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YK 517.5 4 517.95 + 517.97 + 517.98 + 517.958 +517.968 + 519.6.

«CoBpeMeHHbIE METOJIbI MaTeMaTUYeCKOil (PU3UKN U WX NpUJIOXKeHus »: Te3u-
ChI JIOKJIAJ0B PeciryOJIMKAHCKOM HAyIHO KOH(EPEHIINN TOCBSIeHHO 80-J1eTHio co JTHS
poxkennst akagemuka [I1.A. Ajgumona (22-24 ampens 2025 roga, Tammkent, Y36ekucran).
— TamxkenT. 1z1—Bo «Mabpudars. 2025. 379 c.

JlaHHbIil COOPHUK COJIePKAT HAYIHBIE TOKJIa/Ibl YIACTHUKOB MEXKTYHAPOIHOM HAYIHOI
koHbepennun «CoBpeMeHHbIE METO/IbI MaTeMaTUIeCKON (DU3MKH U UX HTPUTOKEHHUT> I10
caemyomuM HarpasienusM: CrekTpasibHas Teopus AuddepeHnuaabubIX OlepaTopos,
KpaeBbie 3ajaum g ypaBHenuii maremartudeckoil dusuku, luddepennuaabubie
ypaBHeHus J1pobHoro nopsiiaka, CoBpeMennbie podeMbl aaredpol u reomerpun, Teopust
dyukmuiti, Teopus BepodTHOCTel W MaTeMaTwUdeckas cTaTHCTUKa, MaremaTudeckoe
MOJICJTUPOBAHUE W BBIYUCIUTEIbHAS MaTeMaTUKA.

Jlannast KoHdepeHIus OpraHn30BaHa Ha OCHOBAHUU pacropsikenus 72-P Kabunera
MunuctpoB Pectiybsimku ¥Y36ekucran ot 13 depassa 2025 romga, npukazom Ne490 muHu-
CTpa BBICIIIEr0 00pa3oBaHusd, HAyKu U nHHOBaIuAM Pecriybsmuku V30ekucran ot 27 jiekab-
ps 2024 roma u npukazom Ne(01-23 pexkropa Hanmonasibaoro yausepcurera ¥Y30ekucrana
nMenun Mupzo Yiayroeka ot 22 susaps 2025 rosma.
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3a codepwccmue U OpULUHANBHOCTN® ME3UCOSL, npeacmae/wumnx 6 danHom c60pmme, omeemcmeeH-
HOCMb HECYIM asMOopPdvL IMUT pa60m.

© Hayuonarvhouli yrusepcumem Ysbexucmana umeny Mupso Yayebexa, 2025
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OPTAHU3AIIMOHHBII KOMUTET

Mamxugos NN.Y. npejcesaTesb, pekrop HYVs.,

AromoB I11.A. — compejicenareb, mupekrop UM AH PVs.,
Anrypos P.P. — 3aM. npejceaarend, 3aB. oraeaom UM AH PVs.,
Bukupos O.C. — 3aM. mpejicesarentd, jjekan Maremarudeckoro @akynrera HYY3.

Y1eHbl OpraHmn3alflMOHHOIO KOMUTETa

Apunios M.M. (¥Y36exucran), Ameipasmmes A. (Typrmenucran),
Bepaprmes A.C.(Kasakcran), Bopucos A.K. (V36ekucran),

xamasos C.3. (Y36ekucran), Wciaomos B.1. (V36ekucran),

Kapauuk B.B. (Poccust), Kacnmos 1T (Y36ekucran),
Mamanamues H. (¥Vs6ekucran), Mawmaros M.III. (V36exucran),
Mupcabypos M. (Vsbekucran), Paxumon A.A. (V3sbexucran, Manaiizus),
Pysnes M. (V36exkucran), Cagpibekos M.A. (Kazakcran),

Taxupos 2K.O. (¥V36ekucran), Typmeros B.X. (Kasakcran),

XacanoB A.K. (V36ekucran), XacanoB A.B. (Y36ekucras).

Xammmvos A.P. (Ys6ekncran).

IIPOTPAMMHBINT KOMUTET

IIpeacenaresnb:

Aaumos IIT.A. — akanemuxk AH PVY3. (Tamkent, Y36ekucran),

SamMecTuTean nmpejiceaTesis:
XanmyxamegoB A.P. — 3aB. kadeapoit, HYV3 (Tamkent, Y36ekucran),

Caiimamaros .M. —  HCHOJHHATEIbHBIA JUPEKTOP,
®Ouyman MI'Y B r.Tamkenre (Tamkent, Y3bekucran),

Pyxaunckuit M.B. — mpodeccop, l'enTcknit 1ieHTp «AHAJIN3 U ypaBHEHUS
¢ yacTHbIME pon3BoaHbiMIy (lent, Benbrus),
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Yiaenbl IIporpaMMHOI'O KOMHUTETa

Azamos A. — akajgemuk AH PV3 (V36ekncran),
Tonbaman M.JLL — npocbeccop (Poccust),

Hkpomos 1.A. — npocpeccop (Y3bekncran),
Umankynos T.M.  — npodeccop (Y3bekucran),
Kabanuxun C.1. — wien-koppecnonient PAH (Poccus),
Kampmenos T, — akagmemuk HAH PK (Kaszaxcran),
Kapumos 9.T. — podeccop (Y3bekucran),
Koxanos A.11. — nipocpeccop (Poccust),

Jlakaes C.H. — axkajgemuk AH PVY3 (Vs6ekucran),
Jlomos 1.C. — npocbeccop (Poccust),
Mupaxmezos LA, — npodeccop (Vsbekucran),
Orenbaes M. — axkajgemnk HAH PK (Kazaxcran),
ITexy A.B. — pocbeccop (Poccust),

Paxabos H.P. — akajgemuk AH Takukucrana (Tampkukucran),
Pozukos V.A. — akagemuk AH PVY3 (V36ekucran),
Casymraes A. — axkagemuk AH PVY3 (Vs6ekucran),
Cobupos 3.A. — norienT (Y30ekucran),

Connaros A.Il. — npocpeccop (Poccust),

Ymapos C.P. — mpocbeccop (CIIIA, Vsbekucran),
Ypunos A K. — npocbeccop (Ysbekncran),
Daszos K.C. — mpocbeccop (Y3bekncran),
Xamkues [Ixx. X.  — akagemuk AH PVY3 (V3b6ekncran),
Xycanbaen .M. — npodeccop (Y3bekucran),
Yacoscknx A.A. — nipocpeccop (Poccust),

[Tapunos O.I11. — npocpeccop (Yabekucran),

Arona A.T. — npocpeccop (Poccust).

Cekperapuar KoH(depeHIIn

Qaitsuen 10.9., [epanues II1.H., lexkanos ®@.H., Myxumaunaosa O.T.,
[[Taxaposa M./I., Cyneiimanos N.A., A6aynnaesa @.C., 2ZKymaesa I1.®D., ®asg3osa 3.
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OPTAHU3ATOPBI KOH®EPEHIIUM:

HanmoHanbHBIH YHUBEPCUTET
Y36ekucrana umenu Mup3so Yiyroeka;

NuctutyT Matematuku M. B.1A. Pomanosckoro AH
P¥3.:

YA Oumwman MIY umenn M.B.JlomoHOcOBa B ropoze

L@ Tamkenre;

g0 L. Tenrtckuii neHTp «AHANN3 U ypaBHEHHUS C YaCTHBIME
e PDE IPOU3BOAHBIMU» (Besbrus);
“ ' Mex/TyHapOHBIN HayYHbIN KypHaI “Science and
/| Innovation”.

Sciencelnnovation
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KOH®EPEHIIUA ITPOBOANTCA ITPHU IIOAAEPZKKE:

MarteMmaTH4ecKkoro o0IecTBa Y30eKcraHa;

(@ Ll Central Asian University;

@l(?’"llpkﬁ.“l CeTp CyIIepMapKeTOB « K()pBI/IHKa ».
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Solution Of The Cauchy Problem For An Equation Containing Regularized
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Axmanos U. A.

Kpaesas 3amaga C Havanbabivu Yemosusamu s Huddysnonnoro Ypas-
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Boiinazapos A. H.
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Ddenaues b. N.
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In this talk, we investigate direct and inverse source problems for time-fractional
parabolic type equation on a metric graph with final-time overdetermination condition.
A graph G consists of a finite set of vertices V = {v;}¥_, and edges E = {e;}7_,. Each
edge e; is assigned an interval (0,/;) and has coordinates z;. The set of boundary vertices
is denoted by 0G C V. We set C[G] as a space of functions u defined on the graph and
uniformly continuous on each of its edges.

We are interested in the following time-fractional parabolic equation with the Caputo
derivative of order a € (0,1) on Gr = {G x [0,T]}

Opu(r,t) + Lu = f(x)g(x,t), x€e; te(0,T],
where

0 . oul (.t , . . .
cul,, =~ (90D ) 190l )+ 0,

with initial conditions
u(x,t)|t:0 =0, z€e,,

the vertex conditions at inner vertices

u(z,t) are continuous in v,

> Oeiw {a(j)(u, t)a%u(j)(y, t)} =0, veV\og,

e;~v

where o, , = 1 if v is the right end of the edge e;, o.,, = —1 if v is the left end of the
edge e;, and at each boundary vertex, Dirichlet conditions

u(v,t) =0, veoag, telo,T],

where 0 < Ay < a(2) < A} < 400, j = 1,n, and we suppose that a,b,c € C[G],
c(x,t) > 0.

The main aim is to find the pair of functions {u(x,t), f(z)}. To find f(z), which is
the solution of the inverse problem, we need an an additional condition. That is why we
introduce an additional condition of the form

u|t:T =y(z), x€e,,
where () is a given function.
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We consider the following fractional diffusion-wave equation:
oeu(t) + Au(t) = F(t), t€ (0,T), (1)

with the Caputo time fractional derivative 0y of order 1 < o < 2, with the non-local
initial conditions

Yu(0) +u(T) = ¢, Ou(T) =1, (2)

here, we assume that the v is given number, ¢ and 1 are given elements of a separable
Hilbert space H. Moreover, A : H — H be an arbitrary unbounded positive selfadjoint
operator in H and A~! is a compact operator. First we consider the following direct
problem: given «a,7, ¢,1 and F(t), find a function u(t) satisfies the Eq. and the
nonlocal initial conditions .

Next, based on the direct problem, we consider the following inverse problem of finding
the coefficient p(t) in with F(t) = fp(t), i.e., the coefficient depends on only time
variable.

Inverse problem. Given a,v, ¢ = ¥ = 0 and f, find a pair of functions {u,p(t)}
satisfying the problem — and the additional condition

Olu(t) = h(t), 0<t<T, (3)

where h : [0,7] — R is a given function, ® : D(®) C H — R is a known linear bounded
functional.

In this work, we derive sufficient conditions for the given functions that ensure the
existence and uniqueness of the inverse problem —.





