

GHENT
ANALYSIS
PDE
CENTER

ICMAM Latin America
International
Community of Mathematicians
from Latin America

BOOK OF ABSTRACTS

of the International Online Scientific Conference “Advances in
Mathematical Physics: Methods and Applications” August 19–20, 2025

Ghent-2025

Organizing Committee

Chair: Professor Michael Ruzhansky

Co-chair: Professor Anvar Hasanov

Members:

Arshyn Altybay – Ghent University, Belgium

Karel Van Bockstal – Ghent University, Belgium

Duvan Cardona – Ghent University, Belgium

Sirojiddin Dzhamalov – V.I.Romanovskiy Institute of Mathematics, Uzbekistan

Yusuf Fayziev – National University of Uzbekistan, Uzbekistan

Erkinjon Karimov – Ghent University, Belgium

Oqila Mukhiddinova – V.I.Romanovskiy Institute of Mathematics, Uzbekistan

Zarif Sobirov – V.I.Romanovskiy Institute of Mathematics, Uzbekistan

Secretary

Marjona Shakarova, Rajabboy Saparbaev and Sh. Jumaeva

Programme Committee

Chair: Professor Shavkat Alimov

Members:

Ravshan Ashurov – V.I.Romanovskiy Institute of Mathematics, Uzbekistan

Allaberen Ashyralyev – Bahçeşehir University, Turkiye

Zhirayr Avetisyan – Ghent University, Belgium

Duvan Cardona – Ghent University, Belgium

Uwe Kähler- University of Aveiro, Portugal

Mokhtar Kirane – Khalifa University, United Arab Emirates

Vishvesh Kumar – Ghent University, Belgium

Arsen Pskhu – Institute of Applied Mathematics and Automation, Russia

Makhmud Sadybekov – Institute of Mathematics and Mathematical Modeling, Kazakhstan

Marian Slodicka – Ghent University, Belgium

Berikbol Torebek – Institute of Mathematics and Mathematical Modeling, Kazakhstan

Sabir Umarov – New Haven University, USA

Content

Michael Ruzhansky. <i>Very weak solutions to PDEs with singularities</i>	5
Marianna Chatzakou. <i>Fujita exponent for Hörmander vector fields</i>	5
Ville Turunen. <i>Limits of discrete time- frequency transforms</i>	6
Ravshan Ashurov. <i>On some approaches to solving inverse problems based on the Fourier and Gakelin methods</i>	6
Mersaid Aripov, Atabaev Odiljon. <i>Matematical modeling of nonlinear processes in two componential medium with variable density, source and absorption</i>	7
Abdulla Azamov. <i>On topology of limit-sets and a number of inflections of trajectories</i>	8
Shavkat Alimov. <i>On the solvability of the Cauchy problem in Gevrey classes</i>	8
Paula Cerejeiras. <i>Ternary Clifford analysis and its applications in Mathematical Physics</i>	9
Duvan Cardona Sanchez. <i>Regularity properties of Fourier integral operators with complex phases</i>	9
Arran Fernandez. <i>Mikusiński's operational calculus and its use in solving systems of fractional differential equations.</i>	9
Karel Van Bockstal. <i>Computational Algorithms for Identifying Space Dependent Sources in Thermoelasticity</i>	10
Sabir Umarov. <i>Representations of solutions of time-fractional vector order systems</i>	10
Berikbol Torebek. <i>Fujita-type critical exponents for the semilinear parabolic problems</i>	10
Allaberen Ashyralyev. <i>The boundary-value problem for the involutory elliptic equation: well-posedness in the Hölder space with weights</i>	11
Isroil Ikromov. <i>Estimates for the Fourier transform of surface-carried measures and boundedness problem for convolution operators</i>	11
Gaetano Siciliano. <i>Multiplicity of solutions for Schrödinger-Poisson system in expanding domain</i>	12
Obidjon Abdullaev, Avazbek Sobirjonov. <i>An inverse problem for a fractional pseudo-parabolic loaded equation with involution perturbation</i>	13
Ibrokhimbek Akramov. <i>Minimal energy for geometrically nonlinear elastic inclusions</i>	13
Oqila Muhiddinova. <i>Nonlocal and inverse problems for the Rayleigh Stokes Equation</i>	14
Abduhkakimov S., Makhmud Bayzakov. <i>Resonances and eigenvalues of the discrete Schrödinger operator for a system of two fermions on lattices</i>	16
Yusuf Fayziev, Shakhnoza Jumaeva. <i>An inverse problem for Langevin-type fractional equation involving a nonlocal time condition</i>	16
Mirsaid Aripov, Odiljon Atabaev. <i>Matematical modeling of nonlinear processes in two componential medium with variable density, source and absorption</i>	17

Mamanazarov Azizbek, Khumoyun Jabbarkhanov . <i>Inverse source problem for a time degenerate time and space fractional partial differential equation</i>	17
Shakhobiddin Karimov, Yorkinoy Tulasheva. <i>The Cauchy Problem for degenerate Plate Vibration Equation in Three-dimensional Space</i>	17
Rajabboy Saparboyev. <i>The existence and uniqueness of the inverse problem for the sequential fractional telegraph equation</i>	20
Alisher Matyokubov, Abrorjon Mamatov. <i>Analytical characterization of global solutions and blow-up behavior in a spatially inhomogeneous nonlinear diffusion system</i>	21
Askar Rakhmonov. <i>Inverse Kernel Identification in a Time Fractional Integro-Differential Equation</i>	21
Akbarkhuja Tukhtabaev. <i>Weakly periodic p-adic Gibbs measures for the Potts model</i>	22
Navbahor Nuraliyeva, Nigora Axmadova. <i>A four-parameter non-local problem for a fractional wave equation</i>	22
Iroda Narziyeva, Ariukhan Turemuratova. <i>Inverse source problem for the time-fractional parabolic equation on metric graphs</i>	23
Guendalina Palmirotta. <i>Fractional Schrödinger equation on hyperbolic spaces</i>	24
Marjona Shakarova. <i>Inverse problem for fractional Schrödinger type equation</i>	25
Maftuna Mirzayeva. <i>On the solution of a boundary value problem for the first order differential equation involving the Prabhakar fractional derivative</i>	25
Rozik Karimov, Xolmatvoy Shadimetov. <i>A method for constructing optimal finite-difference formulas in the Hilbert space</i>	26
Umida Dusanova. <i>Analysis of forward and inverse problems for a mixed type equation with Caputo fractional derivative, Bessel operator, and Dezin-type nonlocal conditions</i>	26
Jonibek Jumayev. <i>Recovery of the convolution kernel in a semilinear integro-differential generalized fractional diffusion equation</i>	28
Elbek Husanov. <i>Identification of an unknown source element in a time fractional subdiffusion equation</i>	29
Halim Turdiyev. <i>Recovering the time dependent coefficient for a multidimensional multi-term fractional diffusion equation</i>	30
Marks Ruziboev, Jasur Bahramov. <i>Method regrouping fin time optimal problem for a rode</i>	30

$$-\frac{\Gamma(-\frac{3}{4})}{\Gamma(\frac{1}{4}-\beta)} \eta^2 K_1\left(\frac{1}{4}-\beta; \frac{7}{4}, \frac{3}{2}; -\frac{\eta^4}{4}, -\frac{1}{4} \lambda^2 y^2\right), \quad (15)$$

where $k_0 = \frac{\Gamma(\beta+1/2)}{\sqrt{\pi}}$, $k_1 = \frac{\Gamma((1/2)-\beta)}{\sqrt{\pi}}$,

$$K_1(a, b, c; x, y) = \sum_{m=0}^{\infty} \frac{y^m}{(a)_m m!_1} F_2(1-a-m; b, c; x),$$

and ${}_1F_2(a; b, c; z)$ is the generalized hypergeometric function.

REFERENCES

- [1] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York NY, (1993).
- [2] Polianin A.D., "Handbook of Linear Partial Differential Equations for Engineers and Scientists", Chapman and Hall/CRC Press:, Boca Raton, FL, USA, (2002).
- [3] Prudnikov A.P., Brychkov Yu.A., Marichev O.I. "Integrals and series", In 3 volumes. T. 1. Elementary functions.- 2nd ed., corrected.- M.: FIZMATLIT, 2002.- 632 p.

The existence and uniqueness of the inverse problem for the sequential fractional telegraph equation

Rajabboy Saparboyev

In this paper, we investigate the inverse problem of identifying the kernel in a one-dimensional time-fractional telegraph equation with the Caputo time derivative, subject to initial-boundary and overdetermination conditions. Initially, an equivalent auxiliary problem is formulated to simplify the analysis.

The Fourier method is employed to convert this auxiliary problem into a system of integral equations. By utilizing properties of the Mittag-Leffler function and the successive approximation technique, an estimate for the direct problems solution is derived based on the norm of the unknown kernel, facilitating the investigation of the inverse problem. The inverse problem is then transformed into an equivalent integral equation, which is solved using the contraction mapping principle. The analysis establishes the local existence and global uniqueness of the solution under specified conditions.