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Well-posedness of the inverse problem for a time-fractional
integro-differential equation
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Let H be a separable Hilbert space and A : H — H be an arbitrary unbounded positive
selfadjoint operator in H and A~! is a compact operator
In this work, we consider the time-fractional integro-differential diffusion equation:

0Pu + Au = /Ot k(t — s)u(s)ds + f(t), te(0,T), (1)

where T' > 0 is a fixed final time, and o € (0, 1) is fractional order of the time derivative. The
fractional derivative 0§ denotes the Gerasimov-Caputo fractional, which is defined as:

90 = ey | (=9 )s yeW0.T)

and I'(+) is the Euler’s Gamma function.
Problem 1. Given k(t) and f(t), find a function u(t) such that u(t) : [0,7] — H satisfies
the equation (1) and the final time condition

u(T) = ¢, (2)

where ¢ is a given element of H, f : [0,7] — H is a known function.
Problem 2. Given «, f(t) and ¢, determine a pair of functions w : [0,7] — H and
k:(0,T) — RT satisfying the problem (1)-(2) and the additional condition

Olu(t)] = h(t),  te€]0,T]; (3)

where h : [0,7] — R is a given function, ® : D(®) C H — R is a known linear bounded
functional, where D(®) ={u € H: Au € H}.

Throughout this work, we set 0 < ¢ < 1 and make the following assumptions.

(C1) ¢ € D), f € C(I0,T); D(A%)) N C'(0,T; H)

(C2) M(T) = Dp], P[Au](0) = @[f](0);

(C3) 9¢h € C*0,T] and 9?h(0) = 0 and satisfy the condition h(0) # 0;

(C4) @ : {N,Plen]} € 12(N), where [*(N) is the space of square summable sequences.

Theorem 1.5. Under hypotheses (C1)-(C4), there exists a unique solution (u, k) € Y of
the inverse problem (1)-(3) for any 7" > 0.
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