;

Fractional Calculus and Applied Analysis qractional Caleulus

(3 . .
https://doi.org/10.1007/513540-024-00367-0 & Applied Clnalysis
ORIGINAL PAPER
Check for
updates

Global solvability of inverse coefficient problem for one
fractional diffusion equation with initial non-local and
integral overdetermination conditions

2 1,2

Durdimurod Durdiev'-2( - Askar Rahmonov

Received: 1 February 2023 / Revised: 18 December 2024 / Accepted: 21 December 2024
© Diogenes Co.Ltd 2025

Abstract

In this work, we consider an inverse problem of determining the coefficient at the
lower term of a fractional diffusion equation. The direct problem is the initial-boundary
problem for this equation with non-local initial and homogeneous Dirichlet conditions.
To determine the unknown coefficient, an overdetermination condition of the integral
form is specified with respect to the solution of the direct problem. Using Green’s
function for an ordinary fractional differential equation with a non-local boundary
condition and the Fourier method, the inverse problem is reduced to an equivalent
problem. Further, by using the fixed-point argument in suitable Sobolev spaces, the
global theorems of existence and uniqueness for the solution of the inverse problem
are obtained.

Keywords Nonlocal problems - The Caputo derivative - Subdiffusion equation -
Inverse problem - Sobolev spaces - Mittag-Leffler functions
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1 Introduction

At present, in almost every area of modern technology and research, methods and
tools of fractional calculus are used. Many fractional calculus applications have been
successful because these new fractional-order models are often more accurate than
integer-order models, i.e., the fractional-order model has more degrees of freedom
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than its classical analogue. Because of its ability to handle the dynamics of non-integer
orders, fractional calculus is a powerful tool for explaining the memory and hereditary
characteristics of various materials and processes. The theory of fractional calculus
has been developed rapidly in many fields of science since the 19th century, including
fractional geometry, fractional differential equations, and fractional dynamics due
to its wide range of applications [1]-[3]. For example, in such areas as rheology,
viscoelasticity, acoustics, optics, chemical, and statistical physics, robotics, control
theory, electrical engineering, mechanical engineering, and bioengineering there have
widely applied the fractional calculus [4]-[6].

Recently, it has increased extensive attention on inverse potential problems for time-
fractional diffusion equations. Henceforth the inverse potential problems have been
analyzed in many works [7]-[17] and references therein. Sun et al [7]-[9] investigated
the uniqueness in determining the fractional order(s) and the potential simultaneously
for the single-term and multi-term time-fractional diffusion equations, respectively,
and gave a valid numerical method. Zhang and Zhou [10] considered an inverse
potential term problem from the overdetermined final time data and gave an effi-
cient regularized iterative algorithm based on mollification in the one-dimensional
case. Wenjun Ma and Liangliang Sun [11] studied an inverse potential problem from
an additional integral measured data over the domain. The well-posedness of the
forward problem was investigated by using the well-known Rothe’s method and recov-
ered numerically the unknown coefficient by an iterative Tikhonov regularization
method. Durdiev et al [12]-[15] analyzed inverse problems of determining unknown
coefficients in the Cauchy problem for the fractional diffusion-wave equation. Local
existence and uniqueness as a whole are proved and estimates of conditional stabil-
ity are obtained. In addition, the inverse problems for the determination of potential
terms from the generalized fractional derivative diffusion-wave equation is rapidly
developing. For example, Durdiev and Turdiev [16], [17] studied inverse problems of
determining the time-dependent coefficient in the fractional wave equation with Hilfer
(generalized Riemann-Liouville) derivative. In these works, similar results to those
mentioned above were obtained.

In the above literature, it is mainly the inverse potential problems of a single term
for the time-fractional diffusion equations with initial conditions considered naturally.
However, it does not involve cases including a fractional derivative, a nonlinear source
and a nonlocal initial condition. This is because some traditional skills for the direct
problem, such as well-posedness, the Banach fixed point method. We also point out
recent papers [18]-[24] in which new classes of inverse problems of determining the
time-dependent source and unknown order of the fractional derivative are investigated
for various types of additional conditions. However, in all of the non-linear work
mentioned above, results of local solvability have been obtained.

In this paper, we focus on an inverse time-dependent potential problem by the
integral data over the domain. We first investigate the well-posedness of the direct
problem by employing Fourier’s method. Further, we use the Banach fixed point
theorem, the Gauss-Seidel method and the coerciveness of the fractional derivative
to obtain the existence and uniqueness of the inverse problem, and also illustrate an
example. Furthermore, one of the main achievements of the paper is the result of the
global solvability of the inverse problem with nonlocal initial conditions.
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The rest of the paper is structured as follows: In the next section, we formulate the
direct and inverse problems that will be investigated in this paper. Here we will also
provide the necessary information from functional analysis and the theory of fractional
calculus, which will be used throughout this thesis. At the end of this section, we will
formulate the main results. Section 3 is devoted to constructing Green’s function for the
boundary problem of the linear ordinary fractional equation with nonlocal boundary
conditions. Green’s function will serve as a substitute for the eigenfunctions of the
uniform elliptic operator in the construction of a solution to the direct problem. In
Section 4, we will consider the solvability of the direct problem and construct a priori
estimates that will be used in the investigation of an inverse problem, in addition, an
equivalent formulation of the inverse problem is presented. Using the equivalent form
and the contraction mapping principle, the result on the local in-time existence and
uniqueness of solutions is established in Section 5. The main result of the paper is
proved by the method of continuation of the solution in Section 6.

2 Formulation of problem and preliminaries

Let £2 be a bounded domain in R"” with sufficiently smooth boundary 9£2. Consider
the following fractional-diffusion equation in Qg ={x,):xe2CR",0<1t<
T}:

(fou) (x,t) =Au(x,t) +q@®u(x,t) + f(x,t), (x,1)€ Qg, 2.1

with the Gerasimov—Caputo time fractional derivative 9 of order 0 < o < 1, defined
by

1 t
(at“y) ®) = (I(};“y’) ) = m/(; (t— 1)~ % (t)dr, ye whl 0, 1),

where 18‘ Y is the Reimann-Liouville fractional integral of order «, that is

(52 0= =05 / (t =) y(s)ds,

and I"(-) is the Gamma function and the operator — A is a symmetric uniformly elliptic
operator defined on D(—A) = H*(2)N HOl (£2) given by

n 8 n
Au(x,t):Z% Z ,,(x) u(x |, «.0e0f,
i=1 ! j=

in which the coefficients satisfy
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ajj=aj, 1=<i,j<n, aj¢€ cl (),

n

v Y IER < ) @i (0EE;
i=1

ij=1

n
<w )Y |G xeR, EeR" v, >0
i=1

We supplement the equation (2.1) with the nonlocal initial condition

ulx,0)+ pu(x, T) =¢p(x), x €82, 2.2)
the boundary condition

ux,t) =0, xe€df2, te,7), 2.3)

and integral condition of the first kind
/ oX)ulx,t)dx =h(t), 0<t<T, 2.4)
2

where 8 > 0 and f(x, t), ¢(x), w(x), h(t) are known functions. Besides, &(¢) is the
measurement data representing the average temperature on a small part of §2, because
the weight function w (x) is usually chosen to satisfy supp(w) C £2 in applied sciences
[26]. Now we pass to a rigorous statement of the main problem of our paper. If the
function ¢ (¢) is known, then the initial-boundary value problem (2.1)—(2.3) is called
the direct (forward) problem.

We investigate the following inverse problem:

Inverse problem. Find (u, g) € C ([O, Tl Hz(.Q)) x C[0, T]tosatisfy (2.1)—(2.3)
and the additional condition (2.4).

For the convenience of the reader, we present here the necessary definitions from
functional analysis and fractional calculus theory.

For integers m, we denote H™(£2) = W™2(£2) (see [27]) and H)'(82) is the
closure of Cgo(()) in the norm of space H" (£2). For a given Banach space V on £2,
we use the notation C™ ([0, T']; V') to denote the following space:

([0, T]: V) := {u - 17 u(t) ||y is continuous inz on [0, T for all 0 < j < m}

We endow C™ ([0, T']; V) with the following norm making it to be a Banach space:

m

lulemqo.rivy = (Ogltgxr ||a,~’u<r)||v) :

j=0
In addition, we define Banach space X g by

xt = cqo, 11; H*(2)).
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Furthermore, we set
Yl = X} x C[0,T]
endowed with the norm
1@ Dllyr = llullxr +lglicro,r-

It is well-known that the operator — A has only real and simple eigenvalues A, and
with suitable numbering, wehave 0 < A1 < Ay < - -+ ,klim Ax = 00.Byeg, wedenote
—>00

the eigenfunction corresponding to Ag, which satisfies ||ek||i2 @ = (er,ex) = 1,

where (-, -) denotes the inner product in the Hilbert space L?(£2) and A, e satisfy
—Aer = Aer, e (x) =0, x € 082, {ex} C H2(S2) N HO1 (£2) is an orthonormal basis
of L2(£2). Then for y € R, we define a Hilbert space D((—A)?) by

D=4y i={ue L22): 3 I e < o), (=) u=Y il (. eer
k=1 k=1

with the norm

0 1/2
2
luell p(—ayry = (Z N, ek>|2>

k=1

(see, e.g. [28]). We note that the norm ||ul|p(—a)») is stronger than |[u| ;2 for

y > 0. Then, we have D((—A)") C H?(£2) fory > 0.In particular, D((—A)%) =
HJ (£2). Since D((—A)?) C L?(£2), identifying the dual (L?(£2))" which itself, we
have D((—A)Y) C L*(22) C (D((—A)?)). We set D((—A)7) = (D((—A)Y)),
which consists of bounded linear functionals on D((—A)Y). Foru € D((—A)Y) and
¢ € D((—A)Y), the value obtained by operating u to ¢ is denoted by (-, -)
D((—A)™7) is a Hilbert space with the norm:

-v.v:

o0 3
-2
ol p—ay-r) = (Zxk y|<u,ek>_y,y|2> :

k=1
We further note that
(U, 9)_,, = (u,9) if ueL*(2) and ¢ € D((—A)")

(see e.g., [25], Chapter V in [31]).
Let us remind the definition of the Mittag-Leffler function in [30]:

o k
Z
Epu)=) ————, z€C
= T'(ok + 1)
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with Re(p) > 0 and u € C. It is known that E, ,(z) is an entire function in z € C.
If the parameter u = 1, then we have the classical (one-parameter) Mittag-Leffler
function: E,(z) = E, 1(2).

In what follows we need the asymptotic estimate of the Mittag-Leffler function
with a sufficiently large negative argument. The well-known estimate has the form
(see, e.g., [29], p.136)

C
|Ep u(—1)] < l_—|-t7 t > 0. 2.5)

This estimate essentially follows from the following asymptotic estimate (see, e.g.,
(291, p.134)

—1

Ep (1) = m +007?). (2.6)

For the Mittag-Leffler function with two parameters E, ,(—t) one can obtain a
better estimate than (2.5). Indeed, using the asymptotic estimate (see, e.g., [29], p.134)

-2

I'(=p)

E, (—1) = — +0@17Y, 2.7

and the fact that E, ,(—t) is a real analytic, we can obtain the following inequality
(see, [20])

c
Epp(-DI= 15 10 2.8)

We will also use a coarser estimate with positive number A and 0 < ¢ < 1:

Crr—1
p—1 4P e—1,ep—1
tPTE, p(=AtP)| < T+ G2 <CAM't , t>0, (2.9)

which is easy to verify (see, [20]).

Proposition1 Let 0 < p < 1. Then
p( ) —E,(x) X €
E,(x)>0 E,(x)>0 R.
’ d.x ’

Moreover, the Mittag-Leffler function of negative argument E,(—x) is monotonically
decreasing function for all 0 < p < 1 and

0<E,)(—x) <1
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Proposition 2 (see [25]) For & > 0, o > 0 and positive integer m € N, we have
an

dt_mE“’l(_Ma) = —M""T"Eyq-mi1(—At%), >0

and

d
7 (tEq2(=21")) = Eq 1 (=A%), 8] (Eq,1(=21")) = —=AEq1(=A1%), 1> 0.

It is known (see [30], p. 96) that the following lemma holds.
Lemma 1 If y(1) belong to C*[0, T or W*1(0, T), then for cj € Rwe have

n—1

(I(‘))‘+8,‘)‘y) (1) = y(t) —co—c1t —cat> — . —cp1t" ', n—1<a <n.
We now define a weak solution to (2.1)—(2.3), which is similar to the introduced in
[25].

Definition 1 We call u(x, r) a weak solution to (2.1)—(2.3) if (2.1) holds in L2(.Q)
andu(-, 1) € HO1 (£2) for almost all 7 € (0, T) and u € C([0, T]; D((—A)™7)),

111_1)1(1) luC,t) +BuC, T —1t) —¢lip—ay-»y =0

with some y > 0.

We make the following assumptions:
(K1) ¢ € H*(2) N H}(2), f € C(I0, T]; D(—A)®) where 0 < & < 1;

(K2) h(0) + pH(T) = (@, ¢);
(K3) 9°h € C[0, T] satisfies the following inequality:

1
|h(t)| > P >0, forall re[0,T],
0

where A is a positive constant;

(K4) y>%—e—1forn>3;

(K5) w(x) € L3().

Remark 1 (K2) is the consistency condition for our problem (2.1)—(2.4), which guar-
antees that the inverse problem (2.1)—(2.4) is equivalent to (4.31) and (4.32) (see
Lemma 7).

Our main results in this paper are the following existence and uniqueness theorems
on the inverse problem solution.

Theorem 1 Under hypotheses (K1)-(K5), there exists a solution (u, q) € YOT of the
inverse problem (2.1)—(2.4) for any T > 0.

Theorem 2 Let T > 0. Under hypotheses (K1)-(K5), if the inverse problem (2.1)—(2.4)
has two solutions (u;, q;) € YOT (i=1,2), then (u1,q1) = (u2,q2) for0 <t <T.
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3 Construction of the Green function

In this section, we will construct a formal solution to the ordinary fractional differential
equation with nonlocal boundary conditions, which will be used in the proof of our
main results.

To study problem (2.1)—(2.4), we consider the following fractional differential
equation

(07y) (1) =y(y(@), 0<t<T, 3.1)
with the boundary conditions
y(0) + By(T) =0, (3.2)

where B > 0 are fixed numbers, y (t) € C[0, T] is given function, and y = y(t) is
desired function.

Now, we give a new construction method of Green’s function for the boundary
value problem (3.1)-(3.2).

Lemma 2 The fractional order boundary value problem (3.1) is equivalent to the
integral equation

T
Y0 = /0 Got, )y ($)y(s)ds., (33)

where Green’s function Gy is defined by

_ 1 _ a1 _ _ oa—1
Gott, ) = = (B(T s_)1 (1+B)@—9*1), sel0.1),
I'(x) _W(T — 8%, se,T]
(3.4)
Proof Lety € Cl[O, T] or W“(O, T). Then, using Lemma 1, we have
(1) = +#/t(t—)“‘ ()y(s)d (3.5
y(t) = co @ K y(8)y(s)ds, .

where ¢ is a real constant. Now, by employing the condition (3.2) we can obtain the
coefficient cq as follow

. ,3 T a—1
o=@ Jy T s
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Therefore, the solution of (3.1), (3.2) is

t

_ B ’ el 1 a1
y(@) = m/o (T —s) V(S)y(s)ds‘i‘m 0(l )Ty (s)y(s)ds

_/t<(t_S)H - f (T—s)“_l) ($)y(s)ds
) \Ure T U+pTr@ vy

—L ! el _/T
(1+ﬂ)r(a>/, (T ="y @y)ds = | Golt, )y (5)y(s)ds.

O

Lemma 3 Suppose that the function y (t) is continuous on the interval [0, T]. If > 0
and

1+ 28
p0

SREY R <1, 6
A+prd+a Iy licro.r) 36
then problem (3.1), (3.2) has only a trivial solution.

Proof From Lemma 2, we can conclude that the problem (3.1), (3.2) is equivalent to
the integral equation (3.3).
Let us introduce the notation

T
P(y(®)) =/0 Go(, )y (s)y(s)ds. (3.7
Then the equation (3.3) can be rewritten as

y(@) = P(y(). (3.8)

The operator P is continuous in the space C[0, T]. Indeed, for y(¢) € C[0, T], we
have

T
|P(y(0)l 5/0 |G, )y (s)y)lds < pollylicio.r1,

that is, operator P is bounded. Hence, it is continuous.
Now we prove that P is a contraction operator in the space C[0, T']. It is easy to
see that the inequality

IP(y1(®) — P(y2t)licro,r1 < polly1 (@) — y2(0)llcro, 11 (3.9)

holds for any functions y;(¢), y2(¢) € C[0, T].

In view of (3.6) and (3.9) it is clear that the operator P is contractive in C[0, T'].
Therefore, the operator P has a unique fixed point y(¢) in the space C[0, T'] which is
a solution of equation (3.8). Thus, the integral equation (3.3) has a unique solution in
C[0, T]. Consequently, problem (3.1), (3.2) also has a unique solution in the indicated
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space. Since y(f) = 0 is a solution to problem (3.1) and (3.2), it follows that this
problem has a unique trivial solution. O

Lemma4 Assume > 0. Then, the solution to the boundary-value problem

(87 y1) () + Ay (1) = f(1), >0,
y1(0) + Byi(T) =a

withO < o < 1 and A, a € R has the form

T
V() = B 1 (—A1%) + fo G(t.5)f(s)ds.

p(T)
where
BT —5)*  Eqo(=MT — $)*)Eq,1(—A%)
G.s)=——r=y —pM - ) Eqa(=2(t — $)%), s €10,1)
PR BT = 9% By (<A = )0 Eq 1 (=309, s € (1, T,
The proof of this Lemma 4 is analogical to the proof of Lemma 2. O

4 Direct Problem

This section will study the direct problem (2.1)—(2.3). We first consider the following
initial boundary problem

u(x, 1) — Au(x,t) = F(x,1), (x,1) € 0},
u(x,0)+ Bux, T) = ¢p(x), x €82, “.1)
u(x,t) =0, x€082, 0<t<T.

Let ui(¢t) = (u(-, 1), ex), k > 1. Assume that problem (4.1) has a unique solution
u which is given by

e8]

u(x, ) =Y w(t)er(x), (4.2)

k=1
where uy, (k =1, 2, ...) are solutions of the nonlocal problems:

(8%ux) (1) + ur (1) = Fy(r), 0<1<T, 4.3)
ug(0) + Bup(T) = ¢, 4.4)

where Fi(t) = (F(-,1),ex), ¢k = (¢, ex) . Using Lemma 4, we have

T
up(t) = &Ea,l(_)\kta) +/ Gi(t, s)F(s)ds,
ok (T) 0
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where pr(T) is p(T) with Ay instead of A.
Thus, we have

9]

(@, ex)
u(x,r) = Eq1(—Ait")er(x)
; o (T)

00 T
+3 (/0 Gi(t, $)(F, ) (5)ds ) ex (x). 45)
k=1

Based on the method of [25], we will prove the well-posedness of the problem (4.1).
We first split (4.1) into the following two initial and boundary value problems:

v, 1) — Av(x,1) =0, (x,1) € Qf,
v(x,0) + Bv(x, T) = p(x), x €2, 4.6)
v(x,1) =0, x€082,0<t<T,

and

w(x, 1) — Aw(x,t) = F(x,1), (x,1) € QF,
w(x,0) + pwx,T) =0, x € $2, “@.7
w(x,t) =0, x€082,0<t<T.

Lemma5 (i) Let ¢ € L?(82). Then there exists a unique weak solution v €
C([0, T1; L2(£2))NC((0, T1; HX(R2)NH (£2)) to (4.6) withd¥v € C((0, T1; L*(£2)).
Moreover, there exists a constant ¢1 > 0 satisfying

lvllcqorir22y < lellL2e), 4.8
lv(, Dll g2y + 197 vC D2y < et llell 2,
and we have
o0

(¢, ex)
v, 1) =Y = Egy (— At e (x) (4.9)
= o(T)

in C([0, T1; L*(£2)) N C((0, T1; H*($2) N Hy (£2)).
(ii) We assume that ¢ € HO1 (82). Then the unique weak solution v further belongs
to L>(0, T; H*(22) N HO1 (£2)), v € L2(Qg) and there exists a constant ¢c; > 0
satisfying the following inequality:
||U||L2(0,T;H2(Q)) + ||3;av||L2(Qg) = Cz||<ﬂ||H1(Q) (4.10)

and we have (4.9) in the corresponding space on the right-hand side of (4.10).
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(iii) Let ¢ € H?*(0,1) N HO1 (0, 1). Then the unique weak solution v belong to
C([0, T1; H*(22) N H} (£2)), 3%v € C([0, T1; L?(£2)) N C((0, T1; H] (£2)) and the
following inequality holds:

||U||c([o,T];1-12(_Q)) + ||3;aU||c([o,T];L2(Q)) = C3||€0||H2(_Q) 4.11)
and we have (4.9) in the corresponding space on the right-hand side of (4.11).

Proof (i) We will show that v(x, ) certainly gives the weak solution to (4.6). It is easy
to see that from the definition of 8 and Proposition 1, we have

ok(T) =1+ BEq1(—MT%) = 1, Vk eN.

Taking into account this relation and Proposition 1, we obtain

(¢, ex)

00 2
G DI 20y =D = Eat (—=2at®)| < ol (4.12)
= | p(T)
and this is the first inequality of (4.8).
Moreover, by (2.5), we have
|, (9. en) ?
IMMﬁW@m=§:Wp&nﬂmFMﬂ)SC%QWM@@V(Mﬁ
k=1

for t > 0. In (4.12), since Z ;‘p(eT")) Ey 1(—Mgt®)er is convergent in L2(£2) uni-
k=1

formly in ¢t € [0, T], we see that u € C([0, T']; L?(£2)). Moreover in (4.13), since

o0
3k (p‘i(e") Eq.1(—Akt%)ey is convergent in L2(2) uniformly in ¢ € [e, T] with any
k=1

given ¢ > 0, we see that Av € C((0, T]; L>(2)), thatis v € C((0, T]; H*(£2) N
HJ(£2)). Therefore we obtain that v € C([0, T1; L?(£2)) N C((0, T1; H*(£2) N
H, (£2)). By (4.6) we see that 9%v € C((0, T1; L*(£2)).

We have to prove

lim ||v(-, ¢) + Bv(-, T —t) — (p||L2(_Q) =0. (4.14)
t—0
In fact,
nw-n+ﬂw-T—m—¢ﬁﬂm

= Z (/i’(?)) (Ea,l(—/\kt“) + BEa1 (= (T = 1)) — Pk(T)) ‘2

S1k (1)
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and lim Sy (¢) = 0 for each k € N and
t—0

— 22 — 2 C ?
];«o,ek) SH(1) < 3k=21«0,ek> [(—1 " mw)

CB 2 cg \?
+ﬁ+ua—00'+0+1+mw>]<w

for0 <t < T and B8 > 0. Then, the Lebesgue theorem yields (4.14).

Next, we prove the uniqueness of the weak solution to (4.6) within the class given
in Definition 1. Under the condition ¢ = 0, we have to prove that problem (4.6) has
only a trivial solution. Since ey (x) is the eigenfunctions to the following eigenvalue
problem:

(Aep)(x) = —Arer(x), x €82, e(x)=0, x€df2

in terms of the regularity of v, taking the duality pairing (-, -)_,, ,, of (4.6) with ex and
setting v (1) = (v(-, 1), ek),},,y, we obtain

vk (t) = —Agui(t), almostall ¢ € (0, 7).

Since v(-,7) € L2(£2) for almost all 7 € (0, T) and vk (t) = (v(-, 1), ek),m, =
(v(-, t), er), where (v(-, 1), ek)_y’y denotes the duality pairing between D((—A)~7)
and D((—A)?), it follows from th_r)% lv(:, ) +Bv(:, T —t)l p(—a)-v) = Othat v (0) +
Buk(T) = 0. Due to the existence and uniqueness of the boundary-value problem for
the ordinary fractional differential equation (see, Lemma 3), we obtain that v (t) =
0, k =1,2,.... Since {eg}reN is a complete orthonormal system in L2(£2), we have
v=0in Q.
Moreover, by (2.5), we have

WG, D) < EIAVE D2,

/ > 2 (‘P» ek) 2
L
k=1

Pk (T)

Eq1(=Mt%)| <1 C*t 2 gll7, (4.15)

(£2)”

From (4.12) and (4.15), we get the estimates (4.8).
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(i) Let ¢ € H{ (£2). By (2.5), we have
(. ex) 2

——Ey 1 (—A «
o (1) Dot (R

o0

||U( t)”HZ(_Q) = Cl ||AU( t)”Lz(.Q) = C ZAI%
k=1

o0

=d Z

00 1 7 2
NI L c
Z\( M3 e) T 17 < gl g™

2
i) Mt 2 Eg 1 (—hit®)| 17

1 + Agt¥
(4.16)

By 0 <a< 1, we see ||v||L2(0,T;H2(Q)) < C/2||¢||H1(Q) Therefore we have u €
L?(0, T; H*(2) N H}(£2)).
Since 07 (Eq,1(—Akt?)) = —Ak Eq1(—Akt%) (e.g., [30], p. 98), we have

a (g, en)|? o
[) ”a U( t)”LZ(_Q)dt / Z 2(T) )\k|Ea,1(_)\kt )lzdt

2
2 () —a o2
<C /O Z(w,e)k (1+xra 17t < Slell o)

where we have used the following

0<06 <. 4.17)

By (4.6) we have %v = Awv, which yields 3%v € L?(Q[). Thus the proof of
Lemma 5 (ii) is complete.
(i) Let ¢ € H2(£2) N HO1 (£2). Then by Proposition 1, we have

WG, D320y < IAVE DI,

o0
<4 Y 2@ e Ea (=0 < Sliglp gy 12 0.
k=1

By (4.6) obtain
1370, D720 < E3l0l32 (0 1> 0.

Combining the last two estimates, we get (3.5). This completes the proof of Lemma 5.
(]

Using the above Lemma 5, we obtain the following result.
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Corollary 1 Let ¢ € L*(2) and F = 0. Then for the unique weak solution v €
C([0, 00); L%(£2)) N C((0, 00); H*(2) N H}(£2)) to (4.6), there exists a positive
constant c4 satisfying

lv(, Dl 2@y = lell 22y, ©=0. (4.18)

o 1+kt°‘

Moreover, there exists a positive constant cs such that

{v € €™ ((0, 00); L2(£2)), (4.19)

19" v(, Ol 120y < @ ll@ll2@), t>0, meN.

Proof By (2.5), we have

oG, D12 =§jMEal(—xkr“>2<i(w,ek>2 .y
B = pir)y - 1+ At

k=1

C

Further, by Proposition 2, we have

00

(@, ex) _

atmv(H 1) =— E on(T) Axt® mEa,a—m—Q—l(_Akta)ek
=1

form € N and r > 0, so that

e At? 2
m 2 2 2 : 2 —2m
”at U(', t)”LZ(_Q) = C (‘Ps ek) <1 + )»]J“) t tzm ||¢||L2(_(2)
k=1

Now, we study the problem of (4.7) and we have:

Lemma6 Let ¢ = 0and F € C([0, T]; D((—A)?)), where 0 < ¢ < 1. Then there
exists a unique weak solution w € C([0, T1; H*(£2) N H(} (£2)) to (4.7) such that
ofw € C([0,T]; L%(2)). In particular, for any y satisfying (K4), we have w €
C(0,T]; D((=A))),

tim [, 1) + pwC. T = Dllp(ayr) =0 (4.20)

and ifn =1,2,3, then

tim [w(-,1) + Bw (. T = Dl =0. @21)
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Moreover, there exists a constant cg > 0 such that

||w||c([0 T H2(2) T ll9;" w”c([o T1,L2(R)) = < csllFllcqo, 11 p((—a))  (4.22)

forallt € [0, T] and we have

w(x,t) = ek(x)/ Gr(t,s)(F(-,s),ex)ds (4.23)
k=1

in the corresponding space on the right-hand side of (4.22).

Proof Here we will show only regularity and estimate (4.22). We rewrite the standard
form of (4.23) as follows:

w(x, f)—zek(x)/ (F(,9), et = )" Ea(=hi(t — $)*)ds
k=1
B Z BEq1(—Akt®)

T
ex(x) / (T = )% Eqa(=2a(T — ) (F (. 5), ex)ds
or(T) 0

k=1
=11+ Db.

By (2.5) and (2.9) for any 0 < ¢ < 1, we have

2

t
/ (t — )" Ego(—hi(t — )%) (F(, 5), ex) ds
0

o
1 G D) < DM
k=1

> 2 t 2
. max |((_A)€F(-,S),€k))| ’/ see=1l ¢
0<s<t 0
k=1
< 0l FIg o piayyt ™ €0, TL. (4.24)

Similarly, we have

2
”12('7 t) ||H2(.Q)

2 T ?
—1
<Z <1+ma> /o ((T_s)“ Eqo(=2(T = $)*) (F (-, 5), ex) ds
2
‘BC 2 £ 2 T ae—1
< (m 2 jma, [ (=AY TFIC.). )] Jy s
< enT** I Fligqo.r5: p(—ay))- (429
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On the other hand, using Proposition 2 and the formula (3.1.34) in [30], we have

o wx, 1) =) (F(,1),e) ex(x)

k=1

o0 t
-~ Zxk /O (F (. 8), et =) Eq o (=i (1 — 5))dse(x) +

hk Eq 1 (—Agt® . )
ﬁz:k ;Lﬁw)/(T_) 'Ego (= (T = )V (F (-, 5), ex)dsex (x)
k=1

=L+ 14+ Is.

Taking account this D((—A)?) C L*(£2), we have

o
3¢, D120, = D (FC 1), e)?
k=1
= IFl120) < I FID(ayy t€0,T1.  (4.26)

Furthermore, by (2.9) we have

2

o0

2
s D720y < D
k=1

t
M / (F(5), e0)(t = $)* Eqa(=ha(t — )*)ds
0

o t 2
< o A 2 ea—1
< clo Y- (A FC.9). ) fo sel s
< ClO||F”%‘([0,,];[)((,/4)5))125“, te[0,T]. 4.27)
Argue similarly to the previous one, we get
2ea
1 15(-, t)”LZ(O H = <cuT ||F||C( 0,T];D((—A)))* (4.28)

Summing up (4.24)—(4.28) yields (4.22).
Finally, we have to prove (4.20). In fact, by Propositions 1 and 2, we have

t t
[ s“7E ) ds :/ s“_lEa,a(—Aks“)ds
0 0
1 ['d 1 "
== ) d—Ea 1 (=Aes¥)ds = = (1 = Eq1(=At®), t>0. (4.29)
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Using the (4.29), we have
2
lw(, ) +Bw(, T — f)”D(( A)Y)

—Zx 2V /(F( $), et — ) Eq o (=it — $)*)ds

k=1
_ BEq 1 (—Akt®)
o (T)

T—t
+,3/ (F(.5), ei)(T =1 = )" Egqo (=2 (T — 1 — 5)*)ds
0

_BPEan ((T =)
Pe(T)

/ (FC 50, e)(T — ) Eq a2 (T — $)*)ds
0

) [T | 2
/0 (F( 8, e)(T — ) Eqa(—hi (T — $))ds

Z D max (=AY F (0] 1= Ea (<)

_ —\/—/

Eq 1 (=et®)(1 — Eq (=) T
oo D) A=A )( A (=AT%))

2

ek (T)

2
+ B — Eq ) (—=MT%)) — Eg 1 (=2(T — 1)) (1 — Ea,l(—?»kT“))]

Sok (1)

o0
2 =2(y+et+l) o2
< el Fligqo, rini—ayy D M So (1)
k=1

Since Ay > c’lzk%, k € N (see [32], p. 407), we have

”
1 - clh
2(y+e+1) —  Ay+e+D ”

AL -

By (K4), we have M > 1, and Z A2 e §2 (1) < oco. Since hm Sor (1)
k=
= 0 for each n € N, the Lebesgue theorem implies 11m lw(,t) + ﬁw( T —

Hllp—4)y-»y = 0. The uniqueness of the weak solutlon 1s verified similarly to
Lemma 5. This completes the proof of Lemma 6. O

As a result combining Lemmas 5, 6, and Corollary 1, we obtain the following
result:

Corollary2 Let ¢ € H*(22) N H}(22) and F € C([0, T1; D((—A)?)), where 0 <
& < 1. Then there exists a unique weak solution u € X g to (4.1), such that

lullyr < 013<||§0||H2(9) + TM”F”C([O,T];D((—A)E)))- (4.30)
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At the end of this section, we give a lemma to show an equivalent form of our
inverse problem.

Lemma7 Let (KI)-(K5) be held. Then our inverse problem (2.1)—(2.4) is equivalent
to following problem:

(02u) (x, 1) — Au(x, 1) = q(Du(x, 1) + f(x,1), (x,1) € Qf,
u(x,0) + Bu(x, T) = p(x), x € $2, 4.31)
ulx,t) =0, x€0f2, 0<t<T,

and

ht)q@) = 37h@t) — (f(-, 1), w) — (Au(-,t),w), t<[0,T]. (4.32)

Proof Obviously, the solution (u(x, t), ¢(t)) € XOT x C[0, T] of our inverse problem
(2.1)—(2.4) is also a solution to the problem (4.31), (4.32) in XOT x C[0, T']. Because
the problem (4.31) is the same as (2.1)—(2.3). Therefore, we should show only (4.32).
Multiplying both sides of Eq. (2.1) by a function w(x) and integrating from £2 with
respect to x gives

<8,°‘/ w(x)u(x,t)dx) (t)—/ w(x)Au(x, t)dx
2 2

= q(t)/ o(x)u(x, t)dx +/ w(x) f(x,t)dx, (4.33)
2 2

forall0 < ¢ < T.Taking into account the condition (K3), and fractional differentiating
2.4) ath order, we have

a7 (/ w(xX)u(x, t)dx) (t) = (Btah) ), 0<t<T. (4.34)
2

From (4.33), taking into account (2.4) and (4.34) we arrive at (4.32).

Now, suppose that (u(x, ), q(t)) € Xg x C[0, T] is a solution to the problem
(4.31), (4.32). In order to prove that (i, ¢) is also a solution of (2.1)—(2.4), it suffices
to prove that (u, g) satisfies (2.4). By the equation (4.31), we have:

/ w(x)ato‘u(x,t)dx—/ w(x)Au(x, t)dx

2 2

= q(t)/ o)u(x, Hdx + / w(x) f(x, t)dx, (4.35)
Q Q

forO <t <T.
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Together with (4.32) and (K2), we obtain that y(f) = fQ oX)u(x, )dx —h(t)
satisfies

(4.36)

y(t) =qt)yt), 0<t<T,
y(0) + By(T) =0.

Therefore, we have

T
ﬂﬂ=ié Go(t. $)q(s)y(s)ds

forallt € [0, T].

Lemma 3 enables us to conclude that the problem (4.36) has only a trivial solution
satisfying (3.6). Then, fg oX)u(x,)dx —h(t) =0,0 <r <T,i.e., the condition
(2.4) is satisfied. This completes the proof of this lemma. O

5 Existence of the solution to the inverse problem

We are now in a position to prove the existence of a solution to our inverse problem,
i.e. Theorem 1, which proceeds by a fixed point argument. First, we define the function
set

Bor = {(@.q) €Y : i(x,0)+ Bii(x,T) = p(x), x € 2,,
uCx,1) =0, x €982, 1 €O, 1), lulyr +lqlcor = r}.

Here r is a large constant depending on the initial data ¢, measurement data 4, and
the number 8. Throughout, we use M to denote a constant that depends on £2, «, S,
the initial data ¢, the known functions f, w and measurement data /4, but independent
of rand T.

For given (u, q) € B, r, we consider

u(x,t) — Au=F(x,1), (x,1) € Qf,
ux,0)+ pux, T) =¢x), x € £2, 5.1
u(x,t) =0, xe€edf2, te(0,T),

and

MW@=W%@—LM&W@M+me@WQmm,QD

k=1

where
F(x,t) =q@®u(x,t) + f(x,1).
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According to Corollary 2, the unique solution u € X g of the problem (5.1), given
by (4.5) satisfies (4.30).

Furthermore
o
llg@u(, t)”zc([ojl;p((,A)s)) = 0123<XT Z )\%E(‘?(f)lz(', 1), ek)2
-7 k=1
112 =12
= ”q”C[O,T]”“”C([O,T];D((—A)S))- 5.3)

Using this result together with f € C([0, T]; D((—A)?)), we have
gux, 1) + f(x,1) € C([0, T]; D((—A))). (5.4)

Therefore, Corollary 2 ensures that there exists a unique solution u € XOT to (5.1).
Then (5.2) defines the function in terms of u. Furthermore, by (5.2) we have

<h [ 9% / d ’
llglicro,r] < hol ll9; ||C[0,T]+0235XT Qw(X)f(x )dx

e¢]

+ omax |37 k@, e @), e0)|] < ho[ I Rl cpo.
0<t<T panrt

i N 1/2 e N 1/2
+\/Qw(x>||f<x,-)||C[o,ndx\+(];|(w,ek>|) Jmax (];)\H(uvek”) ]

a
<t<T

1/2 1/2
Sho[llf’f‘hIIC[o,T]+(fg|w(x)|2dx) (/g||f(x,~>||%lo,ﬂdx)

ol 20 Il |
< o[ 19 llcro, 1 + ol 2 1 leqo, iy + ol lullg |

= ho [ 18 hllcro.r1 + ol 2@y I llcqo. i -y + @l 2 lulxr | (5:9)
Based on (4.30), (5.3) and (5.4) this implies that ¢ € C[0, T]. Thus, the mapping
S:Byr— Y], (4,4 (u,q) (5.6)

given by (5.1) and (5.2), is well defined.
The next lemma shows that S is a contraction map on B, 7.

Lemma 8 Let (K1)—(KS5) be held. Then there exists a sufficiently small T and a suitable
large r such that S is a contraction map on B, 1 for all T € (0, t], where t and r
are two positive constants depending on «, 8 and the known functions ¢, f and the
measurement data h.
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Proof First, we prove S(B, r) C B, r for sufficiently small T and suitable large r.
To simplify the calculations, we restrict T € (0, 1]. By (4.30), we obtain

lullxr < M +TM + T2, (5.7)

On the other hand, by (K3), (5.3), and (5.6), we have

lglicro,r) < ho{ 197 7l cro.r) + llwll 2o L f lcqo.71: D~ A)e))
+|Ia)||L2(m||M||Xg} §M+M2+M||ullxg- (5.8)
Hence, by (5.7) and (5.8), we have
lGe@)llyr = Ma™) (2 +1) + M, (5:9)
where
a(T) =T%

and therefore satisfies Tlimo ¢1(T) = 0. Now we take r, such that » = 2M with the
-+

constant M in (5.9). Then there exists a sufficiently small 7; > 0, such that
I, Dllyr <, (5.10)

forall T € (0, t1], thatis, S maps B, r into itself for each fixed T € (0, min{l, 71}] .
Next, we estimate the increment of operator S. To this end, we deduce the differences
(u—U,q — Q) from (5.1), (5.2) to yield

Wwu—U)x, 1) —Au—-U)x,) =qa—U)+U(@G— Q), (x,1) € QF,
u-U)x,0+Bu—-U)x,T)=0, xe€82, (5.11)
(u—U)(x,1)0, xe€082, te(0,7),

and

h(t) (g — Q) (1) = Zkk(w, e (-0 = UG, 1), ex). (5.12)

k=1

Using Corollary 2, we get
lu = Ullyr < e1srT** (i = Ullyr + 11g = Qllcro.r). (5.13)
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Further, by (K3), (5.12), and (5.13), we have

o 172 00 172
lg — Qllcro.ry < ho (Z(w, ek)2> max ( MGty = UG D, ek)2>
k=1

0<t<T
k=1 -

= holloll 2@ lu = Ullcqo,rin22)) = hollwll2g)llu = Ullxr

< eisT*rhollol 2y (ld = Ullyr + 14 = Qlicio.r)- (5.14)
Therefore, by (5.13) and (5.14), we obtain
I =U,q = Qllys < MrT* I~ 0,G - O)llyr- (5.15)

Hence we can choose sufficiently small 7, > 0 such that

MrT* < (5.16)

N =

forall T € (0, 12] to obtain

o 1 - _
15G. q) = S, Dllyy = SW@=U.q = Dlly- (5.17)

Estimates (5.10) and (5.17) show that S is a contraction map on B, 7 forall T € (0, 7],
if we choose T < min{1, 7y, 12} O

6 Proof of the main results

In this section, we give proof of the global in time uniqueness of solutions to our
inverse problem, i.e., Theorem 1.

Proof of Theorem 1 For S is a contraction map on B, 7 forall T € (0, t], the Banach
fixed point theorem concludes that there exists a unique solution (#, g) € X g xC[0, T]
of the inverse problem (4.31) and (4.32).

Next we show that we could extend the solution (u, ¢) in (0, 7] to a larger interval
[, 27]. To do this, we consider

3%v(x, 1) — Av(x, 1) = p(Hv(x, 1) + f(x,1), (x,1) € QF,
vix,t)+ Bv(x,T) =ulx, )+ Bux,T), x e 6.1)
v(x,1) =0, x€d, te(t,T),
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and

h(0)p(t) = (3%h) (1) — /9 w(x) f(x, Hdx

+Z)»k(w,ek)(v(~,t),ek), telr, T] (6.2)
k=1

Obviously, if we prove that there exists a solution (v, p) € Y,T with some T > 27,
then (i1, ¢) defined by

. rero.1,

| w.p). telr2r] (6.3)

(i, q)

is a solution of the inverse problem (4.31) and (4.32) on the larger interval [0, 27].
We repeat a similar fixed pointed argument to prove the existence of (v, p). Define
an operator

K:Bir—Yl. (@.p)— (v.p) (6.4)
with (0, p) € Bs.r, where

Bir= {(.p) eyl v(x,1)+pox, T) =u(x, 1)+ Pu(x,T), x € 2
U(x,1) =0, x €32, t € (t,T), |0lyr + Iplcrery <7}

Here v is the solution to the initial and boundary value problem

v (x, 1) — Av(x, 1) = p()v(x, 1) + f(x,1), (x,1) € QF,
vix,t)+ Bv(x,T) =ulx,7)+ Bux,T), x €2 (6.5)
v(x,t) =0, xe€d2, te(r,T).

Furthermore, p is the solution of (6.2) in terms of v. Additionally, we have F(x, t) =

pOD(x, 1) + f(x, 1) € C(I0, T1; DU(—A))), u(-, v), u(-, T) € H*(£2). In fact, the

first property comes from (5.4), according to Corollary 2 the functions u(-, ), u(-, T)

the same as (5.4) at ¢t € {, T}, therefore we can conclude that u(-, ) € H*(£2).
Besides, by (4.30) we have

lollxr < e[l Dl + Bluc, Dllgg) + (T = D@ + M) ©66)
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and from (6.2) via (K1), (K3), (K5) we get

Iplicre,T1 < ho {Ilaf‘hllch,T] + ||60||L2(_Q)[llfllC([r,T];D((—A)S))
+eiz(luC, Ollp2ey + Blul, Tllg2o)
(T — )% (2 + M))] } 6.7)
We set T — 7 < 1. Then using (6.8) and (6.9), we have

1K@, p)llyr < ho(I107 hllcre. 11 + llwll L2y | f e e, 71 D= a)e))) +
terzholloll 2 + D146 Dl

Bl Dl + (M +F(T =0 | (68)
and by a similar calculation to (5.15), we have
IK (@1, p1) — K02, p2)llyr < M(T — O)**||(91 — V2, p1 — p2)llyr.  (6.9)
where M is the same as the ones in Lemma 8. We choose 7 such that 7 > r and

ho(I16¢h llce.r1 + @l 2@ | Flleqe. 1 pi— ) +

N

+c3(holloliz2g) + D(luC, Dl g2y + lut, Dllg2g)) <

It is easy to see that if we choose 7 larger, then we could get larger T — 7 to satisfy

;
M(T =0 (Dl + 16 D)) < 5 (6.10)
Furthermore noticing that (6.12) and (5.16) we have the same structure, we can chgose
T — t = t to satisfy (6.12), which yields | K (z, ‘})”YTT <r,ie. K(B;r) C Brr.
Additionally,

L. L. Lo
1K G, 1) — K, q2)llyr = 1@ — 2, g1 = g2)llyr (6.11)

for T = 271, because (6.11) is the same as (5.17), if we replace T in (5.17) by T — 7.
Hence we prove that K is a contraction operator on Ig’;,r for T = 27.

Repeating the extension process limited times, we could obtain a solution (u, g) €
X g x C[0, T'] of the inverse problem (4.31) and (4.32) for any 7. Lemma 7 shows that
the inverse problem (4.31) and (4.32) is equivalent to the inverse problem (2.1)—(2.4).
Consequently, the inverse problem (2.1)—(2.2) also admits a unique solution (u, ¢) in
the space XOT x C[0, T] for any T. O
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Proof of Theorem 2 By Lemma 7, we know that our inverse problem is equivalent to
the inverse problem (4.31) and (4.32). Hence in the following proof, we turn to prove
the uniqueness of the solution to (4.31) and (4.32).

We set (i1, §) = (u1 — uz, q1 — ¢2) and

o = inf [r € (0. 71 1@ @)y > o} . (6.12)
It suffices to prove that o = T'.

If (6.12) is not true, then we have 0 < T. Choose [ suchthat 0 <[ < T — 0. Next,
we consider

0%ii(x, 1) — Ali(x, 1) = F(x,1), (x,1) € Q7
iu(x,o)+ Bu(x,o0 +1)=0, x e, (6.13)
u(x,t) =0, x€0d82, t € (o,0+1),

and

h(G() =Y Mo, )@ 1), ex), t€lo,o+1], (6.14)
k=1

where
F(x,1) = q(0alx, 1) + §Oua(x, ).

By (4.23), we can write the solution # as
0 T
ux,t) = Z/ Gi(t,s)(F(-,s),ex)ds, telo,o+I]. (6.15)
0
k=1

Then similar to the proof of Corollary 2, we have

il go+e < 13l N F o0 +11: D)) (6.16)

and

o<t<o+l

o0
max ‘Zkk(w,ek)(ﬁ(wt),ek) < Mlolli2@)llil e o,0+11; 52 (2))
k=1

< lloll 2@l go+t < MI*|Fllc(io.0411: D)) (6.17)

with the same M in Lemma 6 and estimates (5.3). By (5.3), and noting that (u#1, 1) =
(u2, q2) on [0, o], we have

I Flleo.0+11: D~y = M|lill o1 + 11 clo.o+11) (6.18)
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which yields, together with (6.16), that
lill g+ < MI* (il xo+t + 14l Clo,o+1)- (6.19)

On the other hand, by (6.14), (6.17), and (6.18) we have the following estimate for ¢

I4llcto.o+n1 < Mhol** (lill xo+t + Gl clo.o+1)- (6.20)
Therefore, by (6.19) and (6.20) we have

1t llyot < MI% G Gl yos
implying
G )llyip =0

for some sufficiently small positive constant /y. This means that (u; — g1, u> — g2)

vanishes in some neighborhood of . But this is not compatible with the definition of
o. We conclude thato = T'.

At the end of this section, consider the following example.
Example 1 Let B = 1. Consider the case n = 1 and Qg =(0,1) x (0, T =m), and
A= —8%. We consider the following inverse problem
0%u — 02u = q(tyu +2 sin(nx)[zl—“Ez,z_a(—ﬂ)

+@+sing) (72 = (1+1)e™) ]
u(x,0) + u(x, ) = 8sin(rx), u(0.1) =u(l,1)=0, te(,x), ©2D

1
[ sin(x)u(x, r)dx =2+ sint, t €0, m].
0

Note, that the all given data satisfy conditions (K1)-(K5). Furthermore, according
to Theorem 1, using the given data, there exists a unique solution to the above inverse
problem, and from Lemma 7, it has the form

u(x,t) =22 +sint)sin(rx), q@) = (1+1)e". (6.22)

Now, let 7 = 27 and using (6.21) and (6.22), we consider the following problem

3% — 820 = p( + 2sin(nx)[t1*aE2,2_a(—t2)
+Q+sinn) (72 = (1 + e ™) |,

v(x, )+ v(x,27) = 8sin(wrx), v(0,t) =v(l,t) =0, e (m,2m),
1
[ sin(mx)v(x, 1)dx =2 +sint, t € lm,2m].
0

(6.23)

@ Springer



D. Durdiev, A. Rahmonov

We can easily see that, as above, v(x, t) = 2(2 + sint) sin(wrx), p(t) = (1 +t)e™’
is a solution of the problem (6.23). Therefore, we can continue the same process for
any T = mn, where n € N.

7 Conclusions

This paper investigated the multi-dimensional fractional-diffusion equation with
Robin-type initial and Dirichlet boundary conditions. We derived Green’s function
and corresponding integral operator and then examined the fixed point theorem for the
operator. Theorems of global existence and uniqueness of the solution to the inverse
problem are proved.
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