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DIFFUZIYA-TO’LQIN TENGLAMASI UCHUN KOEFFISIYENTINI
ANIQLASH MASALASI

Subhonova Z.A., Rahmonov A.A.
Buxoro davlat universiteti

To’g’ri va teskari masalaning qo’yilishi. Diffuzion - to’lqinli tenglama —
bu amorf kolloid, shishasimon va g‘ovakli materiallardan tortib fraktallar,
perkolatsiya Kklasterlari, tasodifiy va tartibsiz mubhitlar, tarogli inshootlar,
dielektriklar, yarim o’tkazgichlar, polimerlar va biologik tizimlargacha bo’lgan
muhim fizik hodisalarning matematik modeli. Hozirda diffuzion - to’lqinli
tenglama yechimlarini muntazam ravishda namoyish etishga bag’ishlangan nashr
risolasi mavjud emas. Ushbu ishda vaqt o’zgaruvchan koeffisenti bilan kasrli
differensial tenglamani ko’rib chigamiz.

Kasr diffuziya tenglamasi

(Dru)x,t) —u, (x, 1)+ qtyu(x,t) = F(x,t), t>0, xeR, (1)
berilgan bo’lsin. Bu yerda 1<« <2, DY — Gerasimov-Kaputo kasr differensial

operatori, ya’ni
(Dt“u)(x,t) = ! j Uy, (.7) dr,
r2-a)s (t — T)’H

ko’rinishda aniglangan.
Koshi masalasi uchun boshlang’ich shartlar:

u(x0) = (x), U (x0) =y (x), xeR. (2)

Ishning asosiy magsadi q(t) koeffisentini aniglashda iborat. [1] ishda Rayt
funksiyasidan foydalanib (1) — (2) masalaning (va uning kasr hosilasining boshga

460



tushunchalari uchun analoglari) fundamental yechimi batafsil o‘rganib chiqilgan.
Faraz gilaylik z,,z, va vy funksiyalar (1) — (2) masalaning fundamental yechimlari

bo‘lsin. U holda Koshi masalasining yechimi quyidagi integral tenglama bilan
ifodalanadi:

u(x,t) = [ Z,(x=£,0)p(E)dE + [ Z,(x = & Dy (£)dE +

+[de[Y(x=£t-0)(f (7.9 -a@u(E D)dE, 3)
bunda

Zl(X!t) = %t2¢ _g’l_g;_ thj;

Z,(x,1) =%t12¢ —%,2—%; —xtz}

Y(x,1) = %tz_lgb[—g,g; - xt_ZJ,

bu yerda ¢ — Rayt funksiyasi bo’lib u quyidagicha aniqlanadi:

0 Zn
-a,0,2)= ) —————, 1, C
P(-a ) nzz(;nlr(é'—an) a<l ze
I'(s) — Eylerning gamma funksiyasi.
Teskari masala to’g’ri masala yechimi haqida
u(0,)=g(t), t>0 (4)

qo’shimcha ma’lumot bo‘yicha q(t), t >0 uzluksiz funksiyani aniglashdan iborat, bu
yerda g(t) berilgan funksiya.

u(x,t) (1), (2) Koshi masalasining klassik yechimi bo’lsin va f,p,w,g lar
yetarlicha silliq funksiyalar bo’Isin. (1) - (4) teskari masalaga ekvivalent bo’lgan
yangi asala olamiz. Buning uchun u(x,t) ning x o’zgaruvchi bo‘yicha ikkinchi

tartibli hosilasini v(x,t) orqali belgilaymiz, ya’ni v(X,t):=u,(x,t). U holda (1) -
(4) masala

(D)X, 1) —v,, (X, 1) +q) v(x, ) =f (X, t), t>0,xeR, (5)
ko’rinishni oladi.

V(x,0)=¢"(X), V,(x,0)=yp"(x),  xeR. (6)
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v(x,t) funksiyaga qo’shimcha shart olishda (1) tenglamaga x =0 qo’yib (2) - (4)
shartlardan

v(0,1) = (D{g)(® +a® g() - (0, 1). (7)
ekanligini ko’rish mumkin.

f (0)=g(0) shart bajarilganda (5) — (7) tenglamalardan (1) - (4) masala oson
olinadi.

Berilgan q(t),f(x,t), o(X), w(x) funksiyalar va « e (1,2) son uchun (5) va (7)
Koshi masalalasi yechimini aniqlash to’g’ri masala deb yuritiladi.

Q. ={(x,t):xeR,0<t<T} bilan qalinligi T bo’lgan yo’lakni belgilaymiz, bu
yerda T >0 ixtiyoriy tayinlangan son.

m tartibgacha hosilalar bilan birga R da chegaralangan funksiyalar sinfini
cr(r) orqali belgilaymiz.

m =0 bo’lganda C?(R)=:C,(R) va bu doimiy chegaralangan funksiyalar sinfi.

Ushbu ishda H'(R) [2] bilan 1e(0,1) ko’rsatkichli Gyolder funksiyalar sinfini
belgilaymiz.(5) da

f (X t) =g ulx,t) =F(x1)

belgilashni e’tiborga olib va (5) - (6) masala uchun (3) ni qo’llab

V() =V, (X, 1) — .:[q(f)dr T Y (x— & t—7)V(E, ) d & (8)
ga ega bo’lamiz, bu yerda
W D= [ Zx- £ 00" (E)dE+ | Z,(x- £y (E)dE+

t ©
[ [ Yx=&t=1) f. (£, 7)€,
0 -0

Ishning asosiy natijalari. Quyidagi lemma o’rinli.

Lemma. Faraz qilaylik  q(t)C[0,T], f (x,t) e C(H*“(R),[0, T)),
o(X) e H**(R), w(X) e H***(R) shartlar o’rinli bo’lsin. U holda (1.8) integral
tenglamaning C*“?(Q,) sinfga garashli yagona v(x,t) yechimi mavjud.

(8) tenglamada x =0 deb va (1.7) tenglikdan foydalanib q(t) ni topib olamiz

1 3 1 t 0
ac) =@[ £(0,1)— (DFQ)(®) — v, (0,1)] T j q(z)dr j Y (& t-oV(E 7)dé.
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Teskari masala yechimining lokal mavjudlik va yagonalik to’g’risidagi quyidagi
teorema o’rinli.

Teorema. Aytaylik
f(x,t) e C(H'(R), [0, T]), p(x) e H'(R), w(x) € C,(R), 1 € (0, 1),

|g(t)|=29,>0, (0)=9g(0). U holda shunday T,e<(0,T)mavjudki (1.1)-(1.4)
teskari masalaning yagona q(t) € C[0, T,] uzluksiz yechimi mavjud.
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KOORDINATALARI BO‘YICHA SO‘NUVCHI GEOMETRIK
CHEGARALANISHLI BOSHQARILADIGAN OBYEKTNING YETISHISH
SOHASI MASALASI

Tursunaliyev T.G*.,Madaminjonov M. D., Shodmonaliyeva G.H.
Namangan davlat universiteti

R?fazoda harakatlanuvchi P obyekt berilgan bo‘lib, uning harakat
koordinatalarini X =(X;,X,) deb belgilaymiz. U holda obyektning

koordinatalari bo’yicha harakat tenglamasi quyidagicha bo‘lsin

= , O = ,
P X1 u, Xx.(0)=x, 1)
X, =U,, X,(0)=X,,,

bu yerda u, - x, koordinataning harakat tezligi, u, - x, koordinataning harakat
tezligi, X,Y,uU;,U, € R*,n=2; X, (0) = x,,, X,(0) = X,, nugtalar t=0 vaqgtda
obyektning koordinatalar bo‘yicha boshlang‘ich holatlari va bunda X, = Yy, deb
garaymiz. P obyektning u = (u,(t), u,(t)) boshgaruv parametri vaqt bo’yicha
o‘lchanuvchi funksiya sifatida tanlanadi va u(-): [O,oo) — R? akslantirishni

bajaradi. Ushbu boshgaruv masalasida obyekt boshgaruvi koordinatalari mos
ravishda quyidagi geometrik chegaralanishlarni (G -chegaralanish) ganoatlantirishi

talab etiladi:
lu, (t)| < ae™, deyarli barcha t >0, )
lu,(t)| < Be™, deyarli barcha t =0, (3)
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