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Threshold analysis for the family of generalized Friedrichs models
Tosheva N.
Uzbekistan, Bukhara State University

e-mail: nargiza_n@mail.ru

Operators known as generalized Friedrichs model [1] appear in a series of problems in analysis,
mathematical physics and probability theory. In the present note we discuss the threshold analysis
for the family of generalized Friedrichs models corresponding to a system of quasi-particles, where
their number is finite, but not fixed.

Let C be the field of complex numbers and Lo(T?) be the Hilbert space of square integrable
(complex) functions defined on the three-dimensional torus T2. Denote by #H the direct sum of

spaces Ho := C and Hy := Lo(T?), that is, H := Ho ® H1.

In the present note we consider a family of generalized Friedrichs models h(k), k € T3, which
acts in H as )
hoo(k)  hot >
h(k) := )
(%) ( hty  hu(k)

hoo(k) fo = (l2e(k) + 1) fo, horf1 = /1r3 o(t) f1(t)dt,

(h11(k) f1)(q) = Ex(q) f1(q),  Er(q) :=he(q) + lae(k — q)
with l1,l2 > 0 and the dispersion function £(-) is defined by

where

3

e(q) = (1—cos(ng™)), q=(q",¢?,¢¥)eT? neN
=1

Here f; € H;, i = 0,1; the function v(-) is either even or odd function on each variable and there
exist all second order continuous partial derivatives of v(-) on T3. Then the family of operators h(k),
k € T3 is bounded and self-adjoint in .

We remark that the operators hgi resp. hjj; are called annihilation resp. creation operators,
respectively.

Let A be a subset of T? given by

!/

A= {(p(l),p(2),p(3)) p) {0,:1:27T; :I:éw; o :|:n7r} Ull,, i = 1,2,3} ,
n n n

where
{m}, if n is even

VS 2, if n is even
o 0, ifnisodd

n—1, if n is odd and I, ::{

Direct calculation shows that the cardinality of A is equal to n? and for any fixed k € A the
function Ej(-) has the non-degenerate zero minimum at the points of A.
Using the Weyl theorem, for the essential spectrum of h(k) we obtain the equality oess(h(k)) =
[Emin(k); Emax(k)], where the numbers Fyin (k) and Enax(k) by the rule
Emin(k) :== min Er(q) and FEpax(k) := max Ei(q).
qeT? q€eT3

For any k € T? we define an analytic function A(k;-) (the Fredholm determinant associated
with the operator h(k)) in C \ [Emin(k); Emax(k)] by

v2(t)dt

Alk;z) =lae(k)+1—2— s () — 2
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A simple consequence of the Birman-Schwinger principle and the Fredholm theorem imply
that
odisc(h(k)) = {z € C\ [Emin(k); Emax(k)] : A(k;2) =0}.

Since for any k € A the function Fj(-) has non-degenerate zero minimum at the points of A
and the function v(-) is a continuous on T3, for any k € T2 the integral
v2(t)dt
3 Eg(t)

is positive and finite. The Lebesgue dominated convergence theorem and the equality A(0;0) =
A(k;0) for k € A yield
A(0;0) = lim A(k;0), K €A,
k—k’

where 0 := (0,0,0) € T?.

Since 0 € A the definition of h(k) imply the identity h(0) = h(k) for all k € A.

Moreover, gess(h(0)) = [0;6(11 + l2)].

Let us denote by C(T?) and L;(T?) the Banach spaces of continuous and integrable functions
on T3, respectively.

Definition 1. The operator h(0) is said to have a zero energy resonance, if the number 1 is
an eigenvalue of the integral operator given by

o) =0 [ MO dn v e o

and at least one (up to a normalization constant) of the associated eigenfunctions v satisfies the
condition ¥ (p") # 0 for some p' € A.

We notice that in Definition 1 the requirement of the existence of the eigenvalue 1 of G
corresponds to the existence of a solution of h(0)f = 0 and the condition ¢ (p’) # 0 for some p’ € A
implies that the solution f of this equation does not belong to H.

The following result establishes in which cases the bottom of the essential spectrum is a
threshold energy resonance or eigenvalue.

Theorem 1. The following statements are hold.

(i) The operator h(0) has a zero eigenvalue if and only if A(0;0) = 0 and v(¢') = 0 for all
q €A,

(ii) The operator h(0) has a zero energy resonance if and only if A(0;0) = 0 and v(q') # 0
for some ¢’ € A.

Let I be an identity operator on .

Theorem 2. If the operator h(0) has either a zero energy resonance or a zero eigenvalue,
then for any k € A and p € T3 the operator h(k — p) + l1e(p)I is non-negative.

Set
Ao :={qd € A:v(d) #0}

Now we formulate a result (zero energy expansion for the Fredholm determinant, leading to
behaviors of the zero energy resonance).

Theorem 3. Let the operator h(0) have a zero energy resonance and k,p’ € A. Then the
following decomposition

472 2, l% + 2111 2z
A(k—p;z—le(p) = W(Z v (Q))\/M@—IJ’P— n2
q'€Ao

+O0(lp— ") + O(lz])
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holds for |p — p'| — 0 and z — —0.

We remark that Theorems 1, 2 and 3 are play key role in the spectral analysis of the family
of 3 x 3 operator matrices, associated with the lattice systems describing two identical bosons and
one particle, another nature in interactions, without conservation of the number of particles.
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On invariant sets of a quadratic non-stochastic operator
1 Xudayarov S.
L Bukhara State University, Bukhara, Uzbekistan,
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Non-linear dynamical systems arise in many problems of biology, physics and other sciences.
In particular, quadratic dynamical systems describe the behavior of populations of different species
with population models [1, 2, 3]. Let E = {1,2,...,m}. A distribution on the set E is a probability
measure * = (Z1,...,Ty), i.6., an element of the simplex:

m
Sl —{reR: ZO,in =1}
i=1
In general, a quadratic operator V, V :xz € R™ — i V(z) € R™ is defined by:

m
V:x;: ZPij7kxixj, k=1,...,m (1)
ij—1

In this talk we are interested to a non-stochastic quadratic mapping of simplex to itself, i.e. V :
Sm—l N Sm—I‘

Definition. [3] A quadratic operator (1), preserving a simplex, is called non-stochastic
(QnSO) if at least one of its coefficients P;;y, i # j is negative.

Consider the following example of QnSO on the two-dimensional simplex S2.

= %(z —y)? + %m(y—i—z)
y =1z —2)2+3y(z +2) (2)
2 = %(y—x)2+%z(w+y).

Fixed points. The fixed points are solutions to the system (2)

z=4(z-y)?+32(y+2)
y=3(z—2)°+ 3y(z + 2)
z=35(y— )+ 32(z +y).

By full analysis this system one obtains the following family of fixed points:

11 1 1 11 111

:0—— :—0— :——0 = (=, =.—=).
al (7272)7 ag (27 72)7 as (2727 )7 a4 ( )

Thus a1, as and ag are saddle, but a4 is an attracting fixed point.
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