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1. ВВЕДЕНИЕ

Многие важные материалы, использующиеся в современных технологиях (напри-
мер, в нанотехнологии), являются вязкоупругими и анизотропными. Некоторые на-
нотехнологические математические модели можно найти, например, в статьях [1]–[4]
(см. также ссылки в них). При математическом моделировании процессов, проте-
кающих в вязкоупругих материалах, возникает так называемая система с памятью,
поведение которой определяется состоянием не только в данный момент, но и зави-
сит от всей истории системы, и поэтому описывается интегро-дифференциальным
уравнением, содержащим соответствующий интеграл по временно́й переменной. Од-
ними из важнейших прикладных задач в этой области являются обратные задачи
электромагнитной съемки и вязкоупругости.

Взаимодействие электромагнитных полей в среде с памятью моделируется систе-
мой уравнений Максвелла, содержащей интегральные члены типа свертки и опи-
сывающей электродинамические процессы с дисперсией. В теории упругости такой
член в интегро-дифференциальных уравнениях отвечает за влияние вязкости ма-
териала. В обоих этих случаях ядро типа свертки обычно является неизвестной
функцией, при этом распространение электромагнитных и упругих волн зависит от
этого ядра.
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Тот факт, что D и B (электрическое смещение и магнитная индукция соответ-
ственно) единственным образом определяются величинами E и H (интенсивностями
соответствующих полей) в тот же момент времени, нарушается в быстро изменя-
ющихся электромагнитных полях, частоты которых не малы по сравнению с на-
чальными частотами электрической и магнитной поляризации, характерными для
данной среды. Было доказано, что значения D и B в данный момент времени за-
висят не только от E и H, но и от всей временно́й истории этих полей (такая среда
называется среда с последействием) [5]:

D(x, t) = εE +
∫ t

0

ϕ(t− τ)E(x, τ) dτ,

B(x, t) = µH +
∫ t

0

ψ(t− τ)H(x, τ) dτ,

D = (D1, D2, D3), E = (E1, E2, E3),

B = (B1, B2, B3), H = (H1, H2, H3),

(1.1)

где x = (x1, x2, x3), диагональные матричнозначные функции ϕ(t) = diag(ϕ1, ϕ2, ϕ3)
и ψ(t) = diag(ψ1, ψ2, ψ3) описывают наличие памяти. Эти функции конечны для
всех значений своих аргументов и стремятся к нулю при t→∞. Последнее обстоя-
тельство является выражением того факта, что на значенияD(x, t), B(x, t) в данный
момент времени не могут заметно влиять значения интенсивностей E(x, t), H(x, t)
в глубоком прошлом. Физическим механизмом, лежащим в основе интегральных
зависимостей вида (1.1), является процесс формирования электромагнитной поля-
ризации среды, поэтому интервал времени, на котором функции ϕ(t), ψ(t) заметно
отличаются от нуля (время релаксации), характеризует скорость этого процесса.

Предположим с учетом уравнений (1.1), что векторы E и H образуют решение
задачи Коши для системы уравнений Максвелла, описывающих однородный анизо-
тропный кристалл, с нулевыми начальными условиями [6]:

ε
∂

∂t
D − rotH + σE + j cm = 0, x3 ̸= 0,

µ̃
∂

∂t
B + rotE = 0, t > 0,

(1.2)

где ε, µ̃ – диэлектрическая и магнитная проницаемости среды, σ – проводимость
среды. Мы считаем, что векторы электрического и магнитного полей до момента
t = 0 удовлетворяют условию

E
∣∣
t<0

= H
∣∣
t<0

≡ 0. (1.3)

Пусть вектор плотности внешнего электрического тока имеет вид [7]

j cm = (0, 1, 0) · g(x1)η(x3)θ(t), (1.4)

где функции g(x1), η(x3) описывают поперечные размеры источника, θ(t) – функция
Хевисайда. Такой вид внешнего электрического тока соответствует мгновенному
включению тока, параллельного оси x2, сосредоточенного на поверхности земли
x3 = 0 и распределенного вдоль оси x1 с плотностью g(x1). Кроме того, пусть
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в системе уравнений Максвелла параметры ε, µ̃, σ зависят от точки x = (x1, x3)
и ε(x) > 0, µ(x) > 0, σ(x) > 0. В геофизике эти параметры являются очень важными
характеристиками сред и имеют то же значение, что плотность среды и упругие
параметры Ламе, а задача определения этих параметров как функций от x является
основной в электрогеофизической разведке [8].

Далее предположим, что коэффициенты системы уравнений Максвелла не зави-
сят от переменных x1, x2, также будем считать, что ψ = 0 (отсутствие предыстории
магнитного поля), и выберем источник в виде (1.4). Тогда ненулевыми остаются
только три компоненты: E2, H1 и H2. Исключив последние две из них, запишем
итоговое уравнение

ε
∂2

∂t2
E2 + σ

∂

∂t
E2 =

∂

∂x1

(
1
µ̃

∂

∂x1
E2

)
+

∂

∂x3

(
1
µ̃

∂

∂x3
E2

)
+

+
∫ t

0

εϕ′′2(t− τ)E2(x1, x3, τ) dτ +
∂

∂t
j cm, x3 > 0, t > 0. (1.5)

Далее мы будем писать x и z вместо x1 и x3 и положим µ̃(x, z) := µ̃(z), η(z) = δ(z)
(дельта-функция Дирака).

2. ПОСТАНОВКА ЗАДАЧИ

В настоящей работе мы определяем скорость распространения волны и функцию
памяти многослойной среды из двумерного интегро-дифференциального волново-
го уравнения с переменным коэффициентом, представляющего собой более общий
случай, чем уравнение (1.5).

Далее предположим, что ε = const и σ = const ̸= 0. Тогда начально-граничная
задача для уравнения (1.5) записывается как

utt − Λu− b̄(z)u+ λut =
∫ t

0

k(t− τ)Λu(x, z, τ) dτ, (x, z) ∈ R2
+, t ∈ R, (2.1)

с начальными и граничными условиями

u
∣∣
t<0

≡ 0,
[
uz(x, z, t)+

∫ t

0

k(t− τ)uz(x, z, τ) dτ
]

z=+0

= δ(x)δ′(t)+ δ(x)θ(t)f(t), (2.2)

где R2
+ := {(x, z) ∈ R2 : z > 0}, Λ – дифференциальный оператор вида

Λu = µ(z)△u+ µ′(z)uz, (2.3)

в котором △ – двумерный лапласиан по переменным (x, z), а b̄(z), f(t) – известные
непрерывные функции. Коэффициент µ(z) является положительной функцией из
класса C2(R+) (здесь R+ := {z ∈ R : z > 0}), λ – некоторая постоянная, а функции
k(t), f(t) непрерывны при t ∈ R.

Задача вычисления функции u(x, z, t), удовлетворяющей (в обобщенном смысле)
уравнениям (2.1), (2.2) для заданных функций µ(z), b̄(z), f(t), k(t), называется пря-
мой задачей. Граничное условие моделирует мгновенный источник возбуждения
волны, расположенный в точке x = 0, z = 0.
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Изучение обратных задач для гиперболических интегро-дифференциальных урав-
нений и систем является предметом исследований многих авторов. Среди публика-
ций, близких к настоящей работе, можно выделить статьи [9], [10]. В работе [11]
исследовались прямая и обратная задачи для гиперболического уравнения второго
порядка с интегральным членом типа свертки относительно одномерной зависящей
от времени функции памяти среды. С помощью метода Фурье обратная задача была
сведена к решению интегральных уравнений Вольтерра для неизвестных функций
зависящей от времени переменной. В работах [12]–[14] (см. также ссылки в них) ис-
следовалась задача определения многомерного ядра уравнения вязкоупругости для
неоднородной изотропной среды. В работах [15], [16] решались задачи восстановле-
ния одномерного ядра уравнения вязкоупругости в ограниченной и неограниченной
областях и были доказаны теоремы о глобальной однозначной разрешимости этих
задач в классе непрерывных функций со взвешенными нормами. Основная особен-
ность, присутствующая в статьях [17]–[20] и в настоящей работе, заключается в ис-
пользовании для инициирования волнового процесса источника, локализованного
на границе, и/или точечного источника. Наконец, отметим работы [10], [21]–[27],
посвященные задачам определения ядра из интегро-дифференциальных уравнений
с интегралом типа свертки, и работы [1], [28]–[34], где изучались одно- и двумерные
обратные задачи для системы интегро-дифференциальных уравнений вязкоупругой
пористой среды.

Что касается определения подынтегральной функции гиперболических уравне-
ний, то мы сошлемся на работы [21], [22]. В работе [21] исследовалась задача на-
хождения функции памяти в случае трехмерного волнового уравнения с дельта-
функцией в правой части. Далее в работе [22] эта задача была обобщена на случай
гиперболического уравнения второго порядка с постоянной главной частью и пере-
менными коэффициентами при малых производных. Аналогичные задачи с распре-
деленными источниками возмущений можно найти в работах [35], [36]. В статье [37]
изучалась задача определения одномерного коэффициента скорости распростране-
ния волны и формы источников импульсов в случае граничного условия, заданного
вторым соотношением в (2.2). Оказывается, что для решения этой задачи достаточ-
но задать фурье-образ функции g(x, t) при двух различных значениях переменной
преобразования Фурье. В настоящей статье мы исследуем задачу определения двух
функций одной переменной, одна из которых находится под знаком интеграла, с по-
мощью процедуры, аналогичной методу работы [8].

Отметим также, что обратные задачи для интегро-дифференциальных уравне-
ний изучались в работах [38]–[43], где были найдены малые локальные поправки
и условие устойчивости “в целом”.

Основной особенностью настоящей работы является использование источника,
локализованного на границе рассматриваемой области пространства; в результате
воздействия этого источника возникает физический процесс передачи волн. Эта
особенность существенно увеличивает ценность исследования с точки зрения при-
ложений. В работах Карчевского и Фатьянова [44]–[46] можно ознакомиться с чис-
ленными методами решения таких задач.

Предположим, что в области R2
+×R задано решение задачи с граничным условием

u
∣∣
z=+0

= g(x, t), (x, t) ∈ R2. (2.4)

Обратная задача состоит в нахождении µ(z), k(t) при известных b̄(z), f(t), g(x, t).
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3. ПРЕДВАРИТЕЛЬНЫЕ ПОСТРОЕНИЯ

Зададим интегральный оператор

L[k, u](t;x, z, t) = u(x, z, t) +
∫ t

0

k(t− τ)u(x, z, τ) dτ.

Иногда, чтобы сократить обозначения, мы не будем указывать в операторе L зави-
симость функций от своих переменных, т. е. зависимость k(t) и u(x, z, t).

Обозначим как ũ = F [u](ν, z, t) преобразование Фурье функиции u(x, y, t) по пе-
ременной x:

ũ(ν, z, t) =
1√
2π

∫
R
u(x, z, t)eiνx dx.

Для заданных µ(z), b̄(z), f(t), k(t) задача (2.1), (2.2) корректно поставлена и имеет
единственное решение u(x, y, t) с компактным носителем для любого фиксирован-
ного t. Можно переписать уравнения (2.1), (2.2) для функции u(x, z, t) как

∂2ũ

∂t2
=

(
µ(z)

∂2

∂z2
+ µ′(z)

∂

∂z
− ν2µ(z)

)
L[k, ũ] + b̄(z)ũ− λũt, (ν, z, t) ∈ R2

+ × R, (3.1)

ũ
∣∣
t<0

≡ 0,
∂

∂z
L[k, ũ]

∣∣∣∣
z=+0

= δ′(t) + θ(t)f(t). (3.2)

Введем новую переменную

y =
∫ z

0

ds√
µ(s)

. (3.3)

Заданная таким образом функция z = l(y) монотонна и определяет взаимно одно-
значное соответствие между y и z по формуле (3.3). Пусть c(y) :=

√
µ(l(y)); введем

новую функцию ũ(ν, z, t) = ū(ν, y, t). В терминах этой функции и переменной y

обратная задача (3.1), (3.2), (2.4) принимает вид

∂2ū

∂t2
=

(
∂2

∂y2
+
c′(y)
c(y)

∂

∂y
− ν2c2(y)

)
L[k, ū] + b(y)ū− λūt, (y, t) ∈ R2

+, ν ∈ R, (3.4)

ū
∣∣
t<0

≡ 0,
∂

∂y
L[k, ū]

∣∣∣∣
y=+0

= δ′(t) + θ(t)f(t), ū
∣∣
y=0

= g̃(ν, t), t ∈ R+, (3.5)

где

b(y) = b̄(z), g̃(ν, t) =
1√
2π

∫
R
g(x, t)eiνx dx. (3.6)

Теперь преобразуем интегро-дифференциальное уравнение (3.4) так, чтобы, во-
первых, в подынтегральном выражении отсутствовали производные функции ū по y
и, во-вторых, коэффициенты при ūy и ūt во внеинтегральных членах были равны
нулю. Эти требования удовлетворяются, если ввести новую функцию v как

v(ν, y, t) =

√
c(y)
c(0)

e(λ−k(0))t/2L[k, ū](t; ν, y, t). (3.7)

Прямыми вычислениями нетрудно показать, что ū связана с v соотношением

ū(ν, y, t) =

√
c(0)
c(y)

L[r, e(k(0)−λ)t/2v](t; ν, y, t), (3.8)
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где

r(t) = −k(t)−
∫ t

0

k(t− τ)r(τ) dτ. (3.9)

Введем обозначения

r00 := −r′(0) +
1
4
r2(0)− 3λ

2
r(0) +

λ2

4
, c0 := − c′(0)

2c(0)
. (3.10)

Перепишем уравнения (3.4), (3.5) в терминах новых функций ū(ν, y, t) и r(t):

∂2v

∂t2
=
∂2v

∂y2
+H(ν, y)v(ν, y, t)−

−
∫ t

0

h(t− τ)v(ν, y, τ) dτ + b(y)
∫ t

0

p(t− τ)v(ν, y, τ) dτ, (3.11)

v
∣∣
t<0

≡ 0,
(
∂v

∂y
+ c0v

)∣∣∣∣
y=+0

= δ′(t)− λ+ r(0)
2

δ(t) + θ(t)f0(t), (3.12)

v
∣∣
y=+0

= g̃0(ν, t) +
∫ t

0

k0(t− τ)g̃0(ν, τ) dτ, (3.13)

где
H(ν, y) := r00 + q0(y)− ν2q1(y) + b(y),

q0(y) :=
1

4c2(y)
(2c(y)[c′′(y)− 2c′(y)] + c′ 2(y)), q1(y) = c2(y)

(3.14)

и
h(t) := e(λ+r(0))t/2r′′(t) + e(λ+r(0))t/2r′(t), p(t) := e(λ+r(0))t/2r(t),

f0(t) := e(λ+r(0))t/2f(t),

g̃0(ν, t) := e(λ+r(0))t/2g̃(ν, t), k0(t) := e(λ+r(0))t/2k(t).

(3.15)

С учетом предположения о гладкости функции c(y) очевидно, что q0(y) ∈ C(R),
q1(y) ∈ C2(R). В условиях (3.12) использовано равенство k(0) = −r(0), вытекающее
из уравнения (3.9).

Из теории гиперболических уравнений следует, что решение прямой задачи (3.11),
(3.12) тождественно равно нулю, v(ν, y, t) = 0, при всех y > t > 0, x ∈ R, посколь-
ку (3.11), (3.12) является начально-краевой задачей с нулевыми начальными дан-
ными и некоторым граничным условием, сосредоточенным в области y = 0, t = 0,
ν ∈ R. Имеет место следующая

Лемма 3.1. Решение прямой задачи (3.11), (3.12) представляется в виде

v(ν, y, t) = −δ(t− y) + θ(t− y)v̂(ν, y, t), (3.16)

при этом регулярная функция v̂(ν, y, t) удовлетворяет в области t > y > 0 урав-
нению

v̂tt = v̂yy +H(ν, y)v̂(ν, y, t) + h(t− y)− b(y)p(t− y)−

−
∫ t−y

0

h(τ)v̂(ν, y, t− τ) dτ + b(y)
∫ t−y

0

p(τ)v̂(ν, y, t− τ) dτ (3.17)
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с начальным и граничным условиями

v̂
∣∣
t=y+0

= β(ν, y) = β0 −
1
2

∫ y

0

H(ν, ξ) dξ, ν ∈ R, y ∈ R+, (3.18)

(v̂y + c0v̂)
∣∣
y=0

= f0(t), t ∈ R+. (3.19)

Отметим, что v = v̂ при t > y > 0. Поэтому далее при рассмотрении прямых
и обратных задач в области t > y > 0 мы не будем писать значок шляпки над v.

Доказательство. Подставим (3.16) в уравнения (3.11), (3.12) и применим метод
выделения особенностей [47]. Положим β(ν, y) = ṽ(ν, y, y + 0). Подставляя выраже-
ние (3.16) в (3.11) и приравнивая коэффициенты при одинаковых сингулярностях,
находим, что β(ν, y) удовлетворяет обыкновенному дифференциальному уравнению

2βy(ν, y) +H(ν, y) = 0

с начальным условием β(ν, 0) = β0 = (r(0) + λ − 2c0)/2. Решая это уравнение,
получаем

β(ν, y) = β0 −
1
2

∫ y

0

H(ν, s) ds.

Кроме того, если подставить выражение (3.16) в (3.12), мы получим условие (3.19).
Это завершает доказательство леммы.

Заметим, что в силу (3.13) с учетом введенных выше обозначений функция g̃0(ν, t)
имеет вид

g̃0(ν, t) = −δ(t− y) + θ(t− y)ḡ(ν, t), (ν, t) ∈ R2
+, (3.20)

где функция ḡ(ν, t) удовлетворяет некоторым условиям гладкости по переменной t,
которые обсуждаются ниже. В связи с этим дополнительное условие (3.13) для
функции v выглядит как

v
∣∣
y=0

= ḡ00(ν, t), t ∈ R+, (3.21)

где

ḡ00(ν, t) = ḡ(ν, t)− k0(t) +
∫ t

0

k0(t− τ)ḡ(ν, τ) dτ.

Теперь мы сузим данные задачи, предположив, что функция ḡ(ν, t) (и, следо-
вательно, функция g̃(ν, t))) известна только для двух значений ν1, ν2, таких что
ν2
1 ̸= ν2

2 . Тогда, если известно решение прямой задачи при ν = νi, i = 1, 2, обратная
задача (2.1)–(2.4) сводится к задаче определения функций c(y), k(t) из соотноше-
ний (3.17)–(3.19) и ее решение задается равенством (3.21). Оказывается, что по
этим данным функции c(y), k(t) определяются однозначно. После нахождения c(y)
функция l(z), задающая соответствие (3.3) между переменными y и z, находится по
формуле

l(y) =
∫ y

0

c(ξ) dξ,

при этом
√
µ(z) = c(l−1(z)). Благодаря тому, что уравнение (3.17) описывает вол-

новой процесс, распространяющийся с единичной скоростью, решение v(ν, 0, t) при
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t ∈ [0, T ] и фиксированном ν зависит от функции c(y) и ее производных (через
функцию H(ν, y)) только на интервале [0, T/2] и от функции k(t) на [0, T ]. Поэтому
естественно ожидать, что верно и обратное: функция c(y) на каждом интервале
[0, T/2] и функция k(t) на [0, T ] определяются значениями функции ḡ(ν, t) толь-
ко на интервале [0, T ]. Оказывается, что такой локальный характер зависимости
функций c(y) и k(t) от ḡ(ν, t) действительно имеет место, и это, конечно, отражено
в результатах, которые мы намерены далее доказать.

4. СВОЙСТВА РЕШЕНИЯ ПРЯМОЙ ЗАДАЧИ

Изучим решение прямой задачи (3.17)–(3.19).

Лемма 4.1. Предположим, что b(y) ∈ C[0, T/2], c(y) ∈ C2[0, T/2], f(t) ∈ C[0, T ],
k(t) ∈ C2[0, T ] при некотором фиксированном T > 0. Тогда для каждого фиксиро-
ванного значения параметра ν решение задачи (3.17)–(3.19) для (y, t) ∈ DT , где

DT =
{
(y, t) : 0 6 y 6 t 6 T − y

}
,

принадлежит классу функций C1(DT ) и подчиняется следующей оценке:

∥v∥C1(DT ) 6 d · (∥b(y)∥C[0,T/2] + ∥c(y)∥C2[0,T/2] + ∥f(t)∥C[0,T ] + ∥k(t)∥C2[0,T ]), (4.1)

где d зависит только от T , ν , ∥b(y)∥C[0,T/2] , ∥c(y)∥C2[0,T/2] и ∥k(t)∥C2[0,T ] . Кроме
того, функция

ψ(ν1, ν2, t) = vt(ν1, 0, t)− vt(ν2, 0, t)

при любых фиксированных νj , j = 1, 2, принадлежит классу C1[0, T ].

Доказательство. Используя для vtt − vyy равенства(
∂2

∂t2
− ∂2

∂y2

)
v(ν, y, t) =

(
∂

∂t
− ∂

∂y

)
(vt + vy) =

(
∂

∂t
+

∂

∂y

)
(vt − vy),

из соотношений (3.17)–(3.19) при (y, t) ∈ DT интегрированием по соответствующим
характеристикам дифференциальных операторов первого порядка получаем

(vt + vy)(ν, y, t) = −1
2
H

(
ν,
y + t

2

)
+

+
∫ (y+t)/2

y

[
H(ν, ξ)v(ν, ξ, t+ y − ξ) + h(t+ y − 2ξ)− b(ξ)p(t+ y − 2ξ)−

−
∫ t+y−2ξ

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t+ y − ξ − τ) dτ

]
dξ, (4.2)

v(ν, 0, t) = β0e
c0t − 1

2

∫ t

0

ec0(t−τ)H

(
ν,
τ

2

)
dτ −

∫ t

0

ec0(t−τ)f0(τ) dτ +

+
∫ t

0

ec0(t−τ)

∫ τ/2

0

[
H(ν, ξ)v(ν, ξ, τ − ξ) + h(τ − 2ξ)− b(ξ)p(τ − 2ξ)−

−
∫ τ−2ξ

0

(
h(α)− b(ξ)p(α)

)
v(ν, ξ, τ − ξ − α) dα

]
dξ dτ, (4.3)
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(vt − vy)(ν, y, t) = −2f(t− y) + 2c0v(ν, 0, t− y)− 1
2
H

(
ν,
t− y

2

)
+

+
∫ (t−y)/2

0

[
H(ν, ξ)v(ν, ξ, t− y − ξ) + h(t− y − 2ξ)− b(ξ)p(t− y − 2ξ)−

−
∫ t−y−2ξ

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y − ξ − τ) dτ

]
dξ +

+ h(t− y)y − p(t− y)
∫ y

0

b(ξ) dξ +

+
∫ y

0

[
H(ν, ξ)v(ν, ξ, t− y + ξ)−

−
∫ t−y

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y + ξ − τ) dτ

]
dξ. (4.4)

Из (4.2), (4.4) находим уравнения для vt, vy, v:

vt(ν, y, t) = −f(t− y) + c0v(ν, 0, t− y)− 1
4
H

(
ν,
y + t

2

)
− 1

4
H

(
ν,
t− y

2

)
+

+
1
2

(
h(t− y)y − p(t− y)

∫ y

0

b(ξ) dξ
)

+

+
1
2

∫ (t−y)/2

0

[
H(ν, ξ)v(ν, ξ, t− y − ξ) + h(t− y − 2ξ)− b(ξ)p(t− y − 2ξ)−

−
∫ t−y−2ξ

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y − ξ − τ) dτ

]
dξ +

+
1
2

∫ y

0

[
H(ν, ξ)v(ν, ξ, t− y + ξ)−

−
∫ t−y

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y + ξ − τ) dτ

]
dξ +

+
1
2

∫ (y+t)/2

y

[
H(ν, ξ)v(ν, ξ, t+ y − ξ) +

+ h(t+ y − 2ξ)− b(ξ)p(t+ y − 2ξ)−

−
∫ t+y−2ξ

0

h(τ)v(ν, ξ, t+ y − ξ − τ) dτ +

+ b(ξ)
∫ t+y−2ξ

0

p(τ)v(ν, ξ, t+ y − ξ − τ) dτ
]
dξ, (4.5)

vy(ν, y, t) = f(t− y)− c0v(ν, 0, t− y)− 1
4
H

(
ν,
t+ y

2

)
+

1
4
H

(
ν,
t− y

2

)
−

− 1
2

∫ (t−y)/2

0

[
H(ν, ξ)v(ν, ξ, t− y − ξ) + h(t− y − 2ξ)− b(ξ)p(t− y − 2ξ)−

−
∫ t−y−2ξ

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y − ξ − τ) dτ

]
dξ −

− 1
2

∫ y

0

[
H(ν, ξ)v(ν, ξ, t− y + ξ)−
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−
∫ t−y

0

(
h(τ)− b(ξ)p(τ)

)
v(ν, ξ, t− y + ξ − τ) dτ

]
dξ +

+
1
2

∫ (y+t)/2

y

[
H(ν, ξ)v(ν, ξ, t+ y − ξ) + h(t+ y − 2ξ)− b(ξ)p(t+ y − 2ξ)−

−
∫ t+y−2ξ

0

h(τ)v(ν, ξ, t+ y − ξ − τ) dτ +

+ b(ξ)
∫ t+y−2ξ

0

p(τ)v(ν, ξ, t+ y − ξ − τ) dτ
]
dξ, (4.6)

v(ν, y, t) = β0 −
1
2

∫ y

0

H(ν, ξ) dξ −
∫ t−y

0

f(τ) dτ + c0

∫ t−y

0

v(ν, 0, τ) dτ −

− 1
4

∫ t

y

[
H

(
ν,
y + t

2

)
+H

(
ν,
t− y

2

)]
dτ +

1
2

∫ t−y

0

(
h(τ)y − p(τ)

∫ y

0

b(ξ) dξ
)
dτ +

+
1
2

∫ t

y

∫ (τ−y)/2

0

[
H(ν, ξ)v(ν, ξ, τ − y − ξ) + h(τ − y − 2ξ)− b(ξ)p(τ − y − 2ξ)−

−
∫ τ−y−2ξ

0

(
h(α)− b(ξ)p(α)

)
v(ν, ξ, τ − y − ξ − α) dα

]
dξ dτ +

+
1
2

∫ t

y

∫ y

0

[
H(ν, ξ)v(ν, ξ, τ − y + ξ) +

∫ τ−y

0

h(α)v(ν, ξ, τ − y + ξ − α) dα−

− b(ξ)
∫ τ−y

0

p(α)v(ν, ξ, τ − y + ξ − α) dα
]
dξ dτ +

+
1
2

∫ t

y

∫ (y+τ)/2

y

[
H(ν, ξ)v(ν, ξ, τ + y − ξ) + h(τ + y − 2ξ)− b(ξ)p(τ + y − 2ξ)−

−
∫ τ+y−2ξ

0

h(α)v(ν, ξ, τ + y − ξ − α) dα+

+ b(ξ)
∫ τ+y−2ξ

0

p(α)v(ν, ξ, τ + y − ξ − α) dα
]
dξ dτ. (4.7)

Уравнение (4.7) – это интегральное уравнение типа Вольтерра в области DT , имею-
щее единственное непрерывное решение. Из уравнений (4.5), (4.6) следует, что это
решение непрерывно дифференцируемо в DT . Подставляя выражение для v(ν, 0, t),
полученное из (4.3), в уравнения (4.5)–(4.7) и используя для этих уравнений обыч-
ную схему метода последовательных приближений, который имеет факториальную
сходимость по t, легко установить справедливость оценки (4.1) в области DT . При-
менив уравнение (4.5), построим функцию

ψ(ν1, ν2, t) = c0
(
v(ν1, 0, t)− v(ν2, 0, t)

)
+

1
2
(ν2

1 − ν2
2)q1

(
t

2

)
+

+
∫ t/2

0

[
H(ν1, ξ)v(ν1, ξ, t− ξ)−H(ν2, ξ)v(ν2, ξ, t− ξ)−

−
∫ t−2ξ

0

h(τ)
(
v(ν1, ξ, t− ξ − τ)− v(ν2, ξ, t− ξ − τ)

)
dτ +
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+ b(ξ)
∫ t−2ξ

0

p(τ)
(
v(ν1, ξ, t− ξ − τ)− v(ν2, ξ, t− ξ − τ)

)
dτ

]
dξ. (4.8)

Правая часть этого равенства принадлежит классу C2[0, T ]. Следовательно, функ-
ция ψ(ν1, ν2, t) ∈ C2[0, T ] при любых фиксированных νi, i = 1, 2. Лемма доказана.

5. СВЕДЕНИЕ ОБРАТНОЙ ЗАДАЧИ
К СИСТЕМЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Отметим, что в условиях леммы 4.1 в качестве ее следствия мы получаем, что
функция ḡ(ν, t) в (3.21) принадлежит классу C2[0, T ] при каждом фиксированном ν,
как и функция ḡ(ν1, t)− ḡ(ν2, t).

Лемма 5.1. Пусть функция g̃0(ν, t) имеет вид (3.20), ḡ(ν, t) ∈ C2[0, T ] при лю-
бом фиксированном ν и

ḡ(ν1, t)− ḡ(ν2, t) ∈ C2[0, T ].

Пусть дополнительно функция ḡt(ν, 0) возрастает по ν ∈ R и f(t) ∈ C[0, T ]. Тогда
обратная задача (3.17)–(3.19), (3.21) в области DT эквивалентна задаче нахож-
дения функций v , vt , c(y), c′(y), q0(y), k0(t), k′0(t), k′′0 (t), h(t), p(t) из следующей
замкнутой системы интегральных уравнений:

c(y) = c(0) +
∫ y

0

c′(ξ) dξ, (5.1)

c′(y) = c′(0) +
∫ y

0

[
2c′(ξ) + 2c(ξ)q0(ξ)−

(c′(ξ))2

2c(ξ)

]
dξ, (5.2)

q0(y) = −r00 − b(y) + ν2
1q1(y)− 2f(2y) +

+ 2c0

[
ḡ(ν1, y)− k0(y) +

∫ y

0

k0(τ)ḡ(ν1, y − τ) dτ
]
−

− ḡt(ν1, y) + k′0(y)− ḡ(ν1, 0)k0(y)−
∫ y

0

k0(τ)ḡt(ν1, y − τ) dτ +

+
∫ y

0

[
H(ν1, ξ)v(ν1, ξ, 2y − ξ) + h(2y − 2ξ)− b(ξ)p(2y − 2ξ)−

−
∫ 2(y−ξ)

0

(
h(τ)− b(ξ)p(τ)

)
v(ν1, ξ, 2y − ξ − τ) dτ

]
dξ, y ∈ [0, T/2], (5.3)

k0(t) = −r(0) +
(
−r′(0) +

r2(0)
2

− λ

2
r(0)

)
t+

∫ t

0

(t− τ)k′′0 (τ) dτ, (5.4)

k′0(t) = −r′(0) +
r2(0)

2
− λ

2
r(0) +

∫ t

0

k′′0 (τ) dτ, (5.5)

k′′0 (t) = −c0ḡt(ν1, t) + ḡtt(ν1, t) +
(
c0 + ḡ(ν1, 0)

)
k′0(t) +

1
4
(ν2

1 − ν2
2)q′1(t/2) +

+
(
c0ḡ(ν1, 0)− ḡt(ν1, 0)

)
k0(t) +

∫ t

0

k0(τ)
(
c0ḡt(ν1, t− τ)− ḡtt(ν1, t− τ)

)
dτ +

+H

(
ν1,

t

2

)
v

(
ν1,

t

2
,
t

2

)
−H(ν2, t/2)v(ν2, t/2, t/2) +
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+
∫ t/2

0

[
H(ν1, ξ)vt(ν1, ξ, t− ξ)−H(ν2, ξ)vt(ν2, ξ, t− ξ)−

−
(
h(t− 2ξ)− b(ξ)p(t− 2ξ)

)(
v(ν1, ξ, ξ)− v(ν2, ξ, ξ)

)
−

−
∫ t−2ξ

0

(
h(τ)− b(ξ)p(τ)

)(
vt(ν1, ξ, t− ξ − τ)− vt(ν2, ξ, t− ξ − τ)

)
dτ

]
dξ, (5.6)

h(t) = −k′′0 (t)− r00k0(t)−
∫ t

0

k0(τ)h(t− τ) dτ, (5.7)

p(t) = −k0(t)−
∫ t

0

k0(t− τ)p(τ) dτ, t ∈ [0, T ], (5.8)

где

c(0) =

√
2G′(0)
ν2
1 − ν2

2

, c′(0) = 2c(0)(r(0) + 2ḡ(ν, 0)− λ), (5.9)

r(0) = λ− 2c0 − 2ḡ(ν, 0),

r′(0) = c0 − 2b(0)− ḡt(ν, 0) +
(
2ḡ(ν, 0)− λ+ r(0)

)r(0)
2
.

(5.10)

Доказательство. Сначала установим справедливость равенств (5.9) и (5.10).
Действительно, подставив t = 0 в уравнение (4.3) и использовав условие (3.21),
находим

ḡ(νj , 0) =
1
2
(
λ− r(0)− 2c0

)
, j = 1, 2. (5.11)

В частности, отсюда мы заключаем, что ḡ|t=0 не зависит от ν. Далее из уравне-
ния (4.8) при t = 0 получаем

G′(0) =
1
2
(ν2

1 − ν2
2)c2(0).

Следовательно, в силу положительности G′(t) = ḡt(ν1, 0)−ḡt(ν2, 0) имеем (4.7). Учи-
тывая равенство (5.11) для c0, получаем второе равенство в (5.9). Поскольку ḡ|t=0

не зависит от ν, вторая формула в (3.8) однозначно задает c′(0).
Наложим условие непрерывности на функции v(ν, y, t), vy(ν, y, t) при y = t = 0.

Из соотношений (3.18), (3.19) и (3.21) нетрудно получить формулу (5.10) для r(0)
и r′(0). Чтобы получить последнее равенство для r′(0), применим соотношение
k′(0) = −r′(0) + r2(0), вытекающее из (3.9). Далее мы предполагаем, что значе-
ния r(0) и r′(0) подставлены в H(ν, y).

Продолжим доказательство леммы. Уравнение (4.5) получается из соотноше-
ний (3.17)–(3.19). Уравнение (4.7) выводится из (4.6) интегрированием по t от точ-
ки (0, t) до точки (y, t) на плоскости переменных (ξ, τ). В свою очередь, уравне-
ние (4.5) согласуется с (3.17)–(3.20). Далее положим y = 0 в (4.5) и используем
условие (3.21) при ν = ν1. Отсюда после простых преобразований получаем ра-
венство (5.3), в котором для определенности мы положили ν = ν1. На самом деле
результат вычислений не должен зависеть от выбора параметра ν. Чтобы получить
уравнение (5.6), применим соотношение (4.8), которое выводится из уравнения (4.5)
с использованием условия (3.21). Заметим, что ψ(ν1, ν2, t) := ḡ00t(ν1, t) − ḡ00t(ν2, t),
и продифференцируем равенство (4.5) по t. Получим уравнение (5.6).
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Остальные соотношения в формулировке леммы приведены для замыкания си-
стемы уравнений. Они получаются из определений функций h(t), p(t) и k0(t) с ис-
пользованием равенства (3.9).

Утверждение об эквивалентности системы интегральных уравнений (5.1)–(5.8)
и обратной задачи (3.17)–(3.19), (3.21) доказывается в обычном порядке (см., на-
пример, работу [16]). Лемма доказана.

Система интегральных уравнений (4.5), (4.7) при ν = νj , j = 1, 2, и систе-
ма (5.1)–(5.8) замкнуты в области DT и определяют единственным образом непре-
рывные функции v, vt, c(y), c′(y), q0(y), k0(t), k′0(t), k′′0 (t), h(t), p(t) при достаточно
малом T . Не останавливаясь на теореме о локальной однозначной разрешимости
задачи, перейдем к результатам, связанным с оценкой устойчивости и однозначной
разрешимостью задачи для произвольного T > 0.

6. ДОКАЗАТЕЛЬСТВО РЕЗУЛЬТАТОВ

Обозначим через Ψ(s0, d0) набор из двух функций {c(y), k(t)}, удовлетворяющих
при некотором T > 0 следующим условиям:

0 < s00 6 c(y), ∥c(y)∥C2[0,T/2] 6 s0, ∥k(t)∥C2[0,T ] 6 d0;

пусть, кроме того,

∥b(y)∥C[0,T/2] 6 b0, ∥f(t)∥C[0,T ] 6 f0,

где s00, b0, f0 – заданные числа.

Теорема 6.1. Пусть (c(1), k(1)) ∈ Ψ(s0, d0) и (c(2), k(2)) ∈ Ψ(s0, d0) суть решения
обратной задачи (3.17)–(3.21) с данными(

ḡ(1)(νj , t), b(1)(y), f (1)(t)
)
,

(
ḡ(2)(νj , t), b(2)(y), f (2)(t)

)
, j = 1, 2,

соответственно. Тогда существует положительная постоянная M , зависящая
от ν1 , ν2 , s0 , s00 , d0 , b0 , f0 , такая что выполняется следующая оценка:

∥k(1)(t)− k(2)(t)∥C2[0,T ] + ∥c(1)(y)− c(2)(y)∥C2[0,T/2] 6 Md̃, (6.1)

где

d̃ := ∥b(1)(y)− b(2)(y)∥C[0,T/2] + ∥f (1)(t)− f (2)(t)∥C[0,T ] +

+
2∑

j=0

∥ḡ(1)(νj , t)− ḡ(2)(νj , t)∥C2[0,T ].

Теорема 6.1 очевидно влечет теорему единственности для любого T > 0.

Теорема 6.2. Пусть функции c(i)(y) ∈ C2[0, T/2], k(i)(t) ∈ C2[0, T ] и ḡ(i)(νj , t),
b(i)(y), f (i)(t), i = 1, 2, j = 1, 2, имеют то же значение, что в теореме 6.1. Если
при этом всюду на [0, T ]

b(1)(y) = b(2)(y), f (1)(t) = f (2)(t), ḡ(1)(νj , t) = ḡ(2)(νj , t), j = 1, 2,

то
c(1)(y) = c(2)(y), y ∈ [0, T/2], k(1)(t) = k(2)(t), t ∈ [0, T ].
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Доказательство. Обозначим решения для данных b(i), f (i), c(i), k(i), ḡ(i)(νj , t)
как v(ij)(y, t), i, j = 1, 2. Введем обозначения

b̃(y) = b(1) − b(2), f̃(t) = f (1) − f (2), c̃(y) = c(1) − c(2), k̃0(t) = k
(1)
0 − k

(2)
0 ,

l̃(y) = l(1) − l(2), ˜̄g00(νj , t) = ḡ
(1)
00 − ḡ

(2)
00 , h̃(t) = h(1) − h(2), p̃(t) = p(1) − p(2),

ṽ(j)(y, t) = v(1j)(y, t)− v(2j)(y, t), j = 1, 2.

Пусть q(i)0 (y), q(i)1 (y) и

H(ij)(y) = r
(i)
00 + q

(i)
0 (y)− ν2

j q
(i)
1 (y) + b(i)(y), H̃(j)(y) = H(1j) −H(2j),

c
(i)
0 =

(c(i))′(0)− a(i)(0)
2c(i)(0)

, β
(i)
0 =

1
2
(
r(i)(0)− 2c(i)0 + λ

)
,

r
(i)
00 = −(r(i))′(0) +

(r(i))2(0)
4

− 3λr(i)(0)
2

+
λ2

4

суть вспомогательные функции и числа, соответствующим этим функциям c(i)(y).
Выпишем соответствующие интегральные соотношения для введенных функций. Из
равенств (4.7) и (4.5) следует, что для j = 1, 2

ṽ(j)(y, t) = β̃0 −
1
2

∫ y

0

H̃(j)(ξ) dξ −
∫ t−y

0

f̃(τ) dτ + c̃0

∫ t−y

0

ḡ00(νj , τ) dτ +

+ c
(2)
0

∫ t−y

0

˜̄g00(νj , τ) dτ −
1
4

∫ t

y

[
H̃(j)

(
τ + y

2

)
+ H̃(j)

(
τ − y

2

)]
dτ +

+
1
2

∫ t−y

0

(
h̃(τ)y − p̃(τ)

∫ y

0

b(1)(ξ) dξ − p(2)(τ)
∫ y

0

b̃(ξ) dξ
)
dτ +

+
1
2

∫ t

y

∫ (τ−y)/2

0

{
H̃(j)(ξ)v(1j)(ξ, τ − y − ξ) +H(2j)(ξ)ṽ(j)(ξ, τ − y − ξ) +

+ h̃(τ − y − 2ξ)− b(1)(ξ)p̃(τ − y − 2ξ)− b̃(ξ)p(2)(τ − y − 2ξ)−

−
∫ τ−y−2ξ

0

(
h(1)(α)ṽ(j)(ξ, τ − y − ξ − α) + h̃(α)v(2j)(ξ, τ − y − ξ − α)

)
dα+

+
∫ τ−y−2ξ

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, τ − y − ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(2j)(ξ, τ − y − ξ − α)
)
dα

}
dξ dτ +

+
1
2

∫ t

y

∫ y

0

{
H̃(j)(ξ)v(1j)(ξ, τ − y + ξ) +H(2j)(ξ)ṽ(j)(ξ, τ − y + ξ) +

+
∫ τ−y

0

(
h(1)(α)ṽ(j)(ξ, τ − y + ξ − α) + h̃(α)v(2j)(ξ, τ − y + ξ − α)

)
dα−

−
∫ τ−y

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, τ − y + ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(2j)(ξ, τ − y + ξ − α)
)
dα

}
dξ dτ +
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+
1
2

∫ t

y

∫ (τ+y)/2

y

{
H̃(j)(ξ)v(1j)(ξ, τ + y − ξ) +H(2j)(ξ)ṽ(j)(ξ, τ + y − ξ) +

+ h̃(τ + y − 2ξ)− b(1)(ξ)p̃(τ + y − 2ξ)− b̃(ξ)p(2)(τ + y − 2ξ)−

−
∫ τ+y−2ξ

0

(
h(1)(α)ṽ(j)(ξ, τ + y− ξ−α) +h̃(α)v(2j)(ξ, τ + y− ξ−α)

)
dα+

+
∫ τ+y−2ξ

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, τ + y − ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(2j)(ξ, τ + y − ξ − α)
)
dα

}
dξ dτ, (6.2)

ṽ
(j)
t (y, t) = −f̃(t− y) + c̃0ḡ

(1)
00 (νj , t− y) + c

(2)
0

˜̄g00(νj , t− y)−

− 1
4

[
H̃(j)

(
t+ y

2

)
+ H̃(j)

(
t− y

2

)]
+

+
1
2

∫ (t−y)/2

0

{
H̃(j)(ξ)v(1j)(ξ, t− y − ξ) +H(2j)(ξ)ṽ(j)(ξ, t− y − ξ) +

+ h̃(t− y − 2ξ)− b(1)(ξ)p̃(t− y − 2ξ)− b̃(ξ)p(2)(t− y − 2ξ)−

−
∫ t−y−2ξ

0

(
h(1)(α)ṽ(j)(ξ, t− y − ξ − α) + h̃(α)v(2j)(ξ, t− y − ξ − α)

)
dα+

+
∫ t−y−2ξ

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, t− y − ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(2j)(ξ, t− y − ξ − α)
)
dα

}
dξ +

+
1
2

∫ y

0

{
H̃(j)(ξ)v(1j)(ξ, t− y + ξ) +H(2j)(ξ)ṽ(j)(ξ, t− y + ξ)−

−
∫ t−y

0

(
h(1)(α)ṽ(j)(ξ, t− y + ξ − α) + h̃(α)v(2j)(ξ, t− y + ξ − α)

)
dα+

+
∫ t−y

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, t− y + ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(2j)(ξ, t− y + ξ − α)
)
dα

}
dξ +

+
1
2

∫ (t+y)/2

y

{
H̃(j)(ξ)v(1j)(ξ, t+ y − ξ) +H(2j)(ξ)ṽ(j)(ξ, t+ y − ξ) +

+ h̃(t+ y − 2ξ)− b(1)(ξ)p̃(t+ y − 2ξ)− b̃(ξ)p(2)(t+ y − 2ξ)−

−
∫ t+y−2ξ

0

(
h(1)(α)ṽ(j)(ξ, t+ y − ξ − α) + h̃(α)v(2j)(ξ, t+ y − ξ − α)

)
dα+

+
∫ t+y−2ξ

0

(
b(1)(ξ)p(1)(α)ṽ(j)(ξ, t+ y − ξ − α) +

+
(
b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α)

)
v(2j)(ξ, t+ y − ξ − α)

)
dα

}
dξ. (6.3)
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Заметим, что в этих равенствах

β̃0 =
1
2
(r̃(0)− 2c̃0), c̃0 =

c̃(0)(c(2)(0))′ − c̃′(0)c(2)(0)
2c(1)(0)c(2)(0)

. (6.4)

Используя соотношения (5.1)–(5.8), находим

c̃(y) = c̃(0) +
∫ y

0

c̃′(ξ) dξ, (6.5)

c̃′(y) = c̃′(0) +
∫ y

0

[
2(c̃(ξ)q(1)0 (ξ) + c(2)(ξ)q̃0(ξ))−

2c̃′(ξ)
c(1)(ξ)

+

+ 2
(c(1)(ξ))′ + (c(2)(ξ))′

c(2)(ξ)
c̃′(ξ)− 7[(c(1)(ξ))′]2 − 4(c(2)(ξ))′

2c(1)(ξ)c(2)(ξ)
c̃(ξ)

]
dξ, (6.6)

q̃0(y) = −r̃00 − b̃(y) + ν2
1 q̃1(y)− 2f̃(2y) +

+ 2c̃0

[
ḡ(1)(ν1, y)− k

(1)
0 (y) +

∫ y

0

k
(1)
0 (τ)ḡ(1)(ν1, y − τ) dτ

]
+

+ 2c(2)0

[
˜̄g(ν1, y)− k̃0(y) +

∫ y

0

(
k̃0(τ)ḡ(1)(ν1, y − τ) + k

(2)
0 (τ)˜̄g(ν1, y − τ)

)
dτ

]
−

− ˜̄gt(ν1, y) + k̃′0(y)− ˜̄g(ν1, 0)k(1)
0 (y)− ḡ(2)(ν1, 0)k̃0(y)−

−
∫ y

0

(
k̃0(τ)ḡ

(1)
t (ν1, y − τ) + k

(2)
0 (τ)˜̄gt(ν1, y − τ)

)
dτ +

+
∫ y

0

{
H̃(1)(ξ)v(11)(ξ, 2y − ξ) +H(21)(ξ)ṽ(1)(ξ, 2y − ξ) + h̃(2y − 2ξ)−

− b(1)(ξ)p̃(2y − 2ξ)− b̃(ξ)p(2)(2y − 2ξ)−

−
∫ 2(y−ξ)

0

(
h(1)(α)ṽ(1)(ξ, 2y − ξ − α) + h̃(α)v(21)(ξ, 2y − ξ − α)

)
dα+

+
∫ 2(y−ξ)

0

(
b(1)(ξ)p(1)(α)ṽ(1)(ξ, 2y − ξ − α) +

+ (b(1)(ξ)p̃(α) + b̃(ξ)p(2)(α))v(21)(ξ, 2y − ξ − α)
)
dα

}
dξ, (6.7)

k̃0(t) = −r̃(0) +
(
−r̃′(0) +

r̃(0)
2

(r(1)(0) + r(2)(0))− λ

2
r̃(0)

)
t+

∫ t

0

(t− τ)k̃′′0 (τ) dτ,

(6.8)

k̃′0(t) = −r̃′(0) +
r̃(0)
2

(
r(1)(0) + r(2)(0)

)
− λ

2
r̃(0) +

∫ t

0

k̃′′0 (τ) dτ, (6.9)

k̃′′0 (t) = −c̃0ḡ(1)
t (ν1, t)− c

(2)
0

˜̄gt(ν1, t) + ˜̄gtt(ν1, t) +
(
c̃0 + ˜̄g(ν1, 0)

)
(k(1)

0 (t))′ +

+ (c(2)0 + ḡ(2)(ν1, 0))k̃′0(t) +
1
4
(ν2

1 − ν2
2)q̃′1

(
t

2

)
+

+
(
c
(2)
0 ḡ(2)(ν1, 0)− ḡ

(2)
t (ν1, 0)

)
k̃0(t) +

(
c̃0ḡ

(1)(ν1, 0) + c
(2)
0

˜̄g(ν1, 0)− ˜̄gt(ν1, 0)
)
k

(1)
0 (t) +

+
∫ t

0

[(
c̃0ḡ

(1)
t (ν1, t− τ) + c

(2)
0

˜̄g(ν1, t− τ)− ˜̄gtt(ν1, t− τ)
)
k

(1)
0 (τ) +

+
(
c
(2)
0 ḡ

(2)
t (ν1, t− τ)− ḡ

(2)
tt (ν1, t− τ)

)
k̃0(τ)

]
dτ +
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+ H̃(1)

(
t

2

)
β(1)

(
ν1,

t

2

)
+H(21)

(
t

2

)
β̃

(
ν1,

t

2

)
−

− H̃(2)

(
t

2

)
β(1)

(
ν2,

t

2

)
−H(22)

(
t

2

)
β̃

(
ν2,

t

2

)
+

+
∫ t/2

0

{
H̃(1)(ξ)v(11)

t (ξ, t− ξ) +H(21)(ξ)ṽ(1)
t (ξ, t− ξ)−

− H̃(2)(ξ)v(12)
t (ξ, t− ξ) +H(22)(ξ)ṽ(2)

t (ξ, t− ξ)−

−
(
h̃(t− 2ξ)− b̃(ξ)p(1)(t− 2ξ)− b(2)(ξ)p̃(t− 2ξ)

)(
v(11)(ξ, ξ)− v(12)(ξ, ξ)

)
−

−
(
h(2)(t− 2ξ)− b(2)(ξ)p(2)(t− 2ξ)

)(
β̃(ν1, ξ)− β̃(ν2, ξ)

)
−

−
∫ t−2ξ

0

[(
h̃(τ)− b̃(ξ)p(1)(τ)− b(2)(ξ)p̃(τ)

)
×

×
(
v
(11)
t (ξ, t− ξ − τ)− v

(12)
t (ξ, t− ξ − τ)

)
+

+
(
h(2)(τ)− b(2)(ξ)p(2)(τ)

)
×

×
(
ṽ
(1)
t (ξ, t− ξ − τ)− ṽ

(2)
t (ξ, t− ξ − τ)

)]
dτ

}
dξ, (6.10)

h̃(t) = −k̃′′0 (t)− r̃00k
(1)
0 (t)− r

(2)
00 k̃0(t)−

∫ t

0

(
k̃0(τ)h(1)(t− τ) + k

(2)
0 (τ)h̃(t− τ)

)
dτ,

(6.11)

p̃(t) = −k̃0(t)−
∫ t

0

(
k̃0(τ)p(1)(t− τ) + k

(2)
0 (τ)p̃(t− τ)

)
dτ ; (6.12)

здесь

r̃00 = −r̃′(0) +
r̃(0)
4

(
r(1)(0) + r(2)(0)

)
− 3λr̃(0)

2
. (6.13)

Оценим функции в системе уравнений (6.2)–(6.13) в области DT через величину d̃
из теоремы 6.1. Область DT может быть эквивалентным образом задана как

DT :=
{

(y, t) : 0 6 y 6 t 6
T

2
−

∣∣∣∣T2 − t

∣∣∣∣, 0 6 t 6 T

}
.

Пусть

ω(t) = max
{

max
06y6T/2−|T/2−t|

|ṽ(j)(y, t)|, max
06y6T/2−|T/2−t|

|ṽ(j)
t (y, t)|,

max
06y6T/2−|T/2−t|

|c̃(y)|, max
06y6T/2−|T/2−t|

|c̃′(y)|, max
06y6T/2−|T/2−t|

|q̃0(y)|,

d|k̃0(t)|, |k̃′0(t)|, |k̃′′0 (t)|, |h̃(t)|, |p̃(t)|
}
, t ∈ [0, T ], j = 1, 2.

По лемме 4.1 функции v(ij) дифференцируемы в DT и удовлетворяют оценке

∥v(ij)∥C1(DT ) 6 m1, i, j = 1, 2, (6.14)

при некоторой постояннойm1, зависящей только от ν1, ν2, T, s0, s00, d0, b0, f0. Функ-
ции G(i)(t) = ḡ(i)(ν1, t)− ḡ(i)(ν2, t), i = 1, 2, суть следы функций v(i1)(y, t)− v(i2)(y, t)
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при y = 0, и для каждой из них, как это следует из (6.14), (4.8), выполняется ана-
логичная (6.14) оценка, отсюда мы имеем неравенство

∥G(i)(t)∥C2(DT ) 6 m2, i = 1, 2,

в котором постоянная m2 зависит от тех же параметров, что и m1. Из соотноше-
ний (6.14), (3.21) следует, что функции ḡ(i)(νj , t) должны быть ограничены посто-
янной m1:

∥ḡ(i)(νj , t)∥C1[0,T ] 6 m1, i, j = 1, 2.

Числа c(i)(0), (c(i))′(0), r(i)(0), (r(i))′(0), i = 1, 2, заданные формулами (5.9), (5.10)
через ν1, ν2, G′, по тем же причинам ограничены постоянной m3, которая зависит
от тех же параметров, что и mj , j = 1, 2. Следовательно, для c

(i)
0 , c̃0, β

(i)
0 , β̃0,

r
(i)
00 , r̃00, выражающихся через c(i)(0), (c(i))′(0), r(i)(0), (r(i))′(0), i = 1, 2, с помощью

формул (6.5), (6.13), имеют место оценки

max
{
|c(i)0 |, |β(i)

0 |, |r(i)00 |
}

6 m4, max
{
|c̃0|, |β̃0|, |r̃00|

}
6 θm5,

где m4, m5 – некоторые постоянные, зависящие от ν1, ν2, T, s0, s00, d0, b0, f0. На-
помним, что θ задана в теореме 6.1.

Далее, функции q(i)0 (y), q(i)1 (y), H(ij)(y), определяющиеся через r(i)00 , c(i)(y), b(i)(y)
и νj , i, j = 1, 2, аналогичным образом удовлетворяют неравенствам

∥q(i)0 (y)∥C2[0,T/2] 6 m6, ∥q(i)1 (y)∥C2[0,T/2] 6 m7,

∥H(ij)(y)∥C2[0,T/2] 6 m8, i, j = 1, 2,

где m6, m7, m8 зависят от тех же параметров, что и остальные константы.
С учетом вышеизложенного перейдем к оценке в области DT функций ṽ(j), удов-

летворяющих интегральным уравнениям (6.2). Заметим, что эти уравнения, как
и все остальные, содержат члены, содержащие только известные величины и члены
с неизвестными функциями. В правой части уравнения (6.2) первые четыре слагае-
мых зависят от известных функций и чисел и поэтому в совокупности оцениваются
значением A1d̃ с константой A1, зависящей от mi, i = 1, . . . , 8. Как легко видеть,
оставшиеся слагаемые в правой части оцениваются в области DT интегралом вида

κ1

∫ t

0

ω(τ) dτ,

где множитель κ1 зависит только от постоянных mi, i = 1, . . . , 8, которые, в свою
очередь, зависят от ν1, ν2, T , s0, s00, d0, b0, f0. Таким образом,

|ṽ(j)(y, t)| 6 A1d̃+ κ1

∫ t

0

ω(τ) dτ, (y, t) ∈ DT , j = 1, 2. (6.15)

Из уравнений (6.5), (6.6) мы можем видеть, что c̃(y), c̃′(y) оцениваются аналогично:

|c̃(y)| 6 A2d̃+ κ2

∫ t

0

ω(τ) dτ,

|c̃′(y)| 6 A3d̃+ κ3

∫ t

0

ω(τ) dτ,
y ∈

[
0,
T

2

]
. (6.16)

Здесь постоянные Ai, κi, i = 2, 3, зависят от тех же параметров, что и A1, κ1.
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Используем неравенства (6.16) для оценки функций

q̃1(y) = c̃(y)
[
c(1)(y) + c(2)(y)

]
, q̃′1(y) = 2

[
c̃(y)(c(1)(y))′ + c(2)(y)c̃′(y)

]
,

стоящих во внеинтегральных членах в правых частях уравнений (6.7), (6.8). Ана-
логично получаем неравенства

|q̃0(y)| 6 A4d̃+ κ4

∫ t

0

ω(τ) dτ, |k̃0(t)| 6 A5d̃+ κ5

∫ t

0

ω(τ) dτ, (6.17)

а также неравенства для k̃′0(t), k̃′′0 (t), h̃(t), p̃(t):

|k̃′0(t)| 6 A6d̃+ κ6

∫ t

0

ω(τ) dτ, |k̃′′0 (t)|6 A7d̃+ κ7

∫ t

0

ω(τ) dτ, (6.18)

|h̃(t)| 6 A8d̃+ κ8

∫ t

0

ω(τ) dτ, |p̃(t)| 6 A9d̃+ κ9

∫ t

0

ω(τ) dτ. (6.19)

Применим неравенства (6.16)–(6.19) в оценках функций H̃(j) во внеинтегральных
членах уравнений (6.3), чтобы вывести оценки для функций ṽ(j)

t (y, t):

|ṽ(j)
t (y, t)| 6 A10d̃+ κ10

∫ t

0

ω(τ) dτ, j = 1, 2. (6.20)

В полученных неравенствах постоянные Ai, κi, i = 4, . . . , 10, через постоянные mi,
i = 1, . . . , 8, зависят только от параметров ν1, ν2, T , s0, s00, d0, b0, f0. Из соотноше-
ний (6.15)–(6.20) следует, что ω(t) удовлетворяет интегральному неравенству

ω(t) 6 Ad̃+ κ

∫ t

0

ω(τ) dτ,

где новые постоянные A, κ зависят только от ν1, ν2, T , s0, s00, d0, b0, f0. Отсюда,
используя неравенство Гронуолла, выводим оценку (6.1).

Конфликт интересов. Авторы заявляют, что у них нет конфликта интересов.
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