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Abstract
In this work, we consider an inverse problem of determining the coefficient at the
lower termof a fractional diffusion equation. The direct problem is the initial-boundary
problem for this equationwith non-local initial and homogeneousDirichlet conditions.
To determine the unknown coefficient, an overdetermination condition of the integral
form is specified with respect to the solution of the direct problem. Using Green’s
function for an ordinary fractional differential equation with a non-local boundary
condition and the Fourier method, the inverse problem is reduced to an equivalent
problem. Further, by using the fixed-point argument in suitable Sobolev spaces, the
global theorems of existence and uniqueness for the solution of the inverse problem
are obtained.

Keywords Nonlocal problems · The Caputo derivative · Subdiffusion equation ·
Inverse problem · Sobolev spaces · Mittag-Leffler functions
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1 Introduction

At present, in almost every area of modern technology and research, methods and
tools of fractional calculus are used. Many fractional calculus applications have been
successful because these new fractional-order models are often more accurate than
integer-order models, i.e., the fractional-order model has more degrees of freedom
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than its classical analogue. Because of its ability to handle the dynamics of non-integer
orders, fractional calculus is a powerful tool for explaining the memory and hereditary
characteristics of various materials and processes. The theory of fractional calculus
has been developed rapidly in many fields of science since the 19th century, including
fractional geometry, fractional differential equations, and fractional dynamics due
to its wide range of applications [1]–[3]. For example, in such areas as rheology,
viscoelasticity, acoustics, optics, chemical, and statistical physics, robotics, control
theory, electrical engineering, mechanical engineering, and bioengineering there have
widely applied the fractional calculus [4]–[6].

Recently, it has increased extensive attention on inverse potential problems for time-
fractional diffusion equations. Henceforth the inverse potential problems have been
analyzed in many works [7]–[17] and references therein. Sun et al [7]–[9] investigated
the uniqueness in determining the fractional order(s) and the potential simultaneously
for the single-term and multi-term time-fractional diffusion equations, respectively,
and gave a valid numerical method. Zhang and Zhou [10] considered an inverse
potential term problem from the overdetermined final time data and gave an effi-
cient regularized iterative algorithm based on mollification in the one-dimensional
case. Wenjun Ma and Liangliang Sun [11] studied an inverse potential problem from
an additional integral measured data over the domain. The well-posedness of the
forward problemwas investigated by using thewell-knownRothe’smethod and recov-
ered numerically the unknown coefficient by an iterative Tikhonov regularization
method. Durdiev et al [12]–[15] analyzed inverse problems of determining unknown
coefficients in the Cauchy problem for the fractional diffusion-wave equation. Local
existence and uniqueness as a whole are proved and estimates of conditional stabil-
ity are obtained. In addition, the inverse problems for the determination of potential
terms from the generalized fractional derivative diffusion-wave equation is rapidly
developing. For example, Durdiev and Turdiev [16], [17] studied inverse problems of
determining the time-dependent coefficient in the fractional wave equation with Hilfer
(generalized Riemann-Liouville) derivative. In these works, similar results to those
mentioned above were obtained.

In the above literature, it is mainly the inverse potential problems of a single term
for the time-fractional diffusion equations with initial conditions considered naturally.
However, it does not involve cases including a fractional derivative, a nonlinear source
and a nonlocal initial condition. This is because some traditional skills for the direct
problem, such as well-posedness, the Banach fixed point method. We also point out
recent papers [18]–[24] in which new classes of inverse problems of determining the
time-dependent source and unknown order of the fractional derivative are investigated
for various types of additional conditions. However, in all of the non-linear work
mentioned above, results of local solvability have been obtained.

In this paper, we focus on an inverse time-dependent potential problem by the
integral data over the domain. We first investigate the well-posedness of the direct
problem by employing Fourier’s method. Further, we use the Banach fixed point
theorem, the Gauss-Seidel method and the coerciveness of the fractional derivative
to obtain the existence and uniqueness of the inverse problem, and also illustrate an
example. Furthermore, one of the main achievements of the paper is the result of the
global solvability of the inverse problem with nonlocal initial conditions.
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The rest of the paper is structured as follows: In the next section, we formulate the
direct and inverse problems that will be investigated in this paper. Here we will also
provide the necessary information from functional analysis and the theory of fractional
calculus, which will be used throughout this thesis. At the end of this section, we will
formulate themain results. Section 3 is devoted to constructingGreen’s function for the
boundary problem of the linear ordinary fractional equation with nonlocal boundary
conditions. Green’s function will serve as a substitute for the eigenfunctions of the
uniform elliptic operator in the construction of a solution to the direct problem. In
Section 4, we will consider the solvability of the direct problem and construct a priori
estimates that will be used in the investigation of an inverse problem, in addition, an
equivalent formulation of the inverse problem is presented. Using the equivalent form
and the contraction mapping principle, the result on the local in-time existence and
uniqueness of solutions is established in Section 5. The main result of the paper is
proved by the method of continuation of the solution in Section 6.

2 Formulation of problem and preliminaries

Let Ω be a bounded domain in Rn with sufficiently smooth boundary ∂Ω . Consider
the following fractional-diffusion equation in QT

0 := {(x, t) : x ∈ Ω ⊂ Rn, 0 < t <

T }:
(
∂α
t u

)
(x, t) = Au(x, t) + q(t)u(x, t) + f (x, t), (x, t) ∈ QT

0 , (2.1)

with the Gerasimov–Caputo time fractional derivative ∂α
t of order 0 < α < 1, defined

by

(
∂α
t y

)
(t) =

(
I 1−α
0+ y′) (t) = 1

Γ (1 − α)

∫ t

0
(t − τ)−α y′(τ )dτ, y ∈ W 1,1(0, T ),

where I α
0+ is the Reimann-Liouville fractional integral of order α, that is

(
I α
0+y

)
(t) = 1

Γ (α)

∫ t

0
(t − s)α−1y(s)ds,

andΓ (·) is the Gamma function and the operator−A is a symmetric uniformly elliptic
operator defined on D(−A) = H2(Ω) ∩ H1

0 (Ω) given by

Au(x, t) =
n∑

i=1

∂

∂xi

⎛

⎝
n∑

j=1

ai j (x)
∂

∂x j
u(x, t)

⎞

⎠ , (x, t) ∈ QT
0 ,

in which the coefficients satisfy
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ai j = a ji , 1 ≤ i, j ≤ n, ai j ∈ C1(Ω̄),

ν1

n∑

i=1

|ξi |2 ≤
n∑

i, j=1

ai j (x)ξiξ j

≤ ν2

n∑

i=1

|ξi |2, x ∈ Ω̄, ξ ∈ Rn, ν1, ν2 > 0.

We supplement the equation (2.1) with the nonlocal initial condition

u(x, 0) + βu(x, T ) = ϕ(x), x ∈ Ω, (2.2)

the boundary condition

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), (2.3)

and integral condition of the first kind

∫

Ω

ω(x)u(x, t)dx = h(t), 0 ≤ t ≤ T , (2.4)

where β ≥ 0 and f (x, t), ϕ(x), ω(x), h(t) are known functions. Besides, h(t) is the
measurement data representing the average temperature on a small part of Ω , because
the weight functionω(x) is usually chosen to satisfy supp(ω) ⊂ Ω in applied sciences
[26]. Now we pass to a rigorous statement of the main problem of our paper. If the
function q(t) is known, then the initial-boundary value problem (2.1)–(2.3) is called
the direct (forward) problem.

We investigate the following inverse problem:
Inverse problem.Find (u, q) ∈ C

([0, T ]; H2(Ω)
)×C[0, T ] to satisfy (2.1)–(2.3)

and the additional condition (2.4).
For the convenience of the reader, we present here the necessary definitions from

functional analysis and fractional calculus theory.
For integers m, we denote Hm(Ω) = Wm,2(Ω) (see [27]) and Hm

0 (Ω) is the
closure of C∞

0 (Ω) in the norm of space Hm(Ω). For a given Banach space V on Ω ,
we use the notation Cm([0, T ]; V ) to denote the following space:

Cm([0, T ]; V ) :=
{
u : ‖∂ j

t u(t)‖V is continuous in t on [0, T ] for all 0 ≤ j ≤ m
}

.

We endow Cm([0, T ]; V ) with the following norm making it to be a Banach space:

‖u‖Cm ([0,T ];V ) =
m∑

j=0

(
max
0≤t≤T

‖∂ j
t u(t)‖V

)
.

In addition, we define Banach space XT
0 by

XT
0 := C([0, T ]; H2(Ω)).
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Furthermore, we set

Y T
0 = XT

0 × C[0, T ]

endowed with the norm

‖(u, q)‖Y T
0

:= ‖u‖XT
0

+ ‖q‖C[0,T ].

It is well-known that the operator −A has only real and simple eigenvalues λk , and
with suitable numbering,wehave0 < λ1 < λ2 < · · · , lim

k→∞ λk = ∞. By ek ,wedenote

the eigenfunction corresponding to λk , which satisfies ‖ek‖2L2(Ω)
= (ek, ek) = 1,

where (·, ·) denotes the inner product in the Hilbert space L2(Ω) and λk, ek satisfy
−Aek = λkek, ek(x) = 0, x ∈ ∂Ω, {ek} ⊂ H2(Ω)∩ H1

0 (Ω) is an orthonormal basis
of L2(Ω). Then for γ ∈ R, we define a Hilbert space D((−A)γ ) by

D((−A)γ ) :=
{
u ∈ L2(Ω) :

∞∑

k=1

λ
2γ
k |(u, ek)|2 < ∞

}
, (−A)γ u =

∞∑

k=1

λ
γ

k (u, ek)ek

with the norm

‖u‖D((−A)γ ) =
( ∞∑

k=1

λ
2γ
k |(u, ek)|2

)1/2

(see, e.g. [28]). We note that the norm ‖u‖D((−A)γ ) is stronger than ‖u‖L2(Ω) for

γ > 0. Then, we have D((−A)γ ) ⊂ H2γ (Ω) for γ > 0. In particular, D((−A)
1
2 ) =

H1
0 (Ω). Since D((−A)γ ) ⊂ L2(Ω), identifying the dual (L2(Ω))′ which itself, we

have D((−A)γ ) ⊂ L2(Ω) ⊂ (D((−A)γ ))′. We set D((−A)−γ ) = (D((−A)γ ))′,
which consists of bounded linear functionals on D((−A)γ ). For u ∈ D((−A)γ ) and
ϕ ∈ D((−A)γ ), the value obtained by operating u to ϕ is denoted by 〈·, ·〉−γ,γ .
D((−A)−γ ) is a Hilbert space with the norm:

‖ϕ‖D((−A)−γ ) =
( ∞∑

k=1

λ
−2γ
k |〈u, ek〉−γ,γ |2

) 1
2

.

We further note that

〈u, ϕ〉−γ,γ = (u, ϕ) if u ∈ L2(Ω) and ϕ ∈ D((−A)γ )

(see e.g., [25], Chapter V in [31]).
Let us remind the definition of the Mittag-Leffler function in [30]:

Eρ,μ(z) =
∞∑

k=0

zk

Γ (ρk + μ)
, z ∈ C
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with Re(ρ) > 0 and μ ∈ C. It is known that Eρ,μ(z) is an entire function in z ∈ C.
If the parameter μ = 1, then we have the classical (one-parameter) Mittag-Leffler
function: Eρ(z) = Eρ,1(z).

In what follows we need the asymptotic estimate of the Mittag-Leffler function
with a sufficiently large negative argument. The well-known estimate has the form
(see, e.g., [29], p.136)

|Eρ,μ(−t)| ≤ C

1 + t
, t > 0. (2.5)

This estimate essentially follows from the following asymptotic estimate (see, e.g.,
[29], p.134)

Eρ,μ(−t) = t−1

Γ (μ − ρ)
+ O(t−2). (2.6)

For the Mittag-Leffler function with two parameters Eρ,ρ(−t) one can obtain a
better estimate than (2.5). Indeed, using the asymptotic estimate (see, e.g., [29], p.134)

Eρ,ρ(−t) = − t−2

Γ (−ρ)
+ O(t−3), (2.7)

and the fact that Eρ,ρ(−t) is a real analytic, we can obtain the following inequality
(see, [20])

|Eρ,ρ(−t)| ≤ C

1 + t2
, t > 0. (2.8)

We will also use a coarser estimate with positive number λ and 0 < ε < 1:

∣
∣∣tρ−1Eρ,ρ(−λtρ)

∣
∣∣ ≤ Ctρ−1

1 + (λtρ)2
≤ Cλε−1tερ−1, t > 0, (2.9)

which is easy to verify (see, [20]).

Proposition 1 Let 0 < ρ < 1. Then

Eρ(x) > 0,
d

dx
Eρ(x) > 0, x ∈ R.

Moreover, the Mittag-Leffler function of negative argument Eρ(−x) is monotonically
decreasing function for all 0 < ρ < 1 and

0 < Eρ(−x) < 1.
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Proposition 2 (see [25]) For λ > 0, α > 0 and positive integer m ∈ N, we have

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0

and

d

dt

(
t Eα,2(−λtα)

) = Eα,1(−λtα), ∂α
t (Eα,1(−λtα)) = −λEα,1(−λtα), t ≥ 0.

It is known (see [30], p. 96) that the following lemma holds.

Lemma 1 If y(t) belong to Cn[0, T ] or Wn,1(0, T ), then for c j ∈ R we have

(
I α
0+∂α

t y
)
(t) = y(t) − c0 − c1t − c2t

2 − ... − cn−1t
n−1, n − 1 < α ≤ n.

We now define a weak solution to (2.1)–(2.3), which is similar to the introduced in
[25].

Definition 1 We call u(x, t) a weak solution to (2.1)–(2.3) if (2.1) holds in L2(Ω)

and u(·, t) ∈ H1
0 (Ω) for almost all t ∈ (0, T ) and u ∈ C([0, T ]; D((−A)−γ )),

lim
t→0

‖u(·, t) + βu(·, T − t) − ϕ‖D((−A)−γ ) = 0

with some γ > 0.

We make the following assumptions:

(K1) ϕ ∈ H2(Ω) ∩ H1
0 (Ω), f ∈ C([0, T ]; D(−A)ε) where 0 < ε < 1;

(K2) h(0) + βh(T ) = (ω, ϕ);
(K3) ∂α

t h ∈ C[0, T ] satisfies the following inequality:

|h(t)| ≥ 1

h0
> 0, for all t ∈ [0, T ],

where h0 is a positive constant;

(K4) γ > n
4 − ε − 1 for n > 3;

(K5) ω(x) ∈ L2(Ω).

Remark 1 (K2) is the consistency condition for our problem (2.1)–(2.4), which guar-
antees that the inverse problem (2.1)–(2.4) is equivalent to (4.31) and (4.32) (see
Lemma 7).

Our main results in this paper are the following existence and uniqueness theorems
on the inverse problem solution.

Theorem 1 Under hypotheses (K1)-(K5), there exists a solution (u, q) ∈ Y T
0 of the

inverse problem (2.1)–(2.4) for any T > 0.

Theorem 2 Let T > 0. Under hypotheses (K1)-(K5), if the inverse problem (2.1)–(2.4)
has two solutions (ui , qi ) ∈ Y T

0 (i = 1, 2), then (u1, q1) = (u2, q2) for 0 ≤ t ≤ T .
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3 Construction of the Green function

In this section, wewill construct a formal solution to the ordinary fractional differential
equation with nonlocal boundary conditions, which will be used in the proof of our
main results.

To study problem (2.1)–(2.4), we consider the following fractional differential
equation

(
∂α
t y

)
(t) = γ (t)y(t), 0 < t < T , (3.1)

with the boundary conditions

y(0) + β y(T ) = 0, (3.2)

where β ≥ 0 are fixed numbers, γ (t) ∈ C[0, T ] is given function, and y = y(t) is
desired function.

Now, we give a new construction method of Green’s function for the boundary
value problem (3.1)–(3.2).

Lemma 2 The fractional order boundary value problem (3.1) is equivalent to the
integral equation

y(t) =
∫ T

0
G0(t, s)γ (s)y(s)ds, (3.3)

where Green’s function G0 is defined by

G0(t, s) = 1

Γ (α)

{
− 1

1+β

(
β(T − s)α−1 − (1 + β)(t − s)α−1

)
, s ∈ [0, t),

− β
1+β

(T − s)α−1, s ∈ (t, T ].
(3.4)

Proof Let y ∈ C1[0, T ] or W 1,1(0, T ). Then, using Lemma 1, we have

y(t) = c0 + 1

Γ (α)

∫ t

0
(t − s)α−1γ (s)y(s)ds, (3.5)

where c0 is a real constant. Now, by employing the condition (3.2) we can obtain the
coefficient c0 as follow

c0 = − β

(1 + β)Γ (α)

∫ T

0
(T − s)α−1γ (s)y(s)ds.
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Therefore, the solution of (3.1), (3.2) is

y(t) = − β

(1 + β)Γ (α)

∫ T

0
(T − s)α−1γ (s)y(s)ds + 1

Γ (α)

∫ t

0
(t − s)α−1γ (s)y(s)ds

=
∫ t

0

(
(t − s)α−1

Γ (α)
− β

(1 + β)Γ (α)
(T − s)α−1

)
γ (s)y(s)ds

− β

(1 + β)Γ (α)

∫ T

t
(T − s)α−1γ (s)y(s)ds =

∫ T

0
G0(t, s)γ (s)y(s)ds.


�
Lemma 3 Suppose that the function γ (t) is continuous on the interval [0, T ]. If β ≥ 0
and

ρ0 := 1 + 2β

(1 + β)Γ (1 + α)
T α‖γ ‖C[0,T ] < 1, (3.6)

then problem (3.1), (3.2) has only a trivial solution.

Proof From Lemma 2, we can conclude that the problem (3.1), (3.2) is equivalent to
the integral equation (3.3).

Let us introduce the notation

P(y(t)) =
∫ T

0
G0(t, s)γ (s)y(s)ds. (3.7)

Then the equation (3.3) can be rewritten as

y(t) = P(y(t)). (3.8)

The operator P is continuous in the space C[0, T ]. Indeed, for y(t) ∈ C[0, T ], we
have

|P(y(t))| ≤
∫ T

0
|G(t, s)γ (s)y(s)| ds ≤ ρ0‖y‖C[0,T ],

that is, operator P is bounded. Hence, it is continuous.
Now we prove that P is a contraction operator in the space C[0, T ]. It is easy to

see that the inequality

‖P(y1(t)) − P(y2(t))‖C[0,T ] ≤ ρ0‖y1(t) − y2(t)‖C[0,T ] (3.9)

holds for any functions y1(t), y2(t) ∈ C[0, T ].
In view of (3.6) and (3.9) it is clear that the operator P is contractive in C[0, T ].

Therefore, the operator P has a unique fixed point y(t) in the space C[0, T ] which is
a solution of equation (3.8). Thus, the integral equation (3.3) has a unique solution in
C[0, T ]. Consequently, problem (3.1), (3.2) also has a unique solution in the indicated
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space. Since y(t) = 0 is a solution to problem (3.1) and (3.2), it follows that this
problem has a unique trivial solution. 
�
Lemma 4 Assume β ≥ 0. Then, the solution to the boundary-value problem

(
∂α
t y1

)
(t) + λy1(t) = f (t), t > 0,

y1(0) + β y1(T ) = a

with 0 < α < 1 and λ, a ∈ R has the form

y1(t) = a

ρ(T )
Eα,1(−λtα) +

∫ T

0
G(t, s) f (s)ds,

where

G(t, s) = − 1

ρ(T )

⎧
⎪⎨

⎪⎩

β(T − s)α−1Eα,α(−λ(T − s)α)Eα,1(−λtα)

−ρ(T )(t − s)α−1Eα,α(−λ(t − s)α), s ∈ [0, t)
β(T − s)α−1Eα,α(−λ(T − s)α)Eα,1(−λtα), s ∈ (t, T ].

The proof of this Lemma 4 is analogical to the proof of Lemma 2. 
�

4 Direct Problem

This section will study the direct problem (2.1)–(2.3). We first consider the following
initial boundary problem

⎧
⎪⎨

⎪⎩

∂α
t u(x, t) − Au(x, t) = F(x, t), (x, t) ∈ QT

0 ,

u(x, 0) + βu(x, T ) = ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T .

(4.1)

Let uk(t) = (u(·, t), ek) , k ≥ 1. Assume that problem (4.1) has a unique solution
u which is given by

u(x, t) =
∞∑

k=1

uk(t)ek(x), (4.2)

where uk, (k = 1, 2, ...) are solutions of the nonlocal problems:

(
∂α
t uk

)
(t) + λkuk(t) = Fk(t), 0 < t < T , (4.3)

uk(0) + βuk(T ) = ϕk, (4.4)

where Fk(t) = (F(·, t), ek) , ϕk = (ϕ, ek) . Using Lemma 4, we have

uk(t) = ϕk

ρk(T )
Eα,1(−λk t

α) +
∫ T

0
Gk(t, s)Fk(s)ds,
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where ρk(T ) is ρ(T ) with λk instead of λ.
Thus, we have

u(x, t) =
∞∑

k=1

(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)ek(x)

+
∞∑

k=1

( ∫ T

0
Gk(t, s)(F, ek)(s)ds

)
ek(x). (4.5)

Based on the method of [25], we will prove the well-posedness of the problem (4.1).
We first split (4.1) into the following two initial and boundary value problems:

⎧
⎪⎨

⎪⎩

∂α
t v(x, t) − Av(x, t) = 0, (x, t) ∈ QT

0 ,

v(x, 0) + βv(x, T ) = ϕ(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, 0 < t < T ,

(4.6)

and

⎧
⎪⎨

⎪⎩

∂α
t w(x, t) − Aw(x, t) = F(x, t), (x, t) ∈ QT

0 ,

w(x, 0) + βw(x, T ) = 0, x ∈ Ω,

w(x, t) = 0, x ∈ ∂Ω, 0 < t < T .

(4.7)

Lemma 5 (i) Let ϕ ∈ L2(Ω). Then there exists a unique weak solution v ∈
C([0, T ]; L2(Ω))∩C((0, T ]; H2(Ω)∩H1

0 (Ω)) to (4.6)with ∂α
t v ∈ C((0, T ]; L2(Ω)).

Moreover, there exists a constant c1 > 0 satisfying

{
‖v‖C([0,T ];L2(Ω)) ≤ ‖ϕ‖L2(Ω),

‖v(·, t)‖H2(Ω) + ‖∂α
t v(·, t)‖L2(Ω) ≤ c1t−α‖ϕ‖L2(Ω),

(4.8)

and we have

v(x, t) =
∞∑

k=1

(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)ek(x) (4.9)

in C([0, T ]; L2(Ω)) ∩ C((0, T ]; H2(Ω) ∩ H1
0 (Ω)).

(ii) We assume that ϕ ∈ H1
0 (Ω). Then the unique weak solution v further belongs

to L2(0, T ; H2(Ω) ∩ H1
0 (Ω)), ∂α

t v ∈ L2(QT
0 ) and there exists a constant c2 > 0

satisfying the following inequality:

‖v‖L2(0,T ;H2(Ω)) + ‖∂α
t v‖L2(QT

0 ) ≤ c2‖ϕ‖H1(Ω) (4.10)

and we have (4.9) in the corresponding space on the right-hand side of (4.10).
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(iii) Let ϕ ∈ H2(0, 1) ∩ H1
0 (0, 1). Then the unique weak solution v belong to

C([0, T ]; H2(Ω) ∩ H1
0 (Ω)), ∂α

t v ∈ C([0, T ]; L2(Ω)) ∩ C((0, T ]; H1
0 (Ω)) and the

following inequality holds:

‖v‖C([0,T ];H2(Ω)) + ‖∂α
t v‖C([0,T ];L2(Ω)) ≤ c3‖ϕ‖H2(Ω) (4.11)

and we have (4.9) in the corresponding space on the right-hand side of (4.11).

Proof (i)Wewill show that v(x, t) certainly gives the weak solution to (4.6). It is easy
to see that from the definition of β and Proposition 1, we have

ρk(T ) = 1 + βEα,1(−λkT
α) ≥ 1, ∀k ∈ N.

Taking into account this relation and Proposition 1, we obtain

‖v(·, t)‖2L2(Ω)
=

∞∑

k=1

∣∣∣
∣
(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)

∣∣∣
∣

2

≤ ‖ϕ‖2L2(Ω)
(4.12)

and this is the first inequality of (4.8).
Moreover, by (2.5), we have

‖Av(·, t)‖2L2(Ω)
=

∞∑

k=1

∣∣∣∣λk
(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)

∣∣∣∣

2

≤ C2t−2α‖ϕ‖2L2(Ω)
, (4.13)

for t > 0. In (4.12), since
∞∑
k=1

(ϕ,ek)
ρk(T )

Eα,1(−λk tα)ek is convergent in L2(Ω) uni-

formly in t ∈ [0, T ], we see that u ∈ C([0, T ]; L2(Ω)). Moreover in (4.13), since
∞∑
k=1

λk
(ϕ,ek )
ρk (T )

Eα,1(−λk tα)ek is convergent in L2(Ω) uniformly in t ∈ [ε, T ] with any

given ε > 0, we see that Av ∈ C((0, T ]; L2(Ω)), that is v ∈ C((0, T ]; H2(Ω) ∩
H1
0 (Ω)). Therefore we obtain that v ∈ C([0, T ]; L2(Ω)) ∩ C((0, T ]; H2(Ω) ∩

H1
0 (Ω)). By (4.6) we see that ∂α

t v ∈ C((0, T ]; L2(Ω)).
We have to prove

lim
t→0

‖v(·, t) + βv(·, T − t) − ϕ‖L2(Ω) = 0. (4.14)

In fact,

‖v(·, t) + βv(·, T − t) − ϕ‖2L2(Ω)

=
∞∑

k=1

∣∣∣
(ϕ, ek)

ρk(T )

(
Eα,1(−λk t

α) + βEα,1(−λk(T − t)α) − ρk(T )
)

︸ ︷︷ ︸
S1k (t)

∣∣∣
2
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and lim
t→0

S1k(t) = 0 for each k ∈ N and

∞∑

k=1

(ϕ, ek)
2S21k(t) ≤ 3

∞∑

k=1

(ϕ, ek)
2
[(

C

1 + λk tα

)2

+
(

Cβ

1 + λk(T − t)α

)2

+
(
1 + Cβ

1 + λkT α

)2 ]
< ∞

for 0 ≤ t ≤ T and β ≥ 0. Then, the Lebesgue theorem yields (4.14).
Next, we prove the uniqueness of the weak solution to (4.6) within the class given

in Definition 1. Under the condition ϕ = 0, we have to prove that problem (4.6) has
only a trivial solution. Since ek(x) is the eigenfunctions to the following eigenvalue
problem:

(Aek)(x) = −λkek(x), x ∈ Ω, ek(x) = 0, x ∈ ∂Ω

in terms of the regularity of v, taking the duality pairing 〈·, ·〉−γ,γ of (4.6) with ek and
setting vk(t) = 〈v(·, t), ek〉−γ,γ , we obtain

∂α
t vk(t) = −λkvk(t), almost all t ∈ (0, T ).

Since v(·, t) ∈ L2(Ω) for almost all t ∈ (0, T ) and vk(t) ≡ 〈v(·, t), ek〉−γ,γ =
(v(·, t), ek), where 〈v(·, t), ek〉−γ,γ denotes the duality pairing between D((−A)−γ )

and D((−A)γ ), it follows from lim
t→0

‖v(·, t)+βv(·, T − t)‖D((−A)−γ ) = 0 that vk(0)+
βvk(T ) = 0. Due to the existence and uniqueness of the boundary-value problem for
the ordinary fractional differential equation (see, Lemma 3), we obtain that vk(t) =
0, k = 1, 2, .... Since {ek}k∈N is a complete orthonormal system in L2(Ω), we have
v = 0 in QT

0 .
Moreover, by (2.5), we have

‖v(·, t)‖2H2(Ω)
≤ c′

1‖Av(·, t)‖2L2(Ω)

≤ c′
1

∞∑

k=1

λ2k

∣∣∣∣
(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)

∣∣∣∣

2

≤ c′
1C

2t−2α‖ϕ‖2L2(Ω)
. (4.15)

From (4.12) and (4.15), we get the estimates (4.8).
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(ii) Let ϕ ∈ H1
0 (Ω). By (2.5), we have

‖v(·, t)‖2H2(Ω)
≤ c′

1‖Av(·, t)‖2L2(Ω)
≤ c′

1

∞∑

k=1

λ2k

∣∣∣
∣
(ϕ, ek)

ρk(T )
Eα,1(−λk t

α)

∣∣∣
∣

2

≤ c′
1

∞∑

k=1

∣∣∣λ
1
2
k (ϕ, ek)(λk t

α)
1
2 Eα,1(−λk t

α)

∣∣∣
2
t−α

≤ c′
1C

2
∞∑

k=1

∣∣∣
(
(−A)

1
2 ϕ, ek

) (λk tα)
1
2

1 + λk tα

∣∣∣
2
t−α ≤ c′

1C
2

4
‖ϕ‖2H1(Ω)

t−α.

(4.16)

By 0 < α < 1, we see ‖v‖L2(0,T ;H2(Ω)) ≤ c′
2‖ϕ‖H1(Ω). Therefore we have u ∈

L2(0, T ; H2(Ω) ∩ H1
0 (Ω)).

Since ∂α
t (Eα,1(−λk tα)) = −λk Eα,1(−λk tα) (e.g., [30], p. 98), we have

∫ T

0
‖∂α

t v(·, t)‖2L2(Ω)
dt =

∫ T

0

∞∑

k=1

|(ϕ, ek)|2
ρ2
k (T )

λ2k |Eα,1(−λk t
α)|2dt

≤ C2
∫ T

0

∞∑

k=1

(ϕ, ek)
2λk

(
(λk tα)

1
2

1 + λk tα

)2

t−αdt ≤ c′′
2‖ϕ‖2H1(Ω)

,

where we have used the following

max
y≥0

yθ

1 + y
=

(
θ

1−θ

)θ

1 + θ
1−θ

, 0 < θ < 1. (4.17)

By (4.6) we have ∂α
t v = Av, which yields ∂α

t v ∈ L2(QT
0 ). Thus the proof of

Lemma 5 (ii) is complete.
(iii) Let ϕ ∈ H2(Ω) ∩ H1

0 (Ω). Then by Proposition 1, we have

‖v(·, t)‖2H2(Ω)
≤ c′

3‖Av(·, t)‖2L2(Ω)

≤ c′
3

∞∑

k=1

λ2k(ϕ, ek)
2Eα,1(−λk t

α)2 ≤ c′
3‖ϕ‖2H2(Ω)

, t ≥ 0.

By (4.6) obtain

‖∂α
t v(·, t)‖2L2(Ω)

≤ c′′
3‖ϕ‖2H2(Ω)

, t > 0.

Combining the last two estimates, we get (3.5). This completes the proof of Lemma 5.

�

Using the above Lemma 5, we obtain the following result.
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Corollary 1 Let ϕ ∈ L2(Ω) and F = 0. Then for the unique weak solution v ∈
C([0,∞); L2(Ω)) ∩ C((0,∞); H2(Ω) ∩ H1

0 (Ω)) to (4.6), there exists a positive
constant c4 satisfying

‖v(·, t)‖L2(Ω) ≤ c4
1 + λ1tα

‖ϕ‖L2(Ω), t ≥ 0. (4.18)

Moreover, there exists a positive constant c5 such that

{
v ∈ C∞ (

(0,∞); L2(Ω)
)
,

‖∂mt v(·, t)‖L2(Ω) ≤ c5
tm ‖ϕ‖L2(Ω), t > 0, m ∈ N.

(4.19)

Proof By (2.5), we have

‖v(·, t)‖2L2(Ω)
=

∞∑

k=1

(ϕ, ek)2

ρ2
k (T )

Eα,1(−λk t
α)2 ≤

∞∑

k=1

(ϕ, ek)
2
(

C

1 + λk tα

)2

≤
(

C

1 + λ1tα

)2

‖ϕ‖2L2(Ω)
, t ≥ 0.

Further, by Proposition 2, we have

∂mt v(·, t) = −
∞∑

k=1

(ϕ, ek)

ρk(T )
λk t

α−mEα,α−m+1(−λk t
α)ek

for m ∈ N and t > 0, so that

‖∂mt v(·, t)‖2L2(Ω)
≤ C2

∞∑

k=1

(ϕ, ek)
2
(

λk tα

1 + λk tα

)2

t−2m ≤ C2

t2m
‖ϕ‖2L2(Ω)

.


�
Now, we study the problem of (4.7) and we have:

Lemma 6 Let ϕ = 0 and F ∈ C([0, T ]; D((−A)ε)), where 0 < ε < 1. Then there
exists a unique weak solution w ∈ C([0, T ]; H2(Ω) ∩ H1

0 (Ω)) to (4.7) such that
∂α
t w ∈ C([0, T ]; L2(Ω)). In particular, for any γ satisfying (K4), we have w ∈
C([0, T ]; D((−A)−γ )),

lim
t→0

‖w(·, t) + βw(·, T − t)‖D((−A)−γ ) = 0 (4.20)

and if n = 1, 2, 3, then

lim
t→0

‖w(·, t) + βw(·, T − t)‖L2(Ω) = 0. (4.21)
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Moreover, there exists a constant c6 > 0 such that

‖w‖C([0,T ];H2(Ω)) + ‖∂α
t w‖C([0,T ];L2(Ω)) ≤ c6‖F‖C([0,T ];D((−A)ε)) (4.22)

for all t ∈ [0, T ] and we have

w(x, t) =
∞∑

k=1

ek(x)
∫ T

0
Gk(t, s)(F(·, s), ek)ds (4.23)

in the corresponding space on the right-hand side of (4.22).

Proof Here we will show only regularity and estimate (4.22). We rewrite the standard
form of (4.23) as follows:

w(x, t) =
∞∑

k=1

ek(x)
∫ t

0
(F(·, s), ek)(t − s)α−1Eα,α(−λk(t − s)α)ds

−
∞∑

k=1

βEα,1(−λk tα)

ρk(T )
ek(x)

∫ T

0
(T − s)α−1Eα,α(−λk(T − s)α)(F(·, s), ek)ds

=: I1 + I2.

By (2.5) and (2.9) for any 0 < ε < 1, we have

‖I1(·, t)‖2H2(Ω)
≤

∞∑

k=1

λ2k

∣∣∣∣

∫ t

0
(t − s)α−1Eα,α(−λk(t − s)α) (F(·, s), ek) ds

∣∣∣∣

2

≤
∞∑

k=1

max
0≤s≤t

∣
∣((−A)εF(·, s), ek)

)∣∣2
∣∣
∣∣

∫ t

0
sεα−1ds

∣∣
∣∣

2

≤ c10‖F‖2C([0,t];D((−A)ε))t
2εα, t ∈ [0, T ]. (4.24)

Similarly, we have

‖I2(·, t)‖2H2(Ω)

≤
∞∑

k=1

λ2k

(
βC

1 + λk tα

)2 ∣∣∣∣

∫ T

0

(
(T − s)α−1Eα,α(−λk(T − s)α) (F(·, s), ek) ds

∣∣∣∣

2

≤
(

βC

1 + λ1tα

)2 ∞∑

k=1

max
0≤s≤T

∣∣((−A)ε[F](·, s), ek)
)∣∣2

∣∣∣
∣

∫ T

0
sαε−1ds

∣∣∣
∣

2

≤ c11T
2εα‖F‖2C([0,T ];D((−A)ε)). (4.25)
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On the other hand, using Proposition 2 and the formula (3.1.34) in [30], we have

∂α
t w(x, t) =

∞∑

k=1

(F(·, t), ek) ek(x)

−
∞∑

k=1

λk

∫ t

0
(F(·, s), ek)(t − s)α−1Eα,α(−λk(t − s)α)dsek(x) +

+β

∞∑

k=1

λk Eα,1(−λk tα)

ρk(T )

∫ T

0
(T − s)α−1Eα,α(−λk(T − s)α)(F(·, s), ek)dsek(x)

=: I3 + I4 + I5.

Taking account this D((−A)ε) ⊂ L2(Ω), we have

‖I3(·, t)‖2L2(Ω)
=

∞∑

k=1

(F(·, t), ek)2

= ‖F‖2L2(Ω)
≤ c9‖F‖2D((−A)ε), t ∈ [0, T ]. (4.26)

Furthermore, by (2.9) we have

‖I4(·, t)‖2L2(0,1) ≤
∞∑

k=1

∣
∣∣∣λk

∫ t

0
(F(·, s), ek)(t − s)α−1Eα,α(−λk(t − s)α)ds

∣
∣∣∣

2

≤ c′
10

∞∑

k=1

max
0≤s≤t

|((−A)εF(·, s), ek)|2
∣∣∣∣

∫ t

0
sεα−1ds

∣∣∣∣

2

≤ c10‖F‖2C([0,t];D((−A)ε))t
2εα, t ∈ [0, T ]. (4.27)

Argue similarly to the previous one, we get

‖I5(·, t)‖2L2(0,1) ≤ c11T
2εα‖F‖2C([0,T ];D((−A)ε)). (4.28)

Summing up (4.24)–(4.28) yields (4.22).
Finally, we have to prove (4.20). In fact, by Propositions 1 and 2, we have

∫ t

0

∣∣∣sα−1Eα,α(−λks
α)

∣∣∣ ds =
∫ t

0
sα−1Eα,α(−λks

α)ds

= − 1

λk

∫ t

0

d

ds
Eα,1(−λks

α)ds = 1

λk

(
1 − Eα,1(−λk t

α)
)
, t > 0. (4.29)

123



D. Durdiev, A. Rahmonov

Using the (4.29), we have

‖w(·, t) + βw(·, T − t)‖2D((−A)−γ )

=
∞∑

k=1

λ
−2γ
k

∣∣∣
∫ t

0
(F(·, s), ek)(t − s)α−1Eα,α(−λk(t − s)α)ds

−βEα,1(−λk tα)

ρk(T )

∫ T

0
(F(·, s), ek)(T − s)α−1Eα,α(−λk(T − s)α)ds

+β

∫ T−t

0
(F(·, s), ek)(T − t − s)α−1Eα,α(−λk(T − t − s)α)ds

−β2Eα,1(−λk(T − t)α)

ρk(T )

∫ T

0
(F(·, s), ek)(T − s)α−1Eα,α(−λk(T − s)α)ds

∣∣∣
2

≤
∞∑

k=1

λ
−2(γ+ε+1)
k max

0≤t≤T
|(−A)εF(·, t), ek |2

[
1 − Eα,1(−λk t

α)
︸ ︷︷ ︸

− β

ρk(T )
Eα,1(−λk t

α)(1 − Eα,1(−λkT
α))

︸ ︷︷ ︸

+β(1 − Eα,1(−λkT
α)) − β2

ρk(T )
Eα,1(−λk(T − t)α)

(
1 − Eα,1(−λkT

α)
)

︸ ︷︷ ︸
S2k (t)

]2

≤ c12‖F‖2C([0,T ];D((−A)ε))

∞∑

k=1

λ
−2(γ+ε+1)
k S22k(t).

Since λk ≥ c′
12k

2
n , k ∈ N (see [32], p. 407), we have

1

λ
2(γ+ε+1)
k

≤ c′′
12

k
4(γ+ε+1)

n

.

By (K4), we have 4(γ+ε+1)
n > 1, and

∞∑
k=1

λ−2(γ+ε+1)S22k(t) < ∞. Since lim
t→0

S2k(t)

= 0 for each n ∈ N, the Lebesgue theorem implies lim
t→0

‖w(·, t) + βw(·, T −
t)‖D((−A)−γ ) = 0. The uniqueness of the weak solution is verified similarly to
Lemma 5. This completes the proof of Lemma 6. 
�

As a result combining Lemmas 5, 6, and Corollary 1, we obtain the following
result:

Corollary 2 Let ϕ ∈ H2(Ω) ∩ H1
0 (Ω) and F ∈ C([0, T ]; D((−A)ε)), where 0 <

ε < 1. Then there exists a unique weak solution u ∈ XT
0 to (4.1), such that

‖u‖XT
0

≤ c13
(
‖ϕ‖H2(Ω) + T αε‖F‖C([0,T ];D((−A)ε))

)
. (4.30)
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At the end of this section, we give a lemma to show an equivalent form of our
inverse problem.

Lemma 7 Let (K1)-(K5) be held. Then our inverse problem (2.1)–(2.4) is equivalent
to following problem:

⎧
⎪⎨

⎪⎩

(
∂α
t u

)
(x, t) − Au(x, t) = q(t)u(x, t) + f (x, t), (x, t) ∈ QT

0 ,

u(x, 0) + βu(x, T ) = ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, 0 < t < T ,

(4.31)

and

h(t)q(t) = ∂α
t h(t) − ( f (·, t), ω) − (Au(·, t), ω), t ∈ [0, T ]. (4.32)

Proof Obviously, the solution (u(x, t), q(t)) ∈ XT
0 ×C[0, T ] of our inverse problem

(2.1)–(2.4) is also a solution to the problem (4.31), (4.32) in XT
0 × C[0, T ]. Because

the problem (4.31) is the same as (2.1)–(2.3). Therefore, we should show only (4.32).
Multiplying both sides of Eq. (2.1) by a function ω(x) and integrating from Ω with
respect to x gives

(
∂α
t

∫

Ω

ω(x)u(x, t)dx

)
(t) −

∫

Ω

ω(x)Au(x, t)dx

= q(t)
∫

Ω

ω(x)u(x, t)dx +
∫

Ω

ω(x) f (x, t)dx, (4.33)

for all 0 < t < T .Taking into account the condition (K3), and fractional differentiating
(2.4) αth order, we have

∂α
t

(∫

Ω

ω(x)u(x, t)dx

)
(t) = (

∂α
t h

)
(t), 0 < t < T . (4.34)

From (4.33), taking into account (2.4) and (4.34) we arrive at (4.32).
Now, suppose that (u(x, t), q(t)) ∈ XT

0 × C[0, T ] is a solution to the problem
(4.31), (4.32). In order to prove that (u, q) is also a solution of (2.1)–(2.4), it suffices
to prove that (u, q) satisfies (2.4). By the equation (4.31), we have:

∫

Ω

ω(x)∂α
t u(x, t)dx −

∫

Ω

ω(x)Au(x, t)dx

= q(t)
∫

Ω

ω(x)u(x, t)dx +
∫

Ω

ω(x) f (x, t)dx, (4.35)

for 0 < t ≤ T .
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Together with (4.32) and (K2), we obtain that y(t) = ∫
Ω

ω(x)u(x, t)dx −h(t)
satisfies

{
∂α
t y(t) = q(t)y(t), 0 < t < T ,

y(0) + β y(T ) = 0.
(4.36)

Therefore, we have

y(t) =
∫ T

0
G0(t, s)q(s)y(s)ds

for all t ∈ [0, T ].
Lemma 3 enables us to conclude that the problem (4.36) has only a trivial solution

satisfying (3.6). Then,
∫
Ω

ω(x)u(x, t)dx − h(t) = 0, 0 ≤ t ≤ T , i.e., the condition
(2.4) is satisfied. This completes the proof of this lemma. 
�

5 Existence of the solution to the inverse problem

We are now in a position to prove the existence of a solution to our inverse problem,
i.e. Theorem 1, which proceeds by a fixed point argument. First, we define the function
set

Br ,T = {
(ū, q̄) ∈ Y T

0 : ū(x, 0) + βū(x, T ) = ϕ(x), x ∈ Ω, ,

ū(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ), ‖ū‖XT
0

+ ‖q̄‖C[0,T ] ≤ r
}
.

Here r is a large constant depending on the initial data ϕ, measurement data h, and
the number β. Throughout, we use M to denote a constant that depends on Ω,α, β,
the initial data ϕ, the known functions f , ω and measurement data h, but independent
of r and T .

For given (ū, q̄) ∈ Br ,T , we consider

⎧
⎪⎨

⎪⎩

∂α
t u(x, t) − Au = F(x, t), (x, t) ∈ QT

0 ,

u(x, 0) + βu(x, T ) = ϕ(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

(5.1)

and

h(t)q(t) = (
∂α
t h

)
(t) −

∫

Ω

ω(x) f (x, t)dx +
∞∑

k=1

λk(ω, ek)(u(·, t), ek), (5.2)

where

F(x, t) = q̄(t)ū(x, t) + f (x, t).
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According to Corollary 2, the unique solution u ∈ XT
0 of the problem (5.1), given

by (4.5) satisfies (4.30).
Furthermore

‖q̄(t)ū(·, t)‖2C([0,T ];D((−A)ε)) = max
0≤t≤T

∣
∣∣∣∣

∞∑

k=1

λ2εk (q̄(t)ū(·, t), ek)2
∣
∣∣∣∣

≤ ‖q̄‖2C[0,T ]‖ū‖2C([0,T ];D((−A)ε)). (5.3)

Using this result together with f ∈ C([0, T ]; D((−A)ε)), we have

q̄(t)ū(x, t) + f (x, t) ∈ C([0, T ]; D((−A)ε)). (5.4)

Therefore, Corollary 2 ensures that there exists a unique solution u ∈ XT
0 to (5.1).

Then (5.2) defines the function in terms of u. Furthermore, by (5.2) we have

‖q‖C[0,T ] ≤ h0
[
‖∂α

t h‖C[0,T ] + max
0≤t≤T

∣
∣∣
∫

Ω
ω(x) f (x, t)dx

∣
∣∣

+ max
0≤t≤T

∣
∣∣

∞∑

k=1

λk(ω, ek)(u(·, t), ek)
∣
∣∣
]

≤ h0
[
‖∂α

t h‖C[0,T ]

+
∣∣
∣
∫

Ω
ω(x)‖ f (x, ·)‖C[0,T ]dx

∣∣
∣ +

( ∞∑

k=1

|(ω, ek)|2
)1/2

max
0≤t≤T

( ∞∑

k=1

λ2k |(u, ek)|2
)1/2]

≤ h0
[
‖∂α

t h‖C[0,T ] +
( ∫

Ω
|ω(x)|2dx

)1/2( ∫

Ω
‖ f (x, ·)‖2C[0,T ]dx

)1/2

+‖ω‖L2(Ω)‖u‖XT
0

]

≤ h0
[
‖∂α

t h‖C[0,T ] + ‖ω‖L2(Ω)‖ f ‖C([0,T ];L2(Ω)) + ‖ω‖L2(Ω)‖u‖XT
0

]

≤ h0
[
‖∂α

t h‖C[0,T ] + ‖ω‖L2(Ω)‖ f ‖C([0,T ];D((−A)ε)) + ‖ω‖L2(Ω)‖u‖XT
0

]
. (5.5)

Based on (4.30), (5.3) and (5.4) this implies that q ∈ C[0, T ]. Thus, the mapping

S : Br ,T → Y T
0 , (ū, q̄) �→ (u, q) (5.6)

given by (5.1) and (5.2), is well defined.
The next lemma shows that S is a contraction map on Br ,T .

Lemma 8 Let (K1)–(K5) be held. Then there exists a sufficiently small τ and a suitable
large r such that S is a contraction map on Br ,T for all T ∈ (0, τ ], where τ and r
are two positive constants depending on α, β and the known functions ϕ, f and the
measurement data h.
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Proof First, we prove S(Br ,T ) ⊂ Br ,T for sufficiently small T and suitable large r .
To simplify the calculations, we restrict T ∈ (0, 1]. By (4.30), we obtain

‖u‖XT
0

≤ M + T αεM + T αεr2. (5.7)

On the other hand, by (K3), (5.3), and (5.6), we have

‖q‖C[0,T ] ≤ h0
{
‖∂α

t h‖C[0,T ] + ‖ω‖L2(Ω)‖ f ‖C([0,T ];D((−A)ε))

+‖ω‖L2(Ω)‖u‖XT
0

}
≤ M + M2 + M‖u‖XT

0
. (5.8)

Hence, by (5.7) and (5.8), we have

‖(u, q)‖Y T
0

≤ Mζ1(T )
(
r2 + 1

)
+ M, (5.9)

where

ζ1(T ) = T αε

and therefore satisfies lim
T→+0

ζ1(T ) = 0. Now we take r , such that r = 2M with the

constant M in (5.9). Then there exists a sufficiently small τ1 > 0, such that

‖(ū, q̄)‖Y T
0

≤ r , (5.10)

for all T ∈ (0, τ1], that is, S maps Br ,T into itself for each fixed T ∈ (0,min{1, τ1}] .
Next,we estimate the increment of operator S. To this end,wededuce the differences

(u −U , q − Q) from (5.1), (5.2) to yield

⎧
⎪⎨

⎪⎩

∂α
t (u −U )(x, t) − A(u −U )(x, t) = q̄(ū − Ū ) + Ū (q̄ − Q̄), (x, t) ∈ QT

0 ,

(u −U )(x, 0) + β(u −U )(x, T ) = 0, x ∈ Ω,

(u −U )(x, t)0, x ∈ ∂Ω, t ∈ (0, T ),

(5.11)

and

h(t) (q − Q) (t) =
∞∑

k=1

λk(ω, ek)
(
u(·, t) −U (·, t), ek

)
. (5.12)

Using Corollary 2, we get

‖u −U‖XT
0

≤ c13rT
αε(‖ū − Ū‖XT

0
+ ‖q̄ − Q̄‖C[0,T ]), (5.13)
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Further, by (K3), (5.12), and (5.13), we have

‖q − Q‖C[0,T ] ≤ h0

( ∞∑

k=1

(ω, ek)
2

)1/2

max
0≤t≤T

( ∞∑

k=1

λ2k
(
u(·, t) −U (·, t), ek

)2
)1/2

≤ h0‖ω‖L2(Ω)‖u −U‖C([0,T ];H2(Ω)) ≤ h0‖ω‖L2(Ω)‖u −U‖XT
0

≤ c13T
αεrh0‖ω‖L2(Ω)(‖ū − Ū‖XT

0
+ ‖q̄ − Q̄‖C[0,T ]). (5.14)

Therefore, by (5.13) and (5.14), we obtain

‖(u −U , q − Q)‖Y T
0

≤ MrT αε‖(ū − Ū , q̄ − Q̄)‖Y T
0
. (5.15)

Hence we can choose sufficiently small τ2 > 0 such that

MrT αε ≤ 1

2
(5.16)

for all T ∈ (0, τ2] to obtain

‖S(ū, q̄) − S(Ū , Q̄)‖Y T
0

≤ 1

2
‖(ū − Ū , q̄ − Q̄)‖Y T

0
. (5.17)

Estimates (5.10) and (5.17) show that S is a contractionmap on Br ,T for all T ∈ (0, τ ],
if we choose τ ≤ min{1, τ1, τ2}. 
�

6 Proof of themain results

In this section, we give proof of the global in time uniqueness of solutions to our
inverse problem, i.e., Theorem 1.

Proof of Theorem 1 For S is a contraction map on Br ,T for all T ∈ (0, τ ], the Banach
fixedpoint theoremconcludes that there exists a unique solution (u, q) ∈ XT

0 ×C[0, T ]
of the inverse problem (4.31) and (4.32).

Next we show that we could extend the solution (u, q) in (0, τ ] to a larger interval
[τ, 2τ ]. To do this, we consider

⎧
⎪⎨

⎪⎩

∂α
t v(x, t) − Av(x, t) = p(t)v(x, t) + f (x, t), (x, t) ∈ QT

τ ,

v(x, τ ) + βv(x, T ) = u(x, τ ) + βu(x, T ), x ∈ Ω

v(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, T ),

(6.1)
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and

h(t)p(t) = (
∂α
t h

)
(t) −

∫

Ω

ω(x) f (x, t)dx

+
∞∑

k=1

λk(ω, ek)(v(·, t), ek), t ∈ [τ, T ]. (6.2)

Obviously, if we prove that there exists a solution (v, p) ∈ Y T
τ with some T ≥ 2τ ,

then (ũ, q̃) defined by

(ũ, q̃) =
{

(u, q), t ∈ [0, τ ],
(v, p), t ∈ [τ, 2τ ] (6.3)

is a solution of the inverse problem (4.31) and (4.32) on the larger interval [0, 2τ ].
We repeat a similar fixed pointed argument to prove the existence of (v, p). Define

an operator

K : B̃r̃ ,T → Y T
τ , (v̄, p̄) → (v, p) (6.4)

with (v̄, p̄) ∈ B̃r̃ ,T , where

B̃r̃ ,T = {
(v̄, p̄) ∈ Y T

τ : v̄(x, τ ) + βv̄(x, T ) = u(x, τ ) + βu(x, T ), x ∈ Ω

v̄(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, T ), ‖v̄‖XT
τ

+ ‖ p̄‖C[τ,T ] ≤ r̃
}
.

Here v is the solution to the initial and boundary value problem

⎧
⎪⎨

⎪⎩

∂α
t v(x, t) − Av(x, t) = p̄(t)v̄(x, t) + f (x, t), (x, t) ∈ QT

τ ,

v(x, τ ) + βv(x, T ) = u(x, τ ) + βu(x, T ), x ∈ Ω

v(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, T ).

(6.5)

Furthermore, p is the solution of (6.2) in terms of v. Additionally, we have F(x, t) =
p̄(t)v̄(x, t) + f (x, t) ∈ C([0, T ]; D((−A)ε)), u(·, τ ), u(·, T ) ∈ H2(Ω). In fact, the
first property comes from (5.4), according to Corollary 2 the functions u(·, τ ), u(·, T )

the same as (5.4) at t ∈ {τ, T }, therefore we can conclude that u(·, τ ) ∈ H2(Ω).
Besides, by (4.30) we have

‖v‖XT
τ

≤ c13
[
‖u(·, τ )‖H2(Ω) + β‖u(·, T )‖H2(Ω) + (T − τ)αε(r̃2 + M)

]
(6.6)
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and from (6.2) via (K1), (K3), (K5) we get

‖p‖C[τ,T ] ≤ h0

{
‖∂α

t h‖C[τ,T ] + ‖ω‖L2(Ω)

[
‖ f ‖C([τ,T ];D((−A)ε))

+c13(‖u(·, τ )‖H2(Ω) + β‖u(·, T )‖H2(Ω)

+(T − τ)αε(r̃2 + M))
]}

. (6.7)

We set T − τ ≤ 1. Then using (6.8) and (6.9), we have

‖K (ṽ, p̃)‖Y T
τ

≤ h0
(‖∂α

t h‖C[τ,T ] + ‖ω‖L2(Ω)‖ f ‖C([τ,T ];D((−A)ε))

) +
+c13(h0‖ω‖L2(Ω) + 1)

[
‖u(·, τ )‖H2(Ω)

+β‖u(·, T )‖H2(Ω) + (M + r̃2)(T − τ)αε
]

(6.8)

and by a similar calculation to (5.15), we have

‖K (v̄1, p̄1) − K (v̄2, p̄2)‖Y T
τ

≤ M(T − τ)αε‖(v̄1 − v̄2, p̄1 − p̄2)‖Y T
τ
, (6.9)

where M is the same as the ones in Lemma 8. We choose r̃ such that r̃ ≥ r and

h0
(‖∂α

0t h‖C[τ,T ] + ‖ω‖L2(Ω)‖ f ‖C([τ,T ];D((−A)ε))

) +
+c13(h0‖ω‖L2(Ω) + 1)

(‖u(·, τ )‖H2(Ω) + ‖u(·, T )‖H2(Ω)

) ≤ r̃

2
.

It is easy to see that if we choose r̃ larger, then we could get larger T − τ to satisfy

M(T − τ)αε
(
‖u(·, τ )‖H2(Ω) + ‖u(·, T )‖H2(Ω)

)
≤ r̃

2
. (6.10)

Furthermore noticing that (6.12) and (5.16) we have the same structure, we can choose
T − τ = τ to satisfy (6.12), which yields ‖K (ũ, q̃)‖Y T

τ
≤ r̃ , i.e. K (B̃r̃ ,T ) ⊂ B̃r̃ ,T .

Additionally,

‖K (ũ1, q̃1) − K (ũ2, q̃2)‖Y T
τ

≤ 1

2
‖(ũ1 − ũ2, q̃1 − q̃2)‖Y T

τ
(6.11)

for T = 2τ , because (6.11) is the same as (5.17), if we replace T in (5.17) by T − τ .
Hence we prove that K is a contraction operator on B̃r̃ ,T for T = 2τ .

Repeating the extension process limited times, we could obtain a solution (u, q) ∈
XT
0 ×C[0, T ] of the inverse problem (4.31) and (4.32) for any T . Lemma 7 shows that

the inverse problem (4.31) and (4.32) is equivalent to the inverse problem (2.1)–(2.4).
Consequently, the inverse problem (2.1)–(2.2) also admits a unique solution (u, q) in
the space XT

0 × C[0, T ] for any T . 
�
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Proof of Theorem 2 By Lemma 7, we know that our inverse problem is equivalent to
the inverse problem (4.31) and (4.32). Hence in the following proof, we turn to prove
the uniqueness of the solution to (4.31) and (4.32).

We set (û, q̂) = (u1 − u2, q1 − q2) and

σ = inf
{
t ∈ (0, T ] : ‖(û, q̂)‖Y t

0
> 0

}
. (6.12)

It suffices to prove that σ = T .

If (6.12) is not true, then we have σ < T . Choose l such that 0 < l < T −σ . Next,
we consider

⎧
⎪⎨

⎪⎩

∂α
t û(x, t) − Aû(x, t) = F̂(x, t), (x, t) ∈ Qσ+l

σ ,

û(x, σ ) + βû(x, σ + l) = 0, x ∈ Ω,

û(x, t) = 0, x ∈ ∂Ω, t ∈ (σ, σ + l),

(6.13)

and

h(t)q̂(t) =
∞∑

k=1

λk(ω, ek)(û(·, t), ek), t ∈ [σ, σ + l], (6.14)

where

F̂(x, t) = q1(t)û(x, t) + q̂(t)u2(x, t).

By (4.23), we can write the solution û as

û(x, t) =
∞∑

k=1

∫ T

0
Gk(t, s)(F̂(·, s), ek)ds, t ∈ [σ, σ + l]. (6.15)

Then similar to the proof of Corollary 2, we have

‖û‖Xσ+ε
σ

≤ c13l
αε‖F̂‖C([σ,σ+l];D((−A)ε) (6.16)

and

max
σ≤t≤σ+l

∣∣∣
∞∑

k=1

λk(ω, ek)(û(·, t), ek)
∣∣∣ ≤ ‖ω‖L2(Ω)‖û‖C([σ,σ+l];H2(Ω))

≤ ‖ω‖H2(Ω)‖û‖Xσ+l
σ

≤ Mlαε‖F̂‖C([σ,σ+l];D((−A)ε)) (6.17)

with the same M in Lemma 6 and estimates (5.3). By (5.3), and noting that (u1, q1) =
(u2, q2) on [0, σ ], we have

‖F̂‖C([σ,σ+l];D((−A)ε)) ≤ M(‖û‖Xσ+l
σ

+ ‖q̂‖C[σ,σ+l]), (6.18)

123



Global solvability of inverse coefficient problem for…

which yields, together with (6.16), that

‖û‖Xσ+l
σ

≤ Mlαε(‖û‖Xσ+l
σ

+ ‖q̂‖C[σ,σ+l]). (6.19)

On the other hand, by (6.14), (6.17), and (6.18) we have the following estimate for q̂

‖q̂‖C[σ,σ+l] ≤ Mh0l
αε(‖û‖Xσ+l

σ
+ ‖q̂‖C[σ,σ+l]). (6.20)

Therefore, by (6.19) and (6.20) we have

‖(û, q̂)‖Y σ+l
σ

≤ Mlαε‖(û, q̂)‖Y σ+l
σ

implying

‖(û, q̂)‖
Y

σ+l0
σ

= 0

for some sufficiently small positive constant l0. This means that (u1 − q1, u2 − q2)
vanishes in some neighborhood of σ . But this is not compatible with the definition of
σ . We conclude that σ = T .

At the end of this section, consider the following example.

Example 1 Let β = 1. Consider the case n = 1 and QT
0 = (0, 1) × (0, T = π), and

A := −∂2x . We consider the following inverse problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t u − ∂2x u = q(t)u + 2 sin(πx)

[
t1−αE2,2−α(−t2)

+(2 + sin t)
(
π2 − (1 + t)e−t

) ]
,

u(x, 0) + u(x, π) = 8 sin(πx), u(0, t) = u(1, t) = 0, t ∈ (0, π),
1∫

0
sin(πx)u(x, t)dx = 2 + sin t, t ∈ [0, π ].

(6.21)

Note, that the all given data satisfy conditions (K1)-(K5). Furthermore, according
to Theorem 1, using the given data, there exists a unique solution to the above inverse
problem, and from Lemma 7, it has the form

u(x, t) = 2(2 + sin t) sin(πx), q(t) = (1 + t)e−t . (6.22)

Now, let T = 2π and using (6.21) and (6.22), we consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂α
t v − ∂2x v = p(t)v + 2 sin(πx)

[
t1−αE2,2−α(−t2)

+(2 + sin t)
(
π2 − (1 + t)e−t

) ]
,

v(x, π) + v(x, 2π) = 8 sin(πx), v(0, t) = v(1, t) = 0, t ∈ (π, 2π),
1∫

0
sin(πx)v(x, t)dx = 2 + sin t, t ∈ [π, 2π ].

(6.23)
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We can easily see that, as above, v(x, t) = 2(2 + sin t) sin(πx), p(t) = (1 + t)e−t

is a solution of the problem (6.23). Therefore, we can continue the same process for
any T = πn, where n ∈ N.

7 Conclusions

This paper investigated the multi-dimensional fractional-diffusion equation with
Robin-type initial and Dirichlet boundary conditions. We derived Green’s function
and corresponding integral operator and then examined the fixed point theorem for the
operator. Theorems of global existence and uniqueness of the solution to the inverse
problem are proved.
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