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Abstract

This study investigates an inverse problem involving the determination of
the kernel function in a multidimensional integrodifferential pseudo-parabolic
equation of the third order. The study begins with an analysis of the direct
problem, where we examine an initial-boundary value problem with homo-
geneous boundary conditions for a known kernel. Employing the Fourier
method, we construct the solution as a series expansion in terms of eigenfunc-
tions of the Laplace operator with Dirichlet boundary conditions. A crucial
component of our analysis involves deriving a priori estimates for the series
coefficients in terms of the kernel function norm, which play a fundamental
role in our subsequent treatment of the inverse problem.

For the inverse problem, we introduce an overdetermination condition
specifying the solution value at a fixed spatial point (pointwise measure-
ment). This formulation leads to a Volterra-type integral equation of the
second kind. By applying the Banach fixed-point principle within the frame-
work of continuous functions equipped with an exponentially weighted norm,
we establish the global existence and uniqueness of solutions to the inverse
problem. Our results demonstrate the well-posedness of the problem under
consideration.
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Introduction. There are numerous cases where practical applications lead
to challenges in determining the coefficients, the right-hand side of the differen-
tial equation, and the kernel of integrodifferential equations. Such problems are
referred to as inverse problems of mathematical physics.

Inverse problems currently represent a rapidly developing branch of modern
mathematics. Various inverse problems for second-order hyperbolic and parabolic
equations, as well as first-order systems, are discussed in the monographs [1–5] (see
also the extensive bibliographies therein). The recently published monograph [6]
investigates a new class of inverse problems involving the determination of the
convolution kernel in second-order hyperbolic integrodifferential equations.

Water filtration in double-porosity media, moisture transfer in soil, and simi-
lar natural phenomena often lead to boundary value problems involving pseudo-
parabolic equations (see, e.g., [7, 8]). When such processes occur in viscoelastic
media, Volterra operators — representing the convolution of a time-dependent
viscosity function with a solution operator (typically elliptic) — are incorporated
into the right-hand side of the pseudo-differential equations.

The study of inverse problems for pseudo-parabolic equations began in the
1980s. The first significant result, obtained in [9], addressed the inverse identi-
fication of an unknown source function. Among recent works, we highlight [10],
where the author examined an inverse problem of recovering a space-dependent
source coefficient in a third-order pseudo-parabolic equation under a final over-
determination condition (see also references therein).

To the best of our knowledge, the problem of determining the convolution
kernel in an integrodifferential pseudo-parabolic equation remains unexplored.
However, a series of works [11–20] has investigated inverse problems involving
convolution kernel determination for linear parabolic integrodifferential equations.
These studies established local existence and global uniqueness theorems, as well
as stability estimates for the solutions.

In this study, we employ the Fourier method, integral inequalities, and the
fixed-point principle to prove the existence and uniqueness of a solution to the
inverse problem of determining the kernel of a multidimensional third-order inte-
grodifferential pseudo-parabolic equation. The problem is supplemented with an
additional condition specified at a fixed point for the solution of the first boundary
value problem.

Consider the following nonhomogeneous pseudo-parabolic integrodifferential
equation:

𝑢𝑡 −Δ𝑢𝑡 −Δ𝑢 = (𝑘 *Δ𝑢)(𝑥, 𝑡) + 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝐷, (1)

where 𝐷 = Ω×(0, 𝑇 ], 𝑇 > 0, and Ω ⊂ R𝑁 is a bounded domain with a sufficiently
smooth boundary 𝜕Ω. Here, Δ denotes the Laplacian, 𝑘(𝑡) is the convolution
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kernel representing the “memory effect” (or viscosity function), 𝑓(𝑥, 𝑡) is a source
function, and (𝑘 *Δ𝑢)(𝑥, 𝑡) denotes the Laplace convolution:

(𝑘 * 𝑢)(𝑥, 𝑡) :=
∫︁ 𝑡

0
𝑘(𝑡− 𝑠)𝑢(𝑥, 𝑠) 𝑑𝑠.

In the domain 𝐷, we study the following problem for Eq. (1): Find a function
𝑢(𝑥, 𝑡) satisfying (1) with the initial condition

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ Ω, (2)

and the boundary condition

𝑢 = 0 on 𝜕Ω× (0, 𝑇 ), (3)

where 𝑓(𝑥, 𝑡) and 𝜙(𝑥) are given functions. This problem is commonly referred to
as the direct (forward) problem.

A function 𝑢(𝑥, 𝑡) is called a classical solution to problem (1)–(3) if it satisfies
the following conditions:

1) 𝑢(𝑥, 𝑡) is continuous in 𝐷 along with all derivatives appearing in Eq. (1);
2) all given conditions are satisfied in the classical sense.
Based on this direct problem, we now consider the following inverse problem.
Inverse problem. Determine the kernel 𝑘(𝑡), 𝑡 > 0, appearing in equation (1),

given that the solution of the direct problem satisfies the additional condition

𝑢(𝑥0, 𝑡) = ℎ(𝑡), 𝑥0 ∈ Ω, 𝑡 ∈ [0, 𝑇 ], (4)

where 𝑥0 ∈ Ω is a fixed point and ℎ(𝑡) is a given sufficiently smooth function.

1. Investigation of the Direct Problem. This section studies problem
(1)–(3). We prove the existence and uniqueness of a classical solution to problem
(1)–(3).

1.1. Uniqueness of the Solution. The following uniqueness result holds for
(1)–(3).

Theorem 1. If problem (1)–(3) has a solution, then this solution is unique.
P r o o f. Applying the method of separation of variables, we seek a solution to

(1)–(3) in the form
𝑢(𝑥, 𝑡) = 𝑈(𝑡)𝑋(𝑥). (5)

Substituting (5) into (1) with∫︁ 𝑡

0
𝑘(𝑡− 𝜏)Δ𝑢(𝑥, 𝜏)𝑑𝜏 + 𝑓(𝑥, 𝑡) = 0,

we require that 𝑋(𝑥) ̸≡ 0 satisfies the spectral problem{︃
Δ𝑋 + 𝜆𝑋 = 0, in Ω,

𝑋 = 0, on 𝜕Ω.
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It is well-known that the operator −Δ has only positive real and simple eigen-
values 𝜆𝑚, which when properly ordered satisfy 0 < 𝜆1 6 𝜆2 6 · · · 6 lim

𝑚→∞
𝜆𝑚 =

+∞. We denote by 𝑋𝑚 the eigenfunction corresponding to 𝜆𝑚, normalized such
that ‖𝑋𝑚‖2𝐿2(Ω) = (𝑋𝑚, 𝑋𝑚) = 1, where ( · , · ) denotes the inner scalar product
in the Hilbert space 𝐿2(Ω).

Let 𝑢(𝑥, 𝑡) be a solution to problem (1)–(3). Consider the scalar product

𝑢𝑚(𝑡) =
(︀
𝑢( · , 𝑡), 𝑋𝑚

)︀
𝐿2(Ω)

. (6)

From (6) and using equation (1), we obtain

𝑢′𝑚(𝑡) + 𝜆𝑚𝑢′𝑚(𝑡) + 𝜆𝑚𝑢𝑚(𝑡) = −𝜆𝑚(𝑘 * 𝑢𝑚)(𝑡) + 𝑓𝑚(𝑡), (7)

where 𝑓𝑚(𝑡) = (𝑓,𝑋𝑚), 𝑚 = 1, 2, . . . . The initial condition (2) yields

𝜙𝑚 := 𝑢𝑚(0) = (𝜙,𝑋𝑚)𝐿2(Ω), 𝑚 = 1, 2, . . . . (8)

One can verify that problem (7), (8) has a unique solution 𝑢𝑚(𝑡) ∈ 𝐶1[0, 𝑇 ]
given by

𝑢𝑚(𝑡) = 𝜒𝑚(𝑡)𝜙𝑚 +
1

1 + 𝜆𝑚
(𝜒𝑚 * 𝑓𝑚)(𝑡)− 𝜆𝑚

1 + 𝜆𝑚

(︀
𝜒𝑚 * (𝑘 * 𝑢𝑚)

)︀
(𝑡), (9)

where 𝜒𝑚(𝑡) = exp
{︀
− 𝜆𝑚

1+𝜆𝑚
𝑡
}︀
.

This implies the uniqueness of the solution to problem (1)–(3), since for
𝜙(𝑥) ≡ 0 and 𝑓(𝑥, 𝑡) ≡ 0, we obtain 𝜙𝑚 ≡ 0 and 𝑓𝑚(𝑡) ≡ 0. From (9) it fol-
lows that 𝑢𝑚(𝑡) ≡ 0. By (6), this is equivalent to(︀

𝑢( · , 𝑡), 𝑋𝑚

)︀
𝐿2(Ω)

= 0.

Since the system {𝑋𝑚} is complete in 𝐿2(Ω), we have 𝑢(𝑥, 𝑡) = 0 almost
everywhere in Ω for all 𝑡 ∈ [0, 𝑇 ]. As 𝑢(𝑥, 𝑡) is continuous on 𝐷, we conclude that
𝑢(𝑥, 𝑡) ≡ 0 on 𝐷. This completes the proof of uniqueness for problem (1)–(3). �

1.2. Existence of the Classical Solution. This subsection establishes the
existence of a solution to problem (1)–(3).

Under appropriate conditions on the functions 𝜙(𝑥) and 𝑓(𝑥, 𝑡), we prove that
the function

𝑢(𝑥, 𝑡) =

∞∑︁
𝑚=1

𝑢𝑚(𝑡)𝑋𝑚(𝑥) (10)

represents a solution to problem (1)–(3).
Lemma 1. The following estimates hold for all 𝑚 = 1, 2, . . . :

|𝑢𝑚(𝑡)| 6 max{1, 𝑇}
[︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

]︀
𝑒‖𝑘‖0𝑇

2/2, 𝑡 ∈ [0, 𝑇 ], (11)

|𝑢′𝑚(𝑡)| 6 ‖𝑓𝑚‖0 +

+max{1, 𝑇}(1 + ‖𝑘‖0𝑇 )
[︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

]︀
𝑒‖𝑘‖0𝑇

2/2, 𝑡 ∈ [0, 𝑇 ], (12)

where ‖𝑘‖0 = max
𝑡∈[0,𝑇 ]

|𝑘(𝑡)|.

10
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P r o o f. From (9), we estimate 𝑢𝑚(𝑡) as follows:

|𝑢𝑚(𝑡)| 6 |𝜙𝑚|+ 𝑡|𝑓𝑚(𝑡)|+ ‖𝑘‖0
∫︁ 𝑡

0
(𝑡− 𝑠)|𝑢𝑚(𝑠)| 𝑑𝑠.

Applying Gronwall’s lemma for all 𝑡 ∈ [0, 𝑇 ], we obtain (11). Furthermore, from
(7) and (11), we derive (12). This completes the proof of the lemma. �

Assume the following regularity conditions:⎧⎪⎨⎪⎩
𝜙(𝑥) ∈ 𝐻[𝑛2 ]+3(Ω), 𝑓(𝑥, 𝑡) ∈ 𝐶([0, 𝑇 ];𝐻[𝑛2 ]+3(Ω)),

𝜙 = Δ𝜙 = · · · = Δ[𝑛+2
4 ]𝜙 ∈ 𝐻1

0 (Ω),

𝑓( · , 𝑡) = Δ𝑓( · , 𝑡) = · · · = Δ[𝑛+2
4 ]𝑓( · , 𝑡) ∈ 𝐻1

0 (Ω), 𝑡 ∈ [0, 𝑇 ].

(A1)

By the Cauchy–Schwarz inequality and Lemma 1 in [17], the series (10) con-
verges uniformly on 𝐷 in view of (11):

∞∑︁
𝑚=1

|𝑢𝑚(𝑡)𝑋𝑚(𝑥)| 6 𝐶1

(︂ ∞∑︁
𝑚=1

𝑋2
𝑚(𝑥)

𝜆
[𝑛2 ]+1
𝑚

∞∑︁
𝑚=1

𝜙2
𝑚𝜆

[𝑛2 ]+1
𝑚

)︂1/2

+

+ 𝐶2

(︂ ∞∑︁
𝑚=1

𝑋2
𝑚(𝑥)

𝜆
[𝑛2 ]+1
𝑚

∞∑︁
𝑚=1

‖𝑓𝑚‖20𝜆
[𝑛2 ]+1
𝑚

)︂1/2

6

6 ̃︀𝐶1

∫︁
Ω

(︀
Δ[𝑛

2
]+1𝜙

)︀2
𝑑𝑥+ ̃︀𝐶2

∫︁
Ω

(︀
Δ[𝑛

2
]+1‖𝑓(𝑥, · )‖

)︀2
𝑑𝑥.

Differentiating the series in (10) term-wise, we obtain:

𝑢𝑡 =

∞∑︁
𝑚=1

𝑢′𝑚(𝑡)𝑋𝑚(𝑥), (13)

𝑢𝑥𝑖𝑥𝑖 =

∞∑︁
𝑚=1

𝑢𝑚(𝑡)
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (14)

𝑢𝑥𝑖𝑥𝑖𝑡 =

∞∑︁
𝑚=1

𝑢′𝑚(𝑡)
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (15)

Obviously, that if either series (14) or (15) converges uniformly, then series
(13) also converges uniformly.

For series (14), using (11) and (A1), and applying the Cauchy–Schwarz in-
equality for (𝑥, 𝑡) ∈ 𝐷 and 𝑖 = 1, 2, . . . , 𝑛, we have:⃒⃒⃒⃒ ∞∑︁

𝑚=1

𝑢𝑚(𝑡)
𝜕2𝑋𝑚(𝑥)

𝜕𝑥2𝑖

⃒⃒⃒⃒
6 𝐶3

[︂∫︁
Ω

(︀
Δ[𝑛

2
]+3𝜙

)︀2
𝑑𝑥+

∫︁
Ω

(︀
Δ[𝑛

2
]+3‖𝑓(𝑥, · )‖

)︀2
𝑑𝑥

]︂
.

Consequently, the series (14), as well as (13) and (15), converge uniformly
in 𝐷.
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These results lead to the following theorem.
Theorem 2. Let 𝜙(𝑥) and 𝑓(𝑥, 𝑡) satisfy condition (A1), and let 𝑘(𝑡) ∈ 𝐶[0, 𝑇 ].

Then problem (1)–(3) admits a classical solution 𝑢 ∈ 𝐶(𝐷) ∩ 𝐶2,1
𝑥,𝑡 (𝐷) defined by

the series (10).
1.3. A Priori Estimates. This subsection establishes estimates for the solu-

tion and its first derivative in the direct problem (1)–(3). In the following section,
we will prove that problem (1)–(4) has a unique solution for any 𝑇 > 0. For this
purpose, we employ weighted norms: for each 𝜎 > 0, we define the Bielecki norm

‖𝑘‖𝜎 = max
𝑡∈[0,𝑇 ]

(︀
𝑒−𝜎𝑡|𝑘(𝑡)|

)︀
.

Remark. The weighted norm eliminates restrictions on the maximum value
of 𝑇 . In contrast, using the standard supremum norm would require 𝑇 to be
smaller than some finite quantity depending on the problem’s data.

The space 𝐶𝜎[0, 𝑇 ] := (𝐶[0, 𝑇 ], ‖·‖𝜎) forms a Banach space, and the norms ‖·‖𝜎
and ‖ ·‖0 are equivalent. Moreover, the convolution operator is both commutative
and invariant under multiplication by 𝑒−𝜎𝑡:

(𝑓 * 𝑔)(𝑡) = (𝑔 * 𝑓)(𝑡), and 𝑒−𝜎𝑡(𝑓 * 𝑔)(𝑡) =
(︀
𝑒−𝜎𝑡𝑓(𝑡)

)︀
*
(︀
𝑒−𝜎𝑡𝑔(𝑡)

)︀
.

Additionally, we have the estimate

‖𝑓 * 𝑔‖𝜎 6
1

𝜎
‖𝑓‖0‖𝑔‖𝜎, 𝜎 > 0 (16)

(see [16]).
Let ̃︀𝑢𝑚 denote the solution of (7), (8) with coefficients ̃︀𝜙𝑚, ̃︀𝑓𝑚, and ̃︀𝑘. From (9),

we estimate the difference 𝑢𝑚 − ̃︀𝑢𝑚 in the Bielecki norm:

𝑒−𝜎𝑡|𝑢𝑚(𝑡)− ̃︀𝑢𝑚(𝑡)| 6 |𝜙𝑚 − ̃︀𝜙𝑚|+ 𝑡‖𝑓𝑚 − ̃︀𝑓𝑚‖0 +
+ 𝑡2‖𝑢𝑚‖0‖𝑘 − ̃︀𝑘‖𝜎 + 𝑡‖̃︀𝑘‖𝜎 ∫︁ 𝑡

0
𝑒−𝜎𝑠|𝑢𝑚 − ̃︀𝑢𝑚|(𝑠) 𝑑𝑠.

Applying Gronwall’s lemma for all 𝑡 ∈ [0, 𝑇 ] and 𝑚 ∈ N yields:

‖𝑢𝑚 − ̃︀𝑢𝑚‖𝜎 6 (︀
|𝜙𝑚 − ̃︀𝜙𝑚|+ 𝑇‖𝑓𝑚 − ̃︀𝑓𝑚‖0 + 𝑇 2‖𝑘 − ̃︀𝑘‖𝜎‖𝑢𝑚‖0)︀𝑒𝑇 2‖̃︀𝑘‖𝜎 . (17)

Theorem 2 established that problem (1)–(3) possesses a unique classical solu-
tion in 𝐷. Consequently, for all 𝑡 > 0, 𝑢𝑡 belongs to 𝐶(𝐷), and the difference of
its Fourier coefficients satisfies:

‖𝑢′𝑚 − ̃︀𝑢′𝑚‖𝜎 6 ‖𝑢𝑚 − ̃︀𝑢𝑚‖𝜎 + 𝑇‖𝑢𝑚‖0‖𝑘 − ̃︀𝑘‖𝜎 +

+ 𝑇‖̃︀𝑘‖𝜎‖𝑢𝑚 − ̃︀𝑢𝑚‖𝜎 + ‖𝑓𝑚 − ̃︀𝑓𝑚‖0. (18)

2. The Existence and Uniqueness Theorem for the Inverse Problem.
This section investigates the inverse problem of determining the functions 𝑢(𝑥, 𝑡)

12
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and 𝑘(𝑡) from relations (1)–(4). We employ the contraction mapping principle to
solve this problem.

Let

𝜇 =

(︂ ∞∑︁
𝑚=1

𝜆𝑚

1 + 𝜆𝑚
𝜙𝑚𝑋𝑚(𝑥0)

)︂−1

̸= 0. (A2)

Under condition (A1), the numerical series
∞∑︁

𝑚=1

𝜆𝑚

1 + 𝜆𝑚
𝜙𝑚𝑋𝑚(𝑥0)

converges.
Substituting 𝑥 = 𝑥0 into (10) and using (4), we obtain

ℎ(𝑡) =
∞∑︁

𝑚=1

𝑢𝑚(𝑡)𝑋𝑚(𝑥0), 𝑡 ∈ [0, 𝑇 ]. (19)

Replacing 𝑢𝑚(𝑡) in (19) with the right-hand side of (9) and differentiating
twice yields the integral equation for 𝑘(𝑡):

𝑘(𝑡) = 𝑘0(𝑡) + 𝜇
∞∑︁

𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁2
(𝑘 * 𝑢𝑚)(𝑡)𝑋𝑚(𝑥0)−

− 𝜇

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁3(︀
𝜒𝑚 * (𝑘 * 𝑢𝑚)(𝜏)

)︀
(𝑡)𝑋𝑚(𝑥0)−

− 𝜇
∞∑︁

𝑚=1

𝜆𝑚

1 + 𝜆𝑚
(𝑘 * 𝑢′𝑚)(𝑡)𝑋𝑚(𝑥0), (20)

where

𝑘0(𝑡) = −𝜇ℎ′′(𝑡) + 𝜇
∞∑︁

𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁2
𝜒𝑚(𝑡)𝜙𝑚𝑋𝑚(𝑥0)−

− 𝜇

∞∑︁
𝑚=1

𝜆𝑚

(1 + 𝜆𝑚)2
𝑓𝑚(𝑡)𝑋𝑚(𝑥0) + 𝜇

∞∑︁
𝑚=1

1

1 + 𝜆𝑚
𝑓 ′
𝑚(𝑡)𝑋𝑚(𝑥0) +

+ 𝜇

∞∑︁
𝑚=1

𝜆2
𝑚

(1 + 𝜆𝑚)3
(𝜒𝑚 * 𝑓𝑚)(𝑡)𝑋𝑚(𝑥0).

Assume the following regularity conditions:⎧⎪⎨⎪⎩
ℎ ∈ 𝐶2[0, 𝑇 ], 𝑓 ∈ 𝐶([0, 𝑇 ];𝐻[𝑛2 ]+1(Ω)) ∩ 𝐶1([0, 𝑇 ];𝐻[𝑛2 ]−1(Ω)),

𝜙(𝑥0) = ℎ(0),

𝑓( · , 𝑡) = Δ𝑓( · , 𝑡) = · · · = Δ[𝑛+4
4 ]𝑓( · , 𝑡) ∈ 𝐻1

0 (Ω), 𝑡 ∈ [0, 𝑇 ].

(A3)

Equation (20) can be expressed as the fixed-point equation

𝑘 = 𝐴𝑘 (21)

13
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for the operator 𝐴 defined by

𝐴𝑘(𝑡) = 𝑘0(𝑡) + 𝜇

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁2
(𝑘 * 𝑢𝑚)(𝑡)𝑋𝑚(𝑥0)−

− 𝜇
∞∑︁

𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁3(︀
𝜒𝑚 * (𝑘 * 𝑢𝑚)(𝜏)

)︀
(𝑡)𝑋𝑚(𝑥0)−

− 𝜇

∞∑︁
𝑚=1

𝜆𝑚

1 + 𝜆𝑚
(𝑘 * 𝑢′𝑚)(𝑡)𝑋𝑚(𝑥0).

To establish that 𝐴 has a fixed point, we first demonstrate that 𝐴 maps a
closed convex set into itself in the space 𝐶[0, 𝑇 ] equipped with the Bielecki norm.

Lemma 2. Under conditions (A1)–(A3), there exists 𝜎0 > 0 such that for all
𝜎 > 𝜎0, there exists 𝑅 > 0 for which the closed convex ball

𝐾 = {𝑘 ∈ 𝐶[0, 𝑇 ] : ‖𝐴𝑘 − 𝑘0‖𝜎 6 𝑅}

is invariant under 𝐴, i.e., 𝐴(𝐾) ⊂ 𝐾.

P r o o f. For any 𝑘 ∈ 𝐶[0, 𝑇 ], 𝑡 ∈ [0, 𝑇 ], and 𝜎 > 0, estimate (16) yields:

‖𝐴𝑘 − 𝑘0‖𝜎 6 max
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
𝜇

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁2
𝑒−𝜎𝑡(𝑘 * 𝑢𝑚)(𝑡)𝑋𝑚(𝑥0)

⃒⃒⃒⃒
+

+ max
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
𝜇

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁3
𝑒−𝜎𝑡

(︀
𝜒𝑚 * (𝑘 * 𝑢𝑚)(𝜏)

)︀
(𝑡)𝑋𝑚(𝑥0)

⃒⃒⃒⃒
+

+ max
𝑡∈[0,𝑇 ]

⃒⃒⃒⃒
𝜇

∞∑︁
𝑚=1

𝜆𝑚

1 + 𝜆𝑚
𝑒−𝜎𝑡(𝑘 * 𝑢′𝑚)(𝑡)𝑋𝑚(𝑥0)

⃒⃒⃒⃒
6

6
‖𝑘‖𝜎
𝜎
|𝜇|

∞∑︁
𝑚=1

‖𝑢𝑚‖0|𝑋𝑚(𝑥0)|+
‖𝑘‖𝜎
𝜎
|𝜇|

∞∑︁
𝑚=1

‖𝜒𝑚 * 𝑢′𝑚‖0|𝑋𝑚(𝑥0)|

+
‖𝑘‖𝜎
𝜎
|𝜇|

∞∑︁
𝑚=1

‖𝑢′𝑚‖0|𝑋𝑚(𝑥0)| := 𝐼1 + 𝐼2 + 𝐼3. (22)

For 𝑘 ∈ 𝐾, we have
‖𝑘‖𝜎 6 ‖𝑘0‖0 +𝑅 := 𝑅0, (23)

since ‖ · ‖𝜎 6 ‖ · ‖0.
Applying Lemma 1 and (A1) to 𝐼1 with (23) gives:

𝐼1 6
𝑅0

𝜎
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2|𝜇|

∞∑︁
𝑚=1

(︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

)︀
|𝑋𝑚(𝑥0)| 6

6
𝑅0

𝜎
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2|𝜇|

(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))

)︁
:=

̃︀𝜎1
𝜎
. (24)

14
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Similarly, for 𝐼2:

𝐼2 6
𝑅0

𝜎
𝑇 |𝜇|

∞∑︁
𝑚=1

‖𝑢′𝑚‖0|𝑋𝑚(𝑥0)| 6
𝑅0

𝜎
𝑇 |𝜇|

∞∑︁
𝑚=1

‖𝑓𝑚‖0|𝑋𝑚(𝑥0)|+

+
𝑅0

𝜎
max{1, 𝑇}(1 +𝑅0𝑇 )𝑇𝑒

‖𝑘‖0𝑇 2/2|𝜇|
∞∑︁

𝑚=1

(︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

)︀
|𝑋𝑚(𝑥0)| 6

6
𝑅0

𝜎
𝑇 |𝜇|‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))
+

𝑅0

𝜎
max{1, 𝑇}(1 +𝑅0𝑇 )×

× 𝑇𝑒‖𝑘‖0𝑇
2/2|𝜇|

(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))

)︁
:=

̃︀𝜎2
𝜎
. (25)

For 𝐼3, we obtain:

𝐼3 6
𝑅0

𝜎
|𝜇|‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))
+

𝑅0

𝜎
max{1, 𝑇}(1 +𝑅0𝑇 )×

× 𝑒‖𝑘‖0𝑇
2/2|𝜇|

(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))

)︁
:=

̃︀𝜎3
𝜎
. (26)

Combining (24)–(26) for (22) yields

‖𝐴𝑘 − 𝑘0‖𝜎 6
̃︀𝜎0
𝜎
,

where ̃︀𝜎0 := ̃︀𝜎1 + ̃︀𝜎2 + ̃︀𝜎3. Choosing 𝜎 > 𝜎0 := (1/𝑅)̃︀𝜎0 ensures 𝐴(𝐾) ⊂ 𝐾. �

Lemma 3. Under the same conditions as in Lemma 2, the family (𝐴(𝑘))𝑘∈𝐾 is
contractive, i.e., there exists 𝑞 ∈ [0, 1) such that

‖𝐴𝑘 −𝐴𝑘‖𝜎 6 𝑞‖𝑘 − ̃︀𝑘‖𝜎
for all 𝑘, ̃︀𝑘 ∈ 𝐾.

P r o o f. From the commutative and invariant properties of the convolution
operator, we have

𝑒−𝜎𝑡𝑣1 * 𝑣2(𝑡)− 𝑒−𝜎𝑡̃︀𝑣1 * ̃︀𝑣2(𝑡) = 𝑒−𝜎𝑡(𝑣1 − ̃︀𝑣1) * 𝑣2(𝑡) + 𝑒−𝜎𝑡̃︀𝑣1 * (𝑣2 − ̃︀𝑣2)(𝑡)
and

‖𝑣1 * 𝑣2(𝑡)− ̃︀𝑣1 * ̃︀𝑣2(𝑡)‖𝜎 6 1

𝜎

(︀
‖𝑣1 − ̃︀𝑣1‖𝜎‖𝑣2‖0 + ‖̃︀𝑣1‖0‖𝑣2 − ̃︀𝑣2‖𝜎)︀.

For any 𝑘, ̃︀𝑘 ∈ 𝐾, we estimate

‖𝐴𝑘−𝐴̃︀𝑘‖𝜎 6 |𝜇|
𝜎

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁2(︀
‖𝑘−̃︀𝑘‖𝜎‖𝑢𝑚‖0+‖̃︀𝑘‖0‖𝑢𝑚−̃︀𝑢𝑚‖𝜎)︀|𝑋𝑚(𝑥0)|+

+
|𝜇|
𝜎

∞∑︁
𝑚=1

(︁ 𝜆𝑚

1 + 𝜆𝑚

)︁3(︀
‖𝑘−̃︀𝑘‖𝜎‖𝜒𝑚 *𝑢𝑚‖0+ ‖̃︀𝑘‖0‖𝜒𝑚 * (𝑢𝑚− ̃︀𝑢𝑚)‖𝜎

)︀
|𝑋𝑚(𝑥0)|+
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+
|𝜇|
𝜎

∞∑︁
𝑚=1

𝜆𝑚

1 + 𝜆𝑚

(︀
‖𝑘− ̃︀𝑘‖𝜎‖𝑢′𝑚‖0 + ‖̃︀𝑘‖0‖𝑢′𝑚− ̃︀𝑢′𝑚‖𝜎)︀|𝑋𝑚(𝑥0)| := 𝐼1 + 𝐼2 + 𝐼3.

(27)

We now estimate each term in (27). Using Lemma 1, (A1), and (17) for 𝐼1, we
obtain

𝐼1 6
|𝜇|
𝜎

(︀
1 + 𝑇 2𝑒𝑇

2𝑅0‖𝑘‖0
)︀
‖𝑘 − ̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

‖𝑢𝑚‖0|𝑋𝑚(𝑥0)| 6

6
|𝜇|
𝜎

(︀
1+𝑇 2𝑒𝑇

2𝑅0‖𝑘‖0
)︀
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2‖𝑘−̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

(︀
|𝜙𝑚|+‖𝑓𝑚‖0

)︀
|𝑋𝑚(𝑥0)| 6

6
|𝜇|
𝜎

(︀
1 + 𝑇 2𝑒𝑇

2𝑅0‖𝑘‖0
)︀
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2‖𝑘 − 𝑘‖𝜎 ×

×
(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω)

)︁
:=

𝜎̂1
𝜎
‖𝑘 − ̃︀𝑘‖𝜎.

For 𝐼2, we have

𝐼2 6
|𝜇|
𝜎

(︁
𝑇 + 𝑇 2𝑒𝑇

2𝑅0
‖̃︀𝑘‖0
𝜎

)︁
‖𝑘 − ̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

‖𝑢𝑚‖0|𝑋𝑚(𝑥0)| 6

6
|𝜇|
𝜎

(︁
𝑇 + 𝑇 2𝑒𝑇

2𝑅0
‖̃︀𝑘‖0
𝜎

)︁
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2‖𝑘 − ̃︀𝑘‖𝜎 ×

×
(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω))

)︁
:=

𝜎̂2
𝜎
‖𝑘 − ̃︀𝑘‖𝜎.

Similarly, for 𝐼3, Lemma 1 yields

𝐼3 6
|𝜇|
𝜎
‖𝑘 − ̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

‖𝑢′𝑚‖0|𝑋𝑚(𝑥0)|+

+
|𝜇|
𝜎

(︀
𝑇 + 𝑇 2𝑒𝑇

2𝑅0 + 𝑇 3𝑒𝑇
2𝑅0

)︀
‖𝑘‖0‖𝑘 − ̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

‖𝑢𝑚‖0|𝑋𝑚(𝑥0)| 6

6
|𝜇|
𝜎
‖𝑘 − ̃︀𝑘‖𝜎 ∞∑︁

𝑚=1

‖𝑓𝑚‖0|𝑋𝑚(𝑥0)|+

+
|𝜇|
𝜎
‖𝑘 − ̃︀𝑘‖𝜎 max{1, 𝑇}

(︀
1 + ‖𝑘‖0𝑇

)︀
𝑒‖𝑘‖0𝑇

2/2
∞∑︁

𝑚=1

(︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

)︀
|𝑋𝑚(𝑥0)|+

+
|𝜇|
𝜎

(︀
𝑇 + 𝑇 2𝑒𝑇

2𝑅0 + 𝑇 3𝑒𝑇
2𝑅0

)︀
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2‖𝑘‖0‖𝑘 − ̃︀𝑘‖𝜎 ×
×

∞∑︁
𝑚=1

(︀
|𝜙𝑚|+ ‖𝑓𝑚‖0

)︀
|𝑋𝑚(𝑥0)| 6

6
|𝜇|
𝜎
‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω)
‖𝑘 − ̃︀𝑘‖𝜎 +

|𝜇|
𝜎

max{1, 𝑇}
(︀
1 + ‖𝑘‖0𝑇

)︀
𝑒‖𝑘‖0𝑇

2/2 ×
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×
(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω)

)︁
‖𝑘 − ̃︀𝑘‖𝜎 +

+
|𝜇|
𝜎

(︀
𝑇 + 𝑇 2𝑒𝑇

2𝑅0 + 𝑇 3𝑒𝑇
2𝑅0

)︀
max{1, 𝑇}𝑒‖𝑘‖0𝑇 2/2‖𝑘‖0 ×

×
(︁
‖𝜙‖

𝐻[𝑛2 ]+1(Ω)
+ ‖𝑓‖

𝐶([0,𝑇 ];𝐻[𝑛2 ]+1(Ω)

)︁
‖𝑘 − ̃︀𝑘‖𝜎 :=

𝜎̂3
𝜎
‖𝑘 − ̃︀𝑘‖𝜎.

Choosing 𝑞 := 𝜎̂0/𝜎 < 1, where 𝜎̂0 := max{𝜎̂1, 𝜎̂2, 𝜎̂3}, establishes that 𝐴 is a
contraction on 𝐾, completing the proof. �

By the Banach fixed-point theorem, equation (21) has a unique solution for
any 𝑇 > 0, yielding:

Theorem 3. Under assumptions (A1)–(A3), for any 𝑇 > 0, problem (1)–(4)
admits a unique solution.

Conclusion. This study has established the existence and uniqueness of a
solution to the inverse problem of determining the kernel of a multidimensional
third-order integrodifferential pseudo-parabolic equation. Our approach combines
the Fourier method, integral inequalities, and the fixed-point principle, with the
solution specified by an additional condition at a fixed point for the first boundary
value problem.

All results presented in this article remain valid when the Laplacian operator Δ
in (1) is replaced by a more general self-adjoint differential operator 𝐿 defined in
the domain Ω. This operator takes the form:

𝐿 =

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

[︁
𝑎𝑖𝑗(𝑥)

𝜕

𝜕𝑥𝑗

]︁
− 𝑐(𝑥),

where the coefficients satisfy:
– symmetry: 𝑎𝑖𝑗(𝑥) = 𝑎𝑗𝑖(𝑥) for all 𝑖, 𝑗;
– uniform ellipticity:

∑︀𝑛
𝑖,𝑗=1 𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 > 𝛼

∑︀𝑛
𝑖=1 𝜉

2
𝑖 with 𝛼 = const > 0;

– non-negativity: 𝑐(𝑥) > 0 in Ω.
We additionally assume the coefficients 𝑎𝑖𝑗(𝑥) and 𝑐(𝑥) satisfy appropriate smooth-
ness conditions (see [17] for details).
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Обратная задача определения ядра для класса
псевдопараболических интегро-дифференциальных
уравнений
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Аннотация

Данная работа посвящена исследованию обратной задачи определе-
ния ядра в многомерном интегро-дифференциальном псевдопараболи-
ческом уравнении третьего порядка. Исследование начинается с анализа
прямой задачи с известной функцией ядра при рассмотрении начально-
краевой задачи с однородными граничными условиями. Методом Фурье
строится решение в виде ряда по собственным функциям задачи Дирих-
ле для оператора Лапласа. Важной частью анализа является получение
априорных оценок коэффициентов ряда через норму функции ядра, ко-
торые играют ключевую роль при изучении обратной задачи.

Для обратной задачи вводится условие переопределения, задающее
значение решения в фиксированной точке пространственной области
(точечное измерение). Эта формулировка сводится к интегральному урав-
нению Вольтерра второго рода. Путем применения принципа сжимаю-
щих отображений Банаха в классе непрерывных функций с экспоненци-
ально взвешенной нормой устанавливаются глобальная существование
и единственность решения обратной задачи. Полученные результаты де-
монстрируют корректную разрешимость рассматриваемой проблемы.

Дифференциальные уравнения и математическая физика
Научная статья
© Коллектив авторов, 2025
© СамГТУ, 2025 (составление, дизайн, макет)

cb Контент публикуется на условиях лицензии Creative Commons Attribution 4.0
International (https://creativecommons.org/licenses/by/4.0/deed.ru)
Образец для цитирования
Du r d i e v D. K., E l mu r a d o v a H. B., R a h mon o v A. A. Inverse kernel determination prob-
lem for a class of pseudo-parabolic integro-differential equations, Vestn. Samar. Gos. Tekhn.
Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2025, vol. 29,
no. 1, pp. 7–20. EDN: WGZAMY. DOI: 10.14498/vsgtu2095.

Сведения об авторах
Дурдимурод Каландарович Дурдиев https://orcid.org/0000-0002-6054-2827
доктор физико-математических наук, профессор; заведующий отделением1; профессор,
каф. дифференциальных уравнений2; e-mail: d.durdiev@mathinst.uz
Хилола Ботировна Элмурадова https://orcid.org/0000-0003-4306-2589
преподаватель; базовый докторант; каф. дифференциальных уравнений2;
e-mail: helmuradova@mail.ru
Аскар Ахмадович Рахмонов https://orcid.org/0000-0002-7641-9698
кандидат физико-математических наук, доцент; старший научный сотрудник1; доцент,
каф. дифференциальных уравнений2; e-mail: araxmonov@mail.ru

19

https://doi.org/10.14498/vsgtu2095
https://elibrary.ru/WGZAMY
http://www.mathnet.ru/rus/org15396
http://www.mathnet.ru/rus/org15396
http://www.mathnet.ru/rus/org15396
http://www.mathnet.ru/rus/org4797
http://www.mathnet.ru/rus/org4797
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://creativecommons.org/licenses/by/4.0/deed.ru
https://elibrary.ru/WGZAMY
https://doi.org/10.14498/vsgtu2095
http://www.mathnet.ru/rus/person29112
https://orcid.org/0000-0002-6054-2827
https://orcid.org/0000-0002-6054-2827
mailto:d.durdiev@mathinst.uz
http://www.mathnet.ru/rus/person228134
https://orcid.org/0000-0003-4306-2589
https://orcid.org/0000-0003-4306-2589
mailto:helmuradova@mail.ru
http://www.mathnet.ru/rus/person67047
https://orcid.org/0000-0002-7641-9698
https://orcid.org/0000-0002-7641-9698
mailto:araxmonov@mail.ru


Дурди е в Д. К., Э лмур а д о в а Х. Б., Р а хм о н о в А. А.

Ключевые слова: псевдопараболическое уравнение, интегро-диффе-
ренциальное уравнение, обратная задача, определение ядра, метод Фу-
рье, принцип сжимающих отображений, априорные оценки.

Получение: 18 мая 2024 г. / Исправление: 23 октября 2024 г. /
Принятие: 21 февраля 2025 г. / Публикация онлайн: 27 марта 2025 г.

Конкурирующие интересы. Авторы заявляют об отсутствии конфликта интере-
сов в отношении авторства и публикации данной статьи.
Авторский вклад и ответственность. Все авторы внесли равный вклад в раз-
работку концепции статьи и написание рукописи. Авторы несут полную ответствен-
ность за предоставление окончательной версии рукописи в печать. Окончательная
версия рукописи была одобрена всеми авторами.
Финансирование. Исследование выполнено без привлечения внешнего финанси-
рования.

20


