \int_{\mathbb{T}^3} \frac{v^2(t)dt}{E_k(t) - z}.$$

A simple consequence of the Birman-Schwinger principle and the Fredholm theorem imply that

$$\sigma_{\rm disc}(h(k)) = \{ z \in \mathbb{C} \setminus [E_{\min}(k); E_{\max}(k)] : \Delta(k; z) = 0 \}.$$

Since for any $k \in \Lambda$ the function $E_k(\cdot)$ has non-degenerate zero minimum at the points of Λ and the function $v(\cdot)$ is a continuous on \mathbb{T}^3 , for any $k \in \mathbb{T}^3$ the integral

$$\int_{\mathbb{T}^3} \frac{v^2(t)dt}{E_k(t)}$$

is positive and finite. The Lebesgue dominated convergence theorem and the equality $\Delta(\mathbf{0};0) = \Delta(k;0)$ for $k \in \Lambda$ yield

$$\Delta(\mathbf{0};0) = \lim_{k \to k'} \Delta(k;0), \quad k' \in \Lambda,$$

where $\mathbf{0} := (0,0,0) \in \mathbb{T}^3$.

Since $\mathbf{0} \in \Lambda$ the definition of h(k) imply the identity $h(\mathbf{0}) \equiv h(k)$ for all $k \in \Lambda$.

Moreover, $\sigma_{\text{ess}}(h(\mathbf{0})) = [0; 6(l_1 + l_2)].$

Let us denote by $C(\mathbb{T}^3)$ and $L_1(\mathbb{T}^3)$ the Banach spaces of continuous and integrable functions on \mathbb{T}^3 , respectively.

Definition 1. The operator $h(\mathbf{0})$ is said to have a zero energy resonance, if the number 1 is an eigenvalue of the integral operator given by

$$(G\psi)(q) = \frac{v(q)}{l_1 + l_2} \int_{\mathbb{T}^3} \frac{v(t)\psi(t)}{\varepsilon(t)} dt, \quad \psi \in C(\mathbb{T}^3)$$

and at least one (up to a normalization constant) of the associated eigenfunctions ψ satisfies the condition $\psi(p') \neq 0$ for some $p' \in \Lambda$.

We notice that in Definition 1 the requirement of the existence of the eigenvalue 1 of G corresponds to the existence of a solution of $h(\mathbf{0})f = 0$ and the condition $\psi(p') \neq 0$ for some $p' \in \Lambda$ implies that the solution f of this equation does not belong to \mathcal{H} .

The following result establishes in which cases the bottom of the essential spectrum is a threshold energy resonance or eigenvalue.

Theorem 1. The following statements are hold.

- (i) The operator $h(\mathbf{0})$ has a zero eigenvalue if and only if $\Delta(\mathbf{0};0) = 0$ and v(q') = 0 for all $q' \in \Lambda$;
- (ii) The operator $h(\mathbf{0})$ has a zero energy resonance if and only if $\Delta(\mathbf{0};0) = 0$ and $v(q') \neq 0$ for some $q' \in \Lambda$.

Let I be an identity operator on \mathcal{H} .

Theorem 2. If the operator $h(\mathbf{0})$ has either a zero energy resonance or a zero eigenvalue, then for any $k \in \Lambda$ and $p \in \mathbb{T}^3$ the operator $h(k-p) + l_1 \varepsilon(p) I$ is non-negative.

Set

$$\Lambda_0 := \{ q' \in \Lambda : v(q') \neq 0 \}.$$

Now we formulate a result (zero energy expansion for the Fredholm determinant, leading to behaviors of the zero energy resonance).

Theorem 3. Let the operator $h(\mathbf{0})$ have a zero energy resonance and $k, p' \in \Lambda$. Then the following decomposition

$$\Delta(k-p; z-l_1\varepsilon(p)) = \frac{4\pi^2}{n^2(l_1+l_2)^{3/2}} \left(\sum_{q'\in\Lambda_0} v^2(q')\right) \sqrt{\frac{l_1^2+2l_1l_2}{l_1+l_2}} |p-p'|^2 - \frac{2z}{n^2} + O(|p-p'|^2) + O(|z|)$$

holds for $|p - p'| \to 0$ and $z \to -0$.

We remark that Theorems 1, 2 and 3 are play key role in the spectral analysis of the family of 3×3 operator matrices, associated with the lattice systems describing two identical bosons and one particle, another nature in interactions, without conservation of the number of particles.

Reference:

1. S.N.Lakaev. Some spectral properties of the generalized Friedrichs model, (Russian), Trudy Sem. Petrovsk. 11 (1986), pp. 210–238, Translation in J. Soviet Math. 45:6 (1989), pp. 1540–1565.

On invariant sets of a quadratic non-stochastic operator ¹Xudayarov S.

¹ Bukhara State University, Bukhara, Uzbekistan, Bukhara Branch of the Institute of Mathematics named after V.I.Romanovsky, Bukhara, Uzbekistan,

e-mail: xsanat83@mail.ru

Non-linear dynamical systems arise in many problems of biology, physics and other sciences. In particular, quadratic dynamical systems describe the behavior of populations of different species with population models [1, 2, 3]. Let $E = \{1, 2, ..., m\}$. A distribution on the set E is a probability measure $x = (x_1, ..., x_m)$, i.e., an element of the simplex:

$$S^{m-1} = \{ x \in R : x_i \ge 0, \sum_{i=1}^{m} x_i = 1 \}.$$

In general, a quadratic operator $V, V: x \in \mathbb{R}^m \to x' = V(x) \in \mathbb{R}^m$ is defined by:

$$V: x_{k}^{'} = \sum_{i,j=1}^{m} P_{ij,k} x_{i} x_{j}, \quad k = 1, \dots, m$$
(1)

In this talk we are interested to a non-stochastic quadratic mapping of simplex to itself, i.e. $V: S^{m-1} \to S^{m-1}$.

Definition. [3] A quadratic operator (1), preserving a simplex, is called non-stochastic (QnSO) if at least one of its coefficients $P_{ij,k}$, $i \neq j$ is negative.

Consider the following example of QnSO on the two-dimensional simplex S^2 .

$$\begin{cases} x' = \frac{1}{2}(z-y)^2 + \frac{3}{2}x(y+z) \\ y' = \frac{1}{2}(x-z)^2 + \frac{3}{2}y(x+z) \\ z' = \frac{1}{2}(y-x)^2 + \frac{3}{2}z(x+y). \end{cases}$$
 (2)

Fixed points. The fixed points are solutions to the system (2)

$$\begin{cases} x = \frac{1}{2}(z-y)^2 + \frac{3}{2}x(y+z) \\ y = \frac{1}{2}(x-z)^2 + \frac{3}{2}y(x+z) \\ z = \frac{1}{2}(y-x)^2 + \frac{3}{2}z(x+y). \end{cases}$$

By full analysis this system one obtains the following family of fixed points:

$$a_1 = (0, \frac{1}{2}, \frac{1}{2}), \ a_2 = (\frac{1}{2}, 0, \frac{1}{2}), \ a_3 = (\frac{1}{2}, \frac{1}{2}, 0), \ a_4 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

Thus a_1 , a_2 and a_3 are saddle, but a_4 is an attracting fixed point.