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В данной работе рассматривается обратная задача определения коэффици-
ентов абстрактного дробного уравнения диффузии. Сначала мы исследуем кор-
ректность поставленной прямой задачи и доказываем лемму об эквивалентно-
сти обратной задачи и некоторого интегрального уравнения. Затем, используя
свойства решений прямой задачи, исследуем обратную задачу. С помощью тео-
ремы о неподвижной точке в подходящем банаховом пространстве получены
результаты о локальном существовании, единственности и устойчивости реше-
ния обратной задачи.
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1. Введение. Постановка задачи. Пусть 𝑋 – сепарабельное гильбертово про-
странство со скалярным произведением ( · , · ) и нормой ‖ · ‖; кроме того, 𝐴 : 𝐷(𝐴) ⊂
𝑋 → 𝑋 произвольный линейный неограниченный положительный самосопряжен-
ный оператор в 𝑋. При этом оператор 𝐴−1 является компактным. Более того, пред-
положим, что оператор 𝐴 имеет полную в 𝑋 систему ортонормальных собственных
функций 𝑒𝑘 и счетное множество положительных собственных значений 𝜆𝑘. Кроме
того, будем считать, что собственные значения не убывают с ростом их числа, т.е.,
что 0 < 𝜆1 ⩽ 𝜆2 ⩽ · · · → +∞.

В данной работе рассматриваются прямая и обратная задачи определения коэф-
фициента в зависящем от времени уравнении диффузии с дробной производной.
При этом, в прямой задаче изучим нахождение функции 𝑢 из соотношений{︃

𝜕𝛼
𝑡 𝑢(𝑡) +𝐴𝑢(𝑡) + 𝑞(𝑡)𝑢(𝑡) = 𝑓(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇,

𝑢(0) = 𝜙,
(1.1)

где 𝜕𝛼
𝑡 – дробная производная Герасимова–Капуто по времени порядка 𝛼 ∈ (0, 1),

определяемая следующим образом:

𝜕𝛼
𝑡 𝑦(𝑡) =

1

Γ(1− 𝛼)

ˆ 𝑡

0

(𝑡− 𝜏)−𝛼𝑦′(𝜏) 𝑑𝜏,

Γ( · ) – гамма-функция Эйлера (см. [1]–[3]).
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Если 𝐴 – дифференциальный оператор второго порядка, то данная модель может
быть использована для формулировки явлений аномальной супердиффузии частиц
в неоднородных пористых средах. С некоторыми прикладными аспектами в этом
направлении можно ознакомиться в работах [4], [5]. Однако, часто зависящий от
времени коэффициент при производной нулевого порядка 𝑞(𝑡) может быть неизве-
стен; например, при диффузии загрязняющих веществ в подземном песчаном грун-
те. Основной нашей целью в этой работе является определение коэффициента 𝑞(𝑡)

в задаче (1.1) по заданному дополнительному условию. Для этого сначала исследу-
ем прямую задачу.

Определение 1. Функцию 𝑢(𝑡), удовлетворяющую условиям 𝑢(𝑡) ∈ 𝐶([0, 𝑇 ];

𝐷(𝐴)) с 𝜕𝛼
𝑡 𝑢(𝑡) ∈ 𝐶([0, 𝑇 ];𝑋), 𝐴𝑢(𝑡) ∈ 𝐶([0, 𝑇 ];𝑋) и всем условиям задачи (1.1),

будем называть решением задачи (1.1).

Далее мы докажем существование единственного решения прямой задачи, а так-
же получим некоторые результаты о его регулярности. В основной части статьи
на основе прямой задачи рассматривается следующая обратная задача нахождения
коэффициента 𝑞(𝑡) в уравнении (1.1).

Обратная задача. Требуется найти функцию 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ], если относительно
решения прямой задачи (1.1) известна информация

Φ[𝑢(𝑡)] = ℎ(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇, (1.2)

где ℎ : [0, 𝑇 ] → R – заданная функция, Φ: 𝐷(Φ) ⊂ 𝑋 → R– известный линейный
ограниченный функционал, 𝐷(Φ) = {𝑢 : 𝑢 ∈ 𝑋}.

Прямые задачи для дробных по времени уравнений диффузии, когда 𝐴 диффе-
ренциальный оператор эллиптического типа второго порядка, были широко иссле-
дованы в различных областях; например, существование и единственность слабых
решений изучены в [6]–[10]. По обратным задачам для дробных уравнений диффу-
зии не так много публикаций. В работах [6]–[9] были исследованы задачи опреде-
ления коэффициента диффузионно-волнового уравнения дробного порядка, зави-
сящего от времени, в котором рассмотрен дифференциальный оператор второго
порядка 𝐴 с третьим и первым граничными условиями соответственно. Во всех
приведенных выше работах были доказаны теоремы о существовании единственно-
го решения задачи определения коэффициента 𝑞. В отличие от указанных выше
работ, рассматриваемое здесь уравнение имеет общей вид, т.е. оператор 𝐴 является
абстрактным, но сохраняющим выше приведенные свойства.

Пусть 𝛾 – произвольное вещественное число. Введем степень оператора 𝐴, дей-
ствующего на 𝑋 по правилу

𝐴𝛾𝑔 =

∞∑︁
𝑘=1

𝜆𝛾
𝑘(𝑔, 𝑒𝑘)𝑒𝑘, 𝑔 ∈ 𝑋.

Очевидно, что область определения этого оператора имеет вид

𝐷(𝐴𝛾) =

{︂
𝑔 ∈ 𝑋 :

∞∑︁
𝑘=1

𝜆2𝛾
𝑘 |(𝑔, 𝑒𝑘)|2 < ∞

}︂
.
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Для элементов 𝐷(𝐴𝛾) мы введем норму

‖𝑔‖2𝐷(𝐴𝛾) =

∞∑︁
𝑘=1

𝜆2𝛾
𝑘 |(𝑔, 𝑒𝑘)|2 = ‖𝐴𝛾𝑔‖2,

и вместе с этой нормой 𝐷(𝐴𝛾) превращается в гильбертово пространство.
Пусть 0 < 𝜀 < 1 – фиксированное число. Рассмотрим обратную задачу при

следующих предположениях:
(C1) 𝜙 ∈ 𝐷(𝐴𝜀+1), 𝑓 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀));
(C2) ℎ(𝑡) ∈ 𝐴𝐶[0, 𝑇 ] и удовлетворяет условию

0 <
1

ℎ0
⩽ |ℎ(𝑡)|,

где ℎ0 – заданное число;
(C3) ℎ(0) = Φ[𝜙];
(C4) Φ: {Φ[𝑒𝑘]} ∈ 𝑙2(N), где N – множество натуральных чисел.

Замечание 1. Из (C2) следует, что левая производная Герасимова–Капуто
𝜕𝛼
𝑡 ℎ(𝑡) существует почти везде (п.в.) на (0, 𝑇 ] (см. [3; с. 92]).

Замечание 2. Множество функционалов, удовлетворяющих условию (C4), не
пусто. Действительно, пусть 𝑋 = 𝐿2(0, 1) и 𝐴𝑢 = −𝑢𝑥𝑥, 𝑥 ∈ (0, 1), с однород-
ным граничным условием Дирихле. Тогда оператор имеет собственные значения
{(𝜋𝑘)2, 𝑘 ∈ N} и собственные векторы {

√
2 sin(𝜋𝑘𝑥), 𝑘 ∈ N}. Пусть Φ[𝑢(𝑡, · )] :=´ 1

0
𝑢(𝑡, 𝑥) 𝑑𝑥. Поскольку

Φ[𝑒𝑘] =
√
2

ˆ 1

0

sin(𝜋𝑘𝑥) 𝑑𝑥 =

√
2 (1 + (−1)𝑘+1)

𝜋𝑘
=

⎧⎨⎩
2
√
2

𝜋𝑘
, 𝑘 = 2𝑚− 1 (𝑚 ∈ N),

0, 𝑘 = 2𝑚 (𝑚 ∈ N),

то
∞∑︁
𝑘=1

|Φ[𝑒𝑘]|2 < ∞.

Пусть 𝒜𝑢 = −𝑢𝑥𝑥 с однородным граничным условием Неймана. В этом случае
выберем оператор 𝐴 как

𝐴𝑢 = 𝒜𝑢+ 𝑢, 𝑢 ∈ 𝐷(𝐴) := {𝑢 ∈ 𝐻2(0, 1) : 𝑢𝑥(0, 𝑡) = 𝑢𝑥(1, 𝑡) = 0}.

Тогда оператор 𝐴 имеет собственные значения {(𝜋𝑘)2 + 1, 𝑘 ∈ N ∪ {0}} и соб-
ственные векторы {1,

√
2 cos(𝜋𝑘𝑥)}, 𝑘 ∈ N. Пусть, по определению, Φ[𝑢(𝑡, · )] :=´ 1

0
𝑥(1 − 𝑥)𝑢(𝑡, 𝑥) 𝑑𝑥. На основе предыдущих расчетов можно получить следующие

результаты:

Φ[𝑒𝑘] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

6
, 𝑘 = 0,

0, 𝑘 = 2𝑚− 1 (𝑚 ∈ N),

− 2
√
2

(𝜋𝑘)2
, 𝑘 = 2𝑚 (𝑚 ∈ N).

Таким образом,
∞∑︁
𝑘=0

|Φ[𝑒𝑘]|2 < ∞.
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Основные результаты данной работы приведены в следующих теоремах.

Теорема 1. При условиях (C1)–(C4) существует достаточно малое 𝑇 > 0,
такое, что обратная задача имеет единственное решение 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ].

Теорема 2. Пусть выполнены условия (C1)–(C4) и 𝑢𝑖 является решением (1.1)
для 𝑞 = 𝑞𝑖 ∈ 𝐶[0, 𝑇 ] с ‖𝑞𝑖‖𝐶[0,𝑇 ] ⩽ 𝑅 (𝑖 = 1, 2), кроме того существует 𝜈 > 0 такое,
что

|Φ[𝑢2](𝑡)| ⩾ 𝜈−1 > 0 для всех 𝑡 ∈ [0, 𝑇 ]. (1.3)

Тогда существует постоянная ̃︀𝐶 > 0, зависящая от 𝑅, 𝑇 , 𝛼, 𝜀 и ℎ0 , такая, что

̃︀𝐶−1‖𝜕𝛼
𝑡 (Φ[𝑢1]− Φ[𝑢2])‖𝐶[0,𝑇 ] ⩽ ‖𝑞1 − 𝑞2‖𝐶[0,𝑇 ] ⩽ ̃︀𝐶‖𝜕𝛼

𝑡 (Φ[𝑢1]− Φ[𝑢2])‖𝐶[0,𝑇 ], (1.4)

‖𝑢1 − 𝑢2‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ ̃︀𝐶‖𝑞1 − 𝑞2‖𝐶[0,𝑇 ]. (1.5)

В следующих разделах доказываются эти теоремы.
Раздел 2 содержит предварительные леммы, которые используются при доказа-

тельстве основных результатов.
Раздел 3 посвящен доказательству локальной по времени теоремы существования

и единственности решения обратной задачи (1.1), (1.2) с использованием принципа
Банаха, а также доказательству устойчивости решения обратной задачи.

2. Корректность прямой задачи. Чтобы решить прямую задачу, мы разде-
лим ее на две вспомогательные задачи:{︃

𝜕𝛼
𝑡 𝑣(𝑡) +𝐴𝑣(𝑡) + 𝑞(𝑡)𝑣 = 𝑓(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇,

𝑣(0) = 0,
(2.1)

и {︃
𝜕𝛼
𝑡 𝑤(𝑡) +𝐴𝑤(𝑡) + 𝑞(𝑡)𝑤 = 0, 0 ⩽ 𝑡 ⩽ 𝑇,

𝑤(0) = 𝜙.
(2.2)

Если положить 𝑤(𝑡) = 𝑊 (𝑡) + 𝜙 в (2.2), то снова получаем аналогичную задачу
к (2.1) для 𝑊 (𝑡). Поэтому достаточно решать задачу (2.1).

Пусть

𝑌 (𝑡)𝜑 =

∞∑︁
𝑘=1

(𝜑, 𝑒𝑘)𝑡
𝛼−1𝐸𝛼,𝛼(−𝜆𝑘𝑡

𝛼)𝑒𝑘, 𝜑 ∈ 𝑋, 𝑡 > 0. (2.3)

где 𝐸𝛼,𝛽(𝑧) – функция Миттага-Леффлера с двумя параметрами

𝐸𝛼,𝛽(𝑧) =

∞∑︁
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
, 𝛼 ∈ (0, 1), 𝑧, 𝛽 ∈ C.

Если 𝛽 = 1, то мы имеем классическую функцию Миттага-Леффлера: 𝐸𝛼(𝑧) =

𝐸𝛼,1(𝑧). Хорошо известно, что асимптотическая оценка функции Миттаг-Леффлера
с достаточно большим отрицательным аргументом имеет вид (см. [12], [13; с. 13], [14;
с. 136]):

|𝐸𝛼,𝛽(−𝑡)| ⩽ 𝐶

1 + 𝑡
, 𝑡 > 0.
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А также будем использовать оценку с достаточно большим положительным чис-
лом 𝜆 и 𝜀 ∈ (0, 1) (см. [11]):

|𝑡𝛼−1𝐸𝛼,𝛼(−𝜆𝑡𝛼)| ⩽ 𝐶𝜆𝜀−1𝑡𝛼𝜀−1, 𝑡 > 0. (2.4)

Для получения основных результатов нам необходимы следующие леммы, при-
веденные в [7] и [16; с. 188–189] соответственно. Одна из них представляет собой
лемму типа Гронуолла для случая дробного интеграла Римана–Лиувилля.

Лемма 1. Пусть 𝑏 ⩾ 0, 𝛼 > 0 и функции 𝑎(𝑡), 𝑢(𝑡) ∈ 𝐿1
loc(0, 𝑇 ), неотрицательны,

причем

𝑢(𝑡) ⩽ 𝑎(𝑡) + 𝑏

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑢(𝑠) 𝑑𝑠.

Тогда справедливо неравенство

𝑢(𝑡) ⩽ 𝑎(𝑡) + 𝜃

ˆ 𝑡

0

𝐸′
𝛼(𝜃(𝑡− 𝑠))𝑎(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇 ), (2.5)

где 𝜃 = (𝑏Γ(𝛼))1/𝛼 , 𝐸′
𝛼(𝑧) = (𝑑/𝑑𝑧)𝐸𝛼(𝑧). Если 𝑎(𝑡) ≡ 𝑎 = const, то 𝑢(𝑡) ⩽ 𝑎𝐸𝛼(𝜃𝑡).

Эта лемма дает следующий результат.

Следствие 1. Пусть 𝐶 > 0, 0 < 𝛼 < 1 и функции 𝑢,𝑤 ∈ 𝐿1(0, 𝑇 ) неотрица-
тельны, причем выполнено неравенство

𝑢(𝑡) ⩽ 𝐶𝑤(𝑡) + 𝐶

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑢(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇 ).

Тогда справедливо неравенство

𝑢(𝑡) ⩽ 𝐶𝑤(𝑡) + 𝐶

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑤(𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇 ). (2.6)

Доказательство. Действительно, при 𝑡 → 0 следующие асимптотические пове-
дения имеют место (см. [16; с. 188]):

𝑑

𝑑𝑡
𝐸𝛼(𝑡) ≃

𝑡𝛼−1

Γ(𝛼)
.

Исходя из последнего соотношения и (2.5), получим требуемый результат (2.6).

Лемма 2. Пусть 𝑎, 𝑏, 𝛼 > 0 – постоянные и функция 𝑢 ∈ 𝐿1(0, 𝑇 ) – неотрица-
тельна, причем удовлетворяет следующему неравенству:

𝑢(𝑡) ⩽ 𝑎+ 𝑏

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑢(𝑠) 𝑑𝑠, п.в. 𝑡 ∈ (0, 𝑇 ).

Тогда справедливо неравенство

𝑢(𝑡) ⩽ 𝑎𝐸𝛼,1((𝑏Γ(𝛼))
1/𝛼𝑡), п.в. 𝑡 ∈ (0, 𝑇 ).
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Теперь перейдем к исследованию задачи (1). Для этого используем метод, кото-
рый приведен в работе [6]. Из 𝐴𝑌 (𝑡)𝜑 =

∑︀∞
𝑘=1 𝜆𝑘(𝜑, 𝑒𝑘)𝑡

𝛼−1𝐸𝛼,𝛼(−𝜆𝑘𝑡
𝛼)𝑒𝑘 и (2.4),

имеем

‖𝐴𝑌 (𝑡)𝜑‖2 =

∞∑︁
𝑘=1

|𝜆𝑘(𝜑, 𝑒𝑘)𝑡
𝛼−1𝐸𝛼,𝛼(−𝜆𝑘𝑡

𝛼)|2

⩽ 𝐶2
∞∑︁
𝑘=1

|𝑡𝛼𝜀−1𝜆𝜀
𝑘(𝜑, 𝑒𝑘)|2 = 𝐶2𝑡2(𝛼𝜀−1)

∞∑︁
𝑘=1

|𝜆𝜀
𝑘(𝜑, 𝑒𝑘)|2.

Таким образом

‖𝐴𝑌 (𝑡)𝜑‖ ⩽ 𝐶𝑡𝛼𝜀−1‖𝜑‖𝐷(𝐴𝜀), 𝜑 ∈ 𝑋, 𝑡 > 0. (2.7)

Относительно решения задачи (2.1) имеем следующее утверждение.

Лемма 3. Пусть 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ] и 𝑓(𝑡) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)) для некоторого 𝜀 ∈
(0, 1). Тогда задача (2.1) имеет единственное решение 𝑣 , которое удовлетворяет
следующему интегральному уравнению:

𝑣(𝑡) =

ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝑓(𝑠) 𝑑𝑠−
ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝑞(𝑠)𝑣(𝑠) 𝑑𝑠. (2.8)

Более того, существует константа 𝑐 > 0 такая, что выполняется следующее
неравенство:

‖𝜕𝛼
𝑡 𝑣‖𝐶([0,𝑇 ];𝑋) + ‖𝐴𝑣‖𝐶([0,𝑇 ];𝑋) ⩽ 𝑐‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)). (2.9)

Для доказательства леммы 3 рассмотрим следующую задачу Коши:{︃
𝜕𝛼
𝑡 𝜗(𝑡) +𝐴𝜗(𝑡) = 𝐹 (𝑡), 𝑡 ∈ [0, 𝑇 ],

𝜗(0) = 0.
(2.10)

Для решения задачи (2.10) справедливо утверждение.

Утверждение 1. Пусть 𝐹 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)). Тогда задача (2.10) имеет един-
ственное решение

𝜗(𝑡) =

ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝐹 (𝑠) 𝑑𝑠. (2.11)

Кроме того,
‖𝜗‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝑐‖𝐹‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)), (2.12)

где 𝑐 = 𝑐(𝛼, 𝜀, 𝑇 ).

Доказательство. Нетрудно убедиться, что функция (2.11) является формаль-
ным решением задачи (2.10) (см., например, [7]).

Используя (2.3), можно записать (2.11) в виде

𝜗(𝑡) =

∞∑︁
𝑘=1

[︂ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝐸𝛼,𝛼(−𝜆𝑘(𝑡− 𝑠)𝛼)(𝐹 (𝑠), 𝑒𝑘) 𝑑𝑠

]︂
𝑒𝑘. (2.13)
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Тогда из этого следует, что для 𝐹 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)) имеем

𝐴𝜗(𝑡) =

ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝐹 (𝑠) 𝑑𝑠.

Более того, благодаря неравенству Минковского и неравенству (2.4) для 𝜀 ∈ (0, 1),
получим

‖𝐴𝜗(𝑡)‖ ⩽
ˆ 𝑡

0

‖𝐴𝑌 (𝑡− 𝑠)𝐹 (𝑠)‖ 𝑑𝑠

⩽ 𝐶

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖𝐹 (𝑠)‖𝐷(𝐴𝜀) 𝑑𝑠 ⩽ 𝐶
𝑡𝛼𝜀

𝛼𝜀
max
0⩽𝑠⩽𝑡

‖𝐹 (𝑠)‖𝐷(𝐴𝜀).

Поэтому
‖𝐴𝜗‖𝐶([0,𝑇 ];𝑋) ⩽ 𝑐1𝑇

𝛼𝜀‖𝐹‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)),

и, в частности, 𝜗(𝑡) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)).
Кроме того, по исходному уравнению 𝜕𝛼

𝑡 𝜗(𝑡) = −𝐴𝜗(𝑡) + 𝐹 (𝑡), 𝑡 ⩾ 0, мы имеем
𝜕𝛼
𝑡 𝜗(𝑡) ∈ 𝐶([0, 𝑇 ];𝑋) и

‖𝜕𝛼
𝑡 𝜗‖𝐶([0,𝑇 ];𝑋) ⩽ 𝑐2‖𝐹‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)).

Таким образом, мы завершили обоснование того, что (2.11) является решением зада-
чи (2.10).

Переходим к доказательству единственности решения задачи (2.10). Предполо-
жим, что задача (2.10) имеет два решения 𝜗1(𝑡) и 𝜗2(𝑡). Наша цель – доказать, что
𝜗(𝑡) = 𝜗1(𝑡) − 𝜗2(𝑡) ≡ 0. Поскольку задача линейна, для 𝜗(𝑡) имеем следующую
однородную задачу:

𝜕𝛼
𝑡 𝜗(𝑡) +𝐴𝜗(𝑡) = 0, 𝑡 ⩾ 0, (2.14)

𝜗(0) = 0. (2.15)

Пусть
𝜗𝑘(𝑡) = (𝜗(𝑡), 𝑒𝑘).

Из (2.14) следует, что для любого 𝑘 ∈ N

𝜕𝛼
𝑡 𝜗𝑘(𝑡) = (𝜕𝛼

𝑡 𝜗(𝑡), 𝑒𝑘) = −(𝐴𝜗(𝑡), 𝑒𝑘) = −(𝜗(𝑡), 𝐴𝑒𝑘) = −𝜆𝑘𝜗𝑘(𝑡).

Таким образом, мы получили следующую задачу Коши для 𝜗𝑘(𝑡):{︃
𝜕𝛼
𝑡 𝜗𝑘(𝑡) + 𝜆𝑘𝜗𝑘(𝑡) = 0, 𝑡 ⩾ 0,

𝜗𝑘(0) = 0.

Эта задача имеет единственное решение (см. [3; с. 231]). Поэтому 𝜗𝑘(𝑡) = 0 при 𝑡 ⩾ 0

и для всех 𝑘 ⩾ 1. Тогда по равенству Парсеваля получаем 𝜗(𝑡) = 0 для всех 𝑡 ⩾ 0.
Таким образом, единственность решения доказана. Утверждение 1 доказано.
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Теперь определим отображение ℋ : 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)) → 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)) следую-
щим образом:

ℋ(𝐹 )(𝑡) =

ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝐹 (𝑠) 𝑑𝑠, 𝐹 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)). (2.16)

Тогда из утверждения 1 получим

‖ℋ(𝐹 )‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝑐‖𝐹‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)). (2.17)

Перейдем к доказательству леммы 3. Задачу (2.1) можно записать в виде{︃
𝜕𝛼
𝑡 𝑣(𝑡) +𝐴𝑣(𝑡) = −𝑞(𝑡)𝑣(𝑡) + 𝑓(𝑡) := 𝐹 (𝑡), 𝑡 ∈ [0, 𝑇 ],

𝑣(0) = 0.
(2.18)

Тогда из (2.11) следует, что решение задачи (2.18) удовлетворяет интегральному
уравнению

𝑣(𝑡) = −
ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝑞(𝑠)𝑣(𝑠) 𝑑𝑠+

ˆ 𝑡

0

𝑌 (𝑡− 𝑠)𝑓(𝑠) 𝑑𝑠. (2.19)

Будем искать неподвижную точку оператора 𝒢 : 𝐶([0, 𝑇 ];𝐷(𝐴)) → 𝐶([0, 𝑇 ];𝐷(𝐴)),
определяемого как

𝒢(𝑣)(𝑡) = −(ℋ(𝑞))(𝑣)(𝑡) +ℋ(𝑓)(𝑡)

для 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)).
По индукции имеем

𝒢𝑛(𝑣)(𝑡) = (−1)𝑛(ℋ(𝑞))𝑛(𝑣)(𝑡) +

𝑛−1∑︁
𝑖=0

(−1)𝑖(ℋ(𝑞))𝑖ℋ(𝑓)(𝑡).

Здесь (ℋ(𝑞)(𝑡))0 = 𝐼 – единичный оператор.
В силу 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ] и 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) известно, что 𝑞𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) и

‖𝑞(𝑠)𝑣(𝑠)‖𝐷(𝐴) ⩽ ̃︀𝑐‖𝑣(𝑠)‖𝐷(𝐴), (2.20)

где ̃︀𝑐 > 0 зависит от ‖𝑞‖𝐶[0,𝑇 ]. Согласно (2.7) и (2.20) имеем

‖(ℋ(𝑞))(𝑣)(𝑡)‖𝐷(𝐴) =

⃦⃦⃦⃦ˆ 𝑡

0

𝑌 (𝑡−𝑠)𝑞(𝑠)𝐴𝑣(𝑠) 𝑑𝑠

⃦⃦⃦⃦
⩽ 𝑐

ˆ 𝑡

0

(𝑡−𝑠)𝛼𝜀−1‖𝑣(𝑠)‖𝐷(𝐴) 𝑑𝑠, (2.21)

где мы использовали 𝐷(𝐴) ⊂ 𝐷(𝐴𝜀) для любого 𝜀 ∈ (0, 1). Тогда для каждого
𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) имеем (ℋ(𝑞))(𝑣) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) и оценку

‖(ℋ(𝑞))(𝑣)(𝑡)‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝑐𝑇𝛼𝜀‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)).

Таким образом, мы видим, что оператор (ℋ(𝑞)) отображает 𝐶([0, 𝑇 ];𝐷(𝐴)) в се-
бя. Добавляя ℋ𝑓 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)), получаем, что оператор 𝒢 также отображает
𝐶([0, 𝑇 ];𝐷(𝐴)) в себе.
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Повторяя аналогичные вычисления для 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)), получим

‖(ℋ(𝑞))2(𝑣)(𝑡)‖𝐷(𝐴) ⩽ 𝑐

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖(ℋ(𝑞(𝑠)))(𝑣)(𝑠)‖𝐷(𝐴) 𝑑𝑠

⩽ 𝑐2
ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1

(︂ˆ 𝑠

0

(𝑠− 𝜏)𝛼𝜀−1‖𝑣(𝜏)‖𝐷(𝐴) 𝑑𝜏

)︂
𝑑𝑠

= 𝑐2
ˆ 𝑡

0

(︂ˆ 𝑡

𝜏

(𝑡− 𝑠)𝛼𝜀−1(𝑠− 𝜏)𝛼𝜀−1 𝑑𝑠

)︂
‖𝑣(𝜏)‖𝐷(𝐴) 𝑑𝜏

=
(𝑐Γ(𝛼𝜀))2

Γ(2𝛼𝜀)

ˆ 𝑡

0

(𝑡− 𝜏)2𝛼𝜀−1‖𝑣(𝜏)‖𝐷(𝐴) 𝑑𝜏

или

‖(ℋ(𝑞))2𝑣(𝑡)‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽
(𝑐Γ(𝛼𝜀)𝑇𝛼𝜀)2

Γ(2𝛼𝜀+ 1)
‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)). (2.22)

По индукции для 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) имеем

‖(ℋ(𝑞))𝑛(𝑣)‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝜌𝑛‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)), (2.23)

где 𝜌𝑛 = (𝑐Γ(𝛼𝜀)𝑇𝛼𝜀)𝑛/Γ(𝑛𝛼𝜀 + 1). Следовательно, (ℋ(𝑞))𝑛(𝑣) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)).
Поэтому для 𝑣1, 𝑣2 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) получим

‖𝒢𝑛(𝑣1)− 𝒢𝑛(𝑣2)‖𝐶([0,𝑇 ];𝐷(𝐴)) = ‖(ℋ(𝑞))𝑛(𝑣1 − 𝑣2)‖𝐶([0,𝑇 ];𝐷(𝐴))

⩽ 𝜌𝑛‖𝑣1 − 𝑣2‖𝐶([0,𝑇 ];𝐷(𝐴)).

Легко проверить, что 𝜌𝑛 → 0 при 𝑛 → ∞, так как

Γ(𝑛+ 1) ∼ 𝑛𝑛

𝑒𝑛

√
2𝜋𝑛 .

Поэтому для достаточно больших 𝑛 ∈ N мы имеем 𝜌𝑛 < 1. Таким образом, опе-
ратор 𝒢𝑛 является сжимающим отображением в 𝐶([0, 𝑇 ];𝐷(𝐴)). Следовательно,
отображение 𝒢𝑛 допускает единственную фиксированную точку 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)),
т.е. 𝒢𝑛(𝑣) = 𝑣. Поскольку 𝒢𝑛+1(𝑣) = 𝒢𝑛(𝒢(𝑣)) = 𝒢(𝑣), точка 𝒢(𝑣) также является
неподвижной точкой отображения 𝒢𝑛. В силу единственности неподвижной точ-
ки 𝒢𝑛 получим (ℋ(𝑞)(𝑣)+ℋ(𝑓) = 𝒢(𝑣) = 𝑣, т.е. уравнение (2.19) имеет единственное
решение 𝑣 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)). Более того, для любого 𝑛 ∈ N имеем

𝑣 = 𝒢(𝑣) = 𝒢𝑛(𝑣) = (−1)𝑛(ℋ(𝑞))𝑛(𝑣) +

𝑛−1∑︁
𝑖=0

(−1)𝑖(ℋ(𝑞))𝑖(𝑓).

Так как ℋ(𝑓) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)), из (2.19) и (2.23) получается

‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ ‖(ℋ(𝑞))𝑛(𝑣)‖𝐶([0,𝑇 ];𝐷(𝐴)) +

𝑛−1∑︁
𝑖=0

‖(ℋ(𝑞))𝑖(𝑓)‖𝐶([0,𝑇 ];𝐷(𝐴))

⩽ 𝜌𝑛‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)) +

𝑛−1∑︁
𝑖=0

𝜌𝑖‖ℋ𝑓‖𝐶([0,𝑇 ];𝐷(𝐴))

⩽ 𝜌𝑛‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)) + 𝑐

𝑛−1∑︁
𝑖=0

𝜌𝑖𝑇
𝛼𝜀‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀))
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и, взяв достаточно большое 𝑛 ∈ N, получим

‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝑐𝐸𝛼𝜀,1(Γ(𝛼𝜀)𝑇
𝛼𝜀‖𝑞‖𝐶[0,𝑇 ])‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)), (2.24)

где 𝑐 зависит от 𝑇 , 𝛼, 𝜀.
Из (2.24) для всех 𝑡 ∈ [0, 𝑇 ] имеем 𝑣 ∈ 𝐷(𝐴) с

𝐴𝑣(𝑡) =

ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑞(𝑠)𝑣(𝑠) 𝑑𝑠+

ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑓(𝑠) 𝑑𝑠,

и согласно (2.7), имеем
‖𝐴𝑌 (𝑡)‖ ⩽ 𝐶𝑡𝛼𝜀−1.

Отображение 𝑡 ↦→ 𝐴𝑌 (𝑡) принадлежит 𝐶([0, 𝑇 ];𝑋). Таким образом,

‖𝐴𝑣(𝑡)‖ ⩽

⃦⃦⃦⃦ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑞(𝑠)𝑣(𝑠) 𝑑𝑠

⃦⃦⃦⃦
+

⃦⃦⃦⃦ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑓(𝑠) 𝑑𝑠

⃦⃦⃦⃦
⩽ 𝐶

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1(‖𝑣(𝑠)‖𝐷(𝐴) + ‖𝑓(𝑠)‖𝐷(𝐴𝜀)) 𝑑𝑠

⩽
𝐶

𝛼𝜀
𝑡𝛼𝜀(‖𝑣‖𝐶[0,𝑡];𝐷(𝐴)) + ‖𝑓‖𝐶([0,𝑡];𝐷(𝐴𝜀))). (2.25)

Следовательно,
‖𝐴𝑣‖𝐶([0,𝑇 ];𝑋) ⩽ 𝑐𝑇𝛼𝜀‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)). (2.26)

По исходному уравнению 𝜕𝛼
𝑡 𝑣 = −𝐴𝑣−𝑞𝑣+𝑓 , суммируя (2.20), (2.24) и (2.26), имеем

𝜕𝛼
𝑡 𝑣 ∈ 𝐶([0, 𝑇 ];𝑋) с оценкой

‖𝜕𝛼
𝑡 𝑣‖𝐶([0,𝑇 ];𝑋) ⩽ 𝐶‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) + ‖𝑞𝑣‖𝐶([0,𝑇 ];𝑋) + ‖𝑓‖𝐶([0,𝑇 ];𝑋)

⩽ 𝑐‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)).

Лемма 3 доказана.

Лемма 4. Пусть 𝜙 ∈ 𝐷(𝐴𝜀+1) для некоторых 𝜀 ∈ (0, 1) и 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ]. Тогда
задача (2.2) имеет единственное решение 𝑤 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)), удовлетворяющее

𝐴𝑤 ∈ 𝐶([0, 𝑇 ];𝑋), 𝜕𝛼
𝑡 𝑤 ∈ 𝐶([0, 𝑇 ];𝑋).

Кроме того, существует константа 𝑐 > 0, зависящая от 𝛼, 𝑇 , 𝜀 и ‖𝑞‖𝐶[0,𝑇 ] , такая,
что

‖𝐴𝑤‖𝐶([0,𝑇 ];𝑋) + ‖𝜕𝛼
𝑡 ‖𝐶([0,𝑇 ];𝑋) ⩽ 𝑐‖𝜙‖𝐷(𝐴𝜀+1), (2.27)

и имеем
𝑤(𝑡) = 𝑍(𝑡)𝜙−ℋ(𝑞)(𝑤)(𝑡), (2.28)

где

𝑍(𝑡)𝜙 =

∞∑︁
𝑘=1

(𝜙, 𝑒𝑘)𝐸𝛼,1(−𝜆𝑘𝑡
𝛼)𝑒𝑘

в 𝐶([0, 𝑇 ];𝐷(𝐴)) и ℋ – оператор определенный в (2.16).
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Доказательство. Выделим решение 𝑤 из (2.2) на 𝑤 = 𝑊 + 𝜙, где 𝑊 удовле-
творяет условиям {︃

𝜕𝛼
𝑡 𝑊 (𝑡) +𝐴𝑊 (𝑡) + 𝑞(𝑡)𝑊 = 𝑓0(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇,

𝑊 (0) = 0
(2.29)

при 𝑓0(𝑡) = −𝐴𝜙− 𝑞(𝑡)𝜙. По условию леммы 2 мы имеем 𝑓0(𝑡) ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)), и
оценку

‖𝑓0‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) ⩽ 𝑐‖𝜙‖𝐷(𝐴𝜀+1). (2.30)

Более того, по лемме 3 задача (2.28) имеет единственное решение 𝑊∈𝐶([0, 𝑇 ];𝐷(𝐴)),
удовлетворяющее

𝐴𝑊 ∈ 𝐶([0, 𝑇 ];𝑋) и 𝜕𝛼
𝑡 𝑊 ∈ 𝐶([0, 𝑇 ];𝑋),

и имеют место оценки

‖𝜕𝛼
𝑡 𝑊‖𝐶([0,𝑇 ];𝑋) + ‖𝐴𝑊‖𝐶([0,𝑇 ];𝑋) ⩽ 𝐶𝜀‖𝑓0‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) ⩽ 𝐶‖𝜙‖𝐷(𝐴𝜀+1).

Поэтому задача (2.2) имеет единственное решение 𝑤 = 𝑊 + 𝜙 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)),
удовлетворяющее

𝐴𝑤 ∈ 𝐶([0, 𝑇 ];𝑋) и 𝜕𝛼
𝑡 𝑤 ∈ 𝐶([0, 𝑇 ];𝑋),

и оценка (2.27) выполняется.

Таким образом, мы установили существование, единственность и регулярность
решения прямой задачи.

Теорема 3. Пусть 𝜙 ∈ 𝐷(𝐴𝜀+1) и 𝑓 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴𝜀)) для некоторых 𝜀 ∈ (0, 1),

и 𝑞 ∈ 𝐶[0, 𝑇 ]. Тогда существует единственное решение 𝑢 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) для (1.1)
такое, что 𝜕𝛼

𝑡 𝑢 ∈ 𝐶([0, 𝑇 ];𝑋). Более того, существует константа 𝑐 > 0 такая,
что

‖𝑢‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝑐𝐸𝛼𝜀,1(Γ(𝛼𝜀)𝑇
𝛼𝜀‖𝑞‖𝐶[0,𝑇 ])[‖𝜙‖𝐷(𝐴𝜀+1) + ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀))], (2.31)

и имеем
𝑢(𝑡) = 𝑍(𝑡)𝜙+ℋ(𝑓)(𝑡)− (ℋ(𝑞))(𝑢)(𝑡), (2.32)

где ℋ определено в (2.16).

Непрерывная зависимость решения задачи (1.1) от данных дается следующей
теоремой.

Теорема 4. При тех же условиях, что и в теореме 3, решение прямой зада-
чи (1.1) непрерывно зависит от данных, т.е.

‖𝑢− ̂︀𝑢‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝐶[‖𝜙− ̂︀𝜙‖𝐷(𝐴𝜀+1) + ‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ] + ‖𝑓 − ̂︀𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀))], (2.33)

где 𝑐 > 0 зависит от 𝛼, 𝑇 , 𝜀, ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) и ‖𝑞‖𝐶[0,𝑇 ] .
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Доказательство. Пусть 𝑢 и ̂︀𝑢 – решения прямой задачи, соответственно для
функций {𝑞, 𝑓, 𝜙} и {̂︀𝑞, ̂︀𝑓, ̂︀𝜙}. Используя 𝑢(𝑡) = 𝑣(𝑡) + 𝑤(𝑡), мы имеем

|𝑢(𝑡)− ̂︀𝑢(𝑡)| ⩽ |𝑣(𝑡)− ̂︀𝑣(𝑡)|+ |𝑤(𝑡)− ̂︀𝑤(𝑡)|,
где {𝑣, 𝑤} и {̂︀𝑣, ̂︀𝑤} соответствуют данным {𝑞, 𝑓, 𝜙} и {̂︀𝑞, ̂︀𝑓, ̂︀𝜙} соответственно. Ис-
пользуя (2.19), получим

‖𝑣(𝑡)− ̂︀𝑣(𝑡)‖𝐷(𝐴)

⩽

⃦⃦⃦⃦ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)[𝑞(𝑠)𝑣(𝑠)− ̂︀𝑞(𝑠)̂︀𝑣(𝑠)] 𝑑𝑠⃦⃦⃦⃦+

⃦⃦⃦⃦ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)(𝑓(𝑠)− ̂︀𝑓(𝑠)) 𝑑𝑠⃦⃦⃦⃦
⩽ 𝑐

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1|𝑞(𝑠)− ̂︀𝑞(𝑠)| ‖𝑣(𝑠)‖𝐷(𝐴) 𝑑𝑠

+ 𝑐

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖𝑣(𝑠)− ̂︀𝑣(𝑠)‖𝐷(𝐴)|̂︀𝑞(𝑠)| 𝑑𝑠
+ 𝑐

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖𝑓(𝑠)− ̂︀𝑓(𝑠)‖𝐷(𝐴𝜀) 𝑑𝑠 ⩽ 𝑐
𝑡𝛼𝜀

𝛼𝜀
‖𝑣‖𝐶([0,𝑇 ];𝐷(𝐴))‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ]

+ 𝑐
𝑡𝛼𝜀

𝛼𝜀
‖𝑓 − ̂︀𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) + 𝑐‖̂︀𝑞‖𝐶[0,𝑇 ]

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖𝑣(𝑠)− ̂︀𝑣(𝑠)‖𝐷(𝐴) 𝑑𝑠.

Тогда по леммам 1 и 2 имеем

‖𝑣(𝑡)− ̂︀𝑣(𝑡)‖𝐷(𝐴) ⩽ 𝑐
[︀
‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ] + ‖𝑓 − ̂︀𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀))

]︀
, (2.34)

где 𝑐 > 0 зависит от 𝛼, 𝜀, 𝑇 , ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) и ‖̂︀𝑞‖𝐶[0,𝑇 ].
Те же рассуждения, что и ранее для (2.28), приводят к

‖𝑤(𝑡)− ̂︀𝑤(𝑡)‖𝐷(𝐴) ⩽ 𝑐[‖𝜙− ̂︀𝜙‖𝐷(𝐴𝜀+1) + ‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ]], (2.35)

где 𝑐 > 0 зависит от 𝛼, 𝜀, 𝑇 и ‖̂︀𝑞‖𝐶[0,𝑇 ].
Наконец, из (2.34), (2.35) мы получаем требуемую оценку (2.33). Теорема 4 дока-

зана.

Теперь мы приведем вспомогательный результат, который гарантирует, что при
выполнении условий согласования и регулярности (C1)–(C3) из раздела 1 можно
сформулировать обратную задачу в виде эквивалентного интегрального уравнения,
к которому можно применить принцип неподвижной точки.

Лемма 5. Пусть условия (C2), (C3) выполнены. Тогда задача нахождения ре-
шения (1.1), (1.2) эквивалентна задаче определения функции 𝑞 ∈ 𝐶[0, 𝑇 ], удовле-
творяющей

𝑞(𝑡) =
1

ℎ(𝑡)

(︀
Φ[𝑓 ](𝑡)− 𝜕𝛼

𝑡 ℎ(𝑡)− Φ[𝐴𝑢](𝑡)
)︀
, (2.36)

где

𝐴𝑢(𝑡) = 𝐴𝑍(𝑡)𝜙+

ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑓(𝑠) 𝑑𝑠−
ˆ 𝑡

0

𝐴𝑌 (𝑡− 𝑠)𝑞(𝑠)𝑢(𝑠) 𝑑𝑠. (2.37)

С другой стороны, если (2.36) имеет решение и выполняются условия (C2), (C3),
то существует решение обратной задачи (1.1), (1.2).
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Доказательство. Разделим доказательство на два шага.
Шаг 1. Предположим, что задача (1.1), (1.2) имеет решение 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ]. Учи-

тывая (C2) и применяя Φ к уравнению (1.1), получим

𝜕𝛼
𝑡 Φ[𝑢](𝑡) + Φ[𝐴𝑢](𝑡) + 𝑞(𝑡)Φ[𝑢](𝑡) = Φ[𝑓 ](𝑡). (2.38)

Учитывая условия (1.2) и |ℎ(𝑡)| ⩾ 1/ℎ0 > 0 для всех 𝑡 ∈ [0, 𝑇 ] в (C2), приходим
к (2.36).

Шаг 2. Предположим теперь, что 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ] удовлетворяет (2.36). Чтобы
доказать, что 𝑞(𝑡) является решением обратной задачи (1.1), (1.2), достаточно пока-
зать, что имеет место соотношение (1.2). По уравнению в (1.1) имеем (2.38). Вместе
с (2.36) и (C3) получим, что 𝑦(𝑡) := Φ[𝑢](𝑡)− ℎ(𝑡) удовлетворяет{︃

𝜕𝛼
𝑡 𝑦(𝑡) + 𝑞(𝑡)𝑦(𝑡) = 0, 𝑡 ∈ [0, 𝑇 ],

𝑦(0) = 0.
(2.39)

Таким образом,

𝑦(𝑡) = − 1

Γ(𝛼)

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1𝑞(𝑠)𝑦(𝑠) 𝑑𝑠 (2.40)

(см. [3; с. 199]). Тогда для 𝑞(𝑡) ∈ 𝐶[0, 𝑇 ] имеем

‖𝑦‖𝐶[0,𝑡] ⩽
1

Γ(𝛼)
‖𝑞‖𝐶[0,𝑇 ]

ˆ 𝑡

0

(𝑡− 𝑠)𝛼−1‖𝑦‖𝐶[0,𝑠] 𝑑𝑠 (2.41)

для всех 𝑡 ∈ [0, 𝑇 ]. Отсюда, согласно следствию 1, находим ‖𝑦‖𝐶[0,𝑡] = 0 для всех
𝑡 ∈ [0, 𝑇 ], из которого следует Φ[𝑢](𝑡) = ℎ(𝑡) на [0, 𝑇 ]. Лемма 3 доказана.

3. Обратная задача. Для доказательства основного результата, т.е. теорем 1
и 2, мы будем использовать свойства решений прямой задачи и применим теорему
о неподвижной точке Банаха. Этот метод широко используется многими авторами,
см., например, [17], [18] и ссылки на них. Таким образом, мы докажем существова-
ние и единственность решения уравнения (2.36), которое является эквивалентным
к обратной задаче.

Доказательство. 1. Определим следующий оператор:⎧⎨⎩𝒬 : 𝐶[0, 𝑇 ] → 𝐶[0, 𝑇 ],

𝑞 → 𝒬(𝑞) : 𝑡 ↦→ 1

ℎ(𝑡)

(︀
Φ[𝑓 ](𝑡)− 𝜕𝛼

𝑡 ℎ(𝑡)− Φ[𝐴𝑢](𝑡)
)︀
.

(3.1)

Чтобы доказать, что оператор 𝒬 имеет неподвижную точку, начнем с того, что опе-
ратор 𝒬 отображает некоторое замкнутое выпуклое множество в себя в простран-
стве 𝐶[0, 𝑇 ].

Сначала покажем, что существует положительная константа 𝜏1 > 0 такая, что
для любого 𝑇 ∈ (0, 𝜏1] существует радиус 𝑅 > 0 такой, что замкнутый выпуклый
шар

B = {𝑞 ∈ 𝐶[0, 𝑇 ] : ‖𝑞‖𝐶[0,𝑇 ] ⩽ 𝑅}

является инвариантом оператора 𝒬; т.е. 𝒬(B) ⊂ B.
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По определению оператора 𝐴 и его линейности, а также в силу (C4) имеем

Φ[𝐴𝑢](𝑡) =

∞∑︁
𝑘=1

𝜆𝑘(𝑢, 𝑒𝑘)Φ[𝑒𝑘]

и по неравенству Гёльдера получим

|Φ[𝐴𝑢](𝑡)| ⩽
(︂ ∞∑︁

𝑘=1

Φ2[𝑒𝑘]

)︂1/2(︂ ∞∑︁
𝑘=1

(𝜆𝑘(𝑢, 𝑒𝑘))
2

)︂1/2

= 𝑐‖𝑢(𝑡)‖𝐷(𝐴)

или
‖Φ[𝐴𝑢]‖𝐶[0,𝑇 ] ⩽ 𝑐‖𝑢‖𝐶([0,𝑇 ];𝐷(𝐴)). (3.2)

Тогда для любого 𝑞(𝑡) ∈ B, из линейности Φ[ · ] и в силу условия (C4) имеем

|𝒬(𝑞)(𝑡)| =
⃒⃒⃒⃒

1

ℎ(𝑡)
(Φ[𝑓 ](𝑡)− 𝜕𝛼

𝑡 ℎ(𝑡)− Φ[𝐴𝑢](𝑡))

⃒⃒⃒⃒
⩽ ℎ0

(︀
|Φ[𝑓 ](𝑡)|+ |𝜕𝛼

𝑡 ℎ(𝑡)|+ |Φ[𝐴𝑢](𝑡)|
)︀

⩽ ℎ0

(︂⃒⃒⃒⃒ ∞∑︁
𝑘=1

(𝑓(𝑡), 𝑒𝑘)Φ[𝑒𝑘]

⃒⃒⃒⃒
+ ‖𝜕𝛼

𝑡 ℎ‖𝐶[0,𝑇 ] + 𝑐‖𝑢(𝑡)‖𝐷(𝐴)

)︂
⩽ ℎ0

[︀
𝑐(𝜀, 𝜆1)‖𝑓(𝑡)‖𝐷(𝐴𝜀) + ‖𝜕𝛼

𝑡 ℎ‖𝐶[0,𝑇 ]

+ 𝑐𝐸𝛼𝜀,1(Γ(𝛼𝜀)𝑇
𝛼𝜀𝑅)(‖𝜙‖𝐷(𝐴𝜀+1) + ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)))

]︀
.

Тогда мы можем выбрать достаточно малое 𝜏1 такое, что

ℎ0

[︀
𝑐(𝜀, 𝜆1)‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)) + ‖𝜕𝛼

𝑡 ℎ‖𝐶[0,𝑇 ]

+ 𝑐𝐸𝛼𝜀,1(Γ(𝛼𝜀)𝑇
𝛼𝜀𝑅)(‖𝜙‖𝐷(𝐴𝜀+1) + ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)))

]︀
⩽ 𝑅

для всех 𝑇 < 𝜏1, чтобы получить

‖𝒬(𝑞)‖𝐶[0,𝑇 ] ⩽ 𝑅. (3.3)

Теперь проверим второе условие теоремы о неподвижной точке. Пусть даны 𝑞(𝑡),̂︀𝑞(𝑡) ∈ B. Тогда для разности операторов имеем

𝒬(𝑞)(𝑡)−𝒬(̂︀𝑞)(𝑡) = − 1

ℎ(𝑡)
(Φ[𝐴𝑢](𝑡)− Φ[𝐴̂︀𝑢](𝑡)).

В силу линейности Φ[ · ] и (C4) находим

|𝒬(𝑞)(𝑡)−𝒬(̂︀𝑞)(𝑡)| ⩽ ℎ0|Φ[𝐴(𝑢− ̂︀𝑢)](𝑡)| ⩽ 𝑐ℎ0‖𝑢(𝑡)− ̂︀𝑢(𝑡)‖𝐷(𝐴).

Тогда по теореме 4 имеем

‖𝒬(𝑞)−𝒬(̂︀𝑞)‖𝐶[0,𝑇 ] ⩽ 𝑐𝐶ℎ0‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ], (3.4)

где 𝐶 – то же самое, что и (2.33). Поэтому мы можем выбрать достаточно малое 𝜏2
такое, что

𝑐(𝑇 )𝐶(𝑇 )ℎ0 := 𝜇 < 1 (3.5)
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для всех 𝑇 ∈ (0, 𝜏2], чтобы получить

‖𝒬(𝑞)−𝒬(̂︀𝑞)‖𝐶[0,𝑇 ] ⩽ 𝜇‖𝑞 − ̂︀𝑞‖𝐶[0,𝑇 ]. (3.6)

Оценки (3.3) и (3.6) показывают, что 𝒬 является сжимающим отображением на B

для всех 𝑇 ∈ (0, 𝜏 ], если мы выберем 𝜏 ⩽ min{𝜏1, 𝜏2}. Теорема 1 доказана.

Теперь мы докажем теорему 2 об устойчивости решения обратной задачи.

Доказательство. Предположим, что 𝑢𝑖 – два решения (1.1), соответствующие
𝑞 = 𝑞𝑖 (𝑖 = 1, 2). Пусть 𝑢 = 𝑢1 − 𝑢2 и 𝑞 = 𝑞2 − 𝑞1. Тогда 𝑢 удовлетворяет{︃

𝜕𝛼
𝑡 𝑢(𝑡) +𝐴𝑢(𝑡) + 𝑞1(𝑡)𝑢(𝑡) = 𝑞(𝑡)𝑢2(𝑡), 𝑡 ∈ [0, 𝑇 ],

𝑢(0) = 0.
(3.7)

Согласно теореме 3 𝑢(𝑡) определяется следующим образом:

𝑢(𝑡) = ℋ(𝑞)(𝑢2)−ℋ(𝑞1)(𝑢).

Теперь получим верхнюю оценку для ‖𝑢(𝑡)‖𝐷(𝐴). Аналогично рассуждениям из
(2.25) имеем

‖𝑢(𝑡)‖𝐷(𝐴) ⩽ 𝑐

[︂ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1‖𝑢(𝑠)‖𝐷(𝐴) 𝑑𝑠+

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1|𝑞(𝑠)| 𝑑𝑠
]︂
, (3.8)

где 𝑐 > 0 зависят от 𝛼, 𝜀, 𝑇 , ‖𝑞1‖𝐶[0,𝑇 ], ‖𝜙‖𝐷(𝐴𝜀) и ‖𝑓‖𝐶([0,𝑇 ];𝐷(𝐴𝜀)). Тогда согласно
леммам 1 и 2 имеем

‖𝑢‖𝐶([0,𝑇 ];𝐷(𝐴)) ⩽ 𝐶‖𝑞‖𝐶[0,𝑇 ]. (3.9)

То есть (1.5) верно.
Применим Φ[ · ] к уравнению (3.7), в результате получим

Φ[𝑢2](𝑡)𝑞(𝑡) = 𝜕𝛼
𝑡 Φ[𝑢](𝑡) + Φ[𝐴𝑢](𝑡) + 𝑞1(𝑡)Φ[𝑢](𝑡), 𝑡 ∈ (0, 𝑇 ]. (3.10)

Выполняя вычисления, подобные тем, что приведены в уравнениях (2.31) и (3.2), и
используя (1.3), имеем

|𝑞(𝑡)| ⩽ 𝜈|𝜕𝛼
𝑡 Φ[𝑢](𝑡) + Φ[𝐴𝑢](𝑡) + 𝑞1(𝑡)Φ[𝑢](𝑡)|

⩽ 𝜈‖𝜕𝛼
𝑡 Φ[𝑢]‖𝐶[0,𝑇 ] + 𝑐𝜈

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1|𝑞(𝑠)| 𝑑𝑠, 𝑡 ∈ (0, 𝑇 ).

Снова используя лемму 1, получим

‖𝑞‖𝐶[0,𝑇 ] ⩽ 𝑐‖𝜕𝛼
𝑡 Φ[𝑢]‖𝐶[0,𝑇 ] (3.11)

и отсюда получается правая часть (1.4). С другой стороны, из (3.10) находим

|𝜕𝛼
𝑡 Φ[𝑢](𝑡)| ⩽ |Φ[𝑢2](𝑡)𝑞(𝑡)|+ |Φ[𝐴𝑢](𝑡)|+ |𝑞1(𝑡)Φ[𝑢](𝑡)|

⩽ 𝐶|𝑞(𝑡)| ‖𝑢2(𝑡)‖𝐷(𝐴) + 𝐶

ˆ 𝑡

0

(𝑡− 𝑠)𝛼𝜀−1|𝑞(𝑠)| 𝑑𝑠

⩽ 𝐶|𝑞(𝑡)| ‖𝑢2‖𝐶([0,𝑇 ];𝐷(𝐴)) + 𝐶
𝑇𝛼𝜀

𝛼𝜀
‖𝑞‖𝐶[0,𝑇 ].

В итоге получим

‖𝜕𝛼
𝑡 Φ[𝑢]‖𝐶[0,𝑇 ] ⩽ 𝐶(‖𝑢2‖𝐶([0,𝑇 ];𝐷(𝐴)) + 𝑇𝛼𝜀)‖𝑞‖𝐶[0,𝑇 ].

Теорема 2 доказана.
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