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***

About the property of locally relative controllability of a differential inclusion

Otakulov S.1, Rahimov B. SH.2

Jizzakh Polytechnic Institute 1,2,Jizzakh, Uzbekistan
raximovboyxoroz@gmail.com

Consider a control object whose dynamics in the n-dimensional state space Rn is described by differ-
ential inclusion (1,2)

ẋ ∈ A(t)x+B(t), t ≥ t0, (1)
where A = A(t) – is a n × n -matrix,B = B(t) - is a multi–valued mapping. We will assume that the
following conditions are met:1) the elements of the matrix A(t) are measurable on any T = [t0, t1] ⊂
[t0,+∞) and ||A(t)|| ≤ a(t) , where a(·) ∈ L1(T );2) for each t ≥ t0 a set B(t) ⊂ Rn compact and
multivalued t → B(t) mapping is measurable on an arbitrary segment T = [t0, t1] ⊂ [t0,+∞) and

||B(t)|| ≤ b(t) , where b(·) ∈ L1(T ).Let X(t0, t1, ξ, A,B) = ΦA(t1, t0)ξ +
t1∫
t0

ΦA(t1, τ)B(τ)dτ , where

ΦA(t, τ) - is the fundamental matrix of solutions to equation ẋ ∈ A(t)x. Let M ⊂ Rn be a given set
terminal states of the control object (1),Mε =M + Sε(0) – the ε - neighborhood of the set M .

Definition.We will say that a differential inclusion (1) is locally controllable relative to a given set
M (or, briefly, locally-relatively to M controllable) if there is a number and a time interval T = [t0, t1 ,
such that for any starting point x0 ∈Mε the relation X(t0, t1, x0, A,B) ∩M ̸= 0,∀ x0 ∈Mε holds.

Theorem 1. Let M – be compact from Rn . Then, for locally relative M -controllability of differential
inclusion (1), it is necessary that the condition

inf
||ψ||=1

sup
ξ∈M

t1∫
t0

c(ΦA(t1, τ)[A(τ)ξ +B(τ)], ψ)dτ ≥ 0,

was performed at some point in time t1 > t0 .
Theorem 2. Let B(t) = C(t)U(t) , where C(t) = (ci,j(t)) – n × m - is a matrix whose elements

ci,j(t) are Lebesgue integrable on each T = [t0, t1], t → U(t) , is a measurable multivalued map, U(t) ∈
Ω(Rm), ∥|U(t)|| ≤ g(t), t ∈ T = [t0, t1], g(·) ∈ L1(T ) . Then if the system (1) is locally null-controlled,
then there exists t1 > t0 such that for any ψ ∈ Rn, ||ψ|| = 1 the relation µE(ψ) > 0 is valid, where µE(ψ)
is the Lebesgue measure of the set E(ψ) = {t ∈ T = [t0, t1] : C

′
(t)Φ

′

A(t1, t)ψ ̸= 0}.
Corollary. Let A(t) = A , B(t) = C ·U(t), where C − n×m – is a matrix, t→ U(t) is a measurable

multivalued map, u(t) ∈ Ω(Rm) , ||U(t)|| ≤ g(t) ,t ∈ T = [t0, t1], g(·) ∈ L1(T ) . Then, if the system (1)
is locally null-controlled, then rankK = n, where K = {C,AC,A2C, ..., An−1C} . The paper researches
the problem of local relative controllability for a mathematical model of a control system in the form of
a linear differential inclusion. The studied property of locally relative M controllability of the considered
model generalizes the concept of relative controllability of dynamic systems
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An inverse source problem for a fractional diffusion-wave equation

Rahmonov A. A.1
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Consider the following Cauchy-type problem with inverse time:{
∂αt u(t) +Au(t) = f(t), 0 < t < T,

u(T ) = φ, ∂tu(T ) = ψ,
(1)

where φ and ψ are given functions. The operator ∂αt in Eq. (1) denotes the Caputo fractional derivative
of order α ∈ (1, 2) with respect to t (see [1]):

∂αt y(t) =
t1−α+

Γ(2− α)
⋆ y′′(t),

where ⋆ denotes the convolution, A : X → X be an arbitrary unbounded positive selfadjoint operator
in separable Hilbert space X and A−1 is a compact operator. We will assume that the f(t) ≡ f, where
f ∈ X, that is f does not depend on t.

Inverse problem. Given α, φ and ψ find a pair of functions {u, f} satisfying the problem (1) and the
additional condition

u(τ) = h, 0 < τ < T, (2)
where h ∈ D(A) ⊂ X is a given element.

Definition 1. A pair {u(t), f} of functions u ∈ C([0, T ];X) and f ∈ X with the properties
∂αt u(t), Au(t) ∈ C([0, T ];X) and satisfying conditions (1)-(2) is called the solution of the inverse problem.

We set

Λ = Λ(α,A) :=

∞⋃
n=1

{(
η1
λn

) 1
α

, . . . ,

(
ηN
λn

) 1
α

}
,

where, λn are an positive eigenvalues of A correspondingly orthonormal eigenfunctions ϕn.
Theorem 1. Let φ,ψ, h ∈ D(A) and T ̸∈ Λ. Then the inverse problem (1), (2) has a unique solution

{u(t), f}.
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Solving a singular integral equation of the Volterra type for heat conduction problems

Ramazanov M. I.1, Gulmanov N.K.2, Omarov M. T.3

Karaganda Buketov University1,2,3, Karaganda, Kazakhstan
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In the paper, a general solution to the singular integral equation of the Volterra type of the second
kind is found

Mλµ ≡ (I − λM)µ ≡ µ(t)− λ
∫ t

0

M(t, τ)µ(τ)dτ = g(t),

where λ > 0 and the kernel possesses the property

lim
t→0

λ

∫ t

0

M(t, τ)dτ =
λ

v
.

Integral equations of this type arise when solving heat conduction problems in non-canonical degener-
ate regions, where the boundaries change over time [1-2]. They also appear in the mathematical modeling
of thermophysical processes in the electric arc of high-current circuit breakers [3-4]. The distinctive fea-
ture of the considered integral equation is that the integral of its kernel, as the upper limit approaches
the lower one, is not equal to zero, meaning that the Picard method is not applicable. It is shown that
the corresponding homogeneous integral equation has a non-zero solution, which is obtained explicitly.
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