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Well-posedness of the inverse problem for a time-fractional
integro-differential equation
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Let H be a separable Hilbert space and A : H → H be an arbitrary unbounded positive
selfadjoint operator in H and A−1 is a compact operator

In this work, we consider the time-fractional integro-differential diffusion equation:

∂αt u+ Au =

∫ t

0

k(t− s)u(s)ds+ f(t), t ∈ (0, T ), (1)

where T > 0 is a fixed final time, and α ∈ (0, 1) is fractional order of the time derivative. The
fractional derivative ∂αt denotes the Gerasimov–Caputo fractional, which is defined as:

(∂αt y)(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αy′(s)ds, y ∈ W 1
1 (0, T ),

and Γ(·) is the Euler’s Gamma function.
Problem 1. Given k(t) and f(t), find a function u(t) such that u(t) : [0, T ] → H satisfies

the equation (1) and the final time condition

u(T ) = φ, (2)

where φ is a given element of H, f : [0, T ] → H is a known function.
Problem 2. Given α, f(t) and φ, determine a pair of functions u : [0, T ] → H and

k : (0, T ) → R+ satisfying the problem (1)-(2) and the additional condition

Φ[u(t)] = h(t), t ∈ [0, T ]; (3)

where h : [0, T ] → R is a given function, Φ : D(Φ) ⊂ H → R is a known linear bounded
functional, where D(Φ) = {u ∈ H : Au ∈ H}.

Throughout this work, we set 0 < ε < 1 and make the following assumptions.
(C1) φ ∈ D(Aε+1), f ∈ C([0, T ];D(Aε)) ∩ C1([0, T ];H);
(C2) h(T ) = Φ[φ], Φ[Au](0) = Φ[f ](0);
(C3) ∂αt h ∈ C1[0, T ] and ∂αt h(0) = 0 and satisfy the condition h(0) ̸= 0;
(C4) Φ :

{
λmΦ[em]

}
∈ l2(N), where l2(N) is the space of square summable sequences.

Theorem 1.5. Under hypotheses (C1)-(C4), there exists a unique solution (u, k) ∈ Y T
0 of

the inverse problem (1)-(3) for any T > 0.
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