ЎзР ФА В.И. Романовский номидаги Математика институти Математика институти Бухоро бўлинмаси

ДИФФЕРЕНЦИАЛ ТЕНГЛАМАЛАР ВА АНАЛИЗНИНГ ТУРДОШ МАСАЛАЛАРИ

хорижий олимлар иштирокидаги илмий конференцияси

МАТЕРИАЛЛАРИ

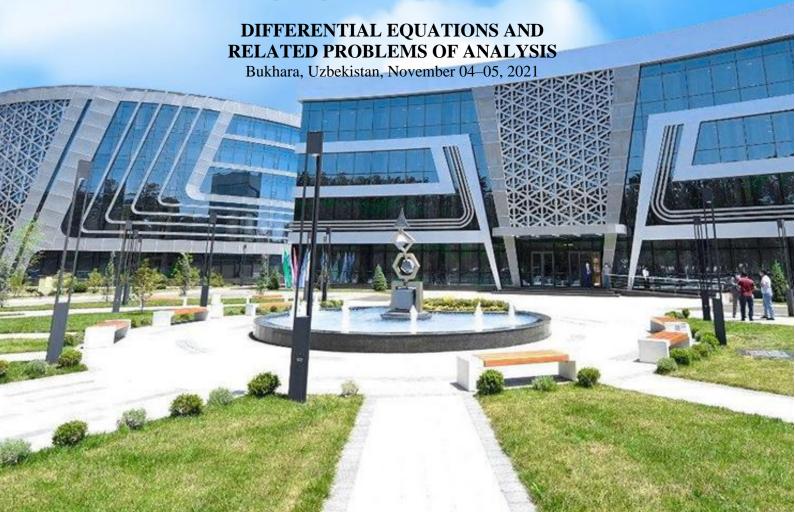
Бухоро, Ўзбекистон, 04–05 ноябр, 2021 йил

Институт Математики имени В.И. Романовского АН РУз Бухарское отделение института Математики

ТЕЗИСЫ ДОКЛАДОВ

Республиканской научной конференции с участием зарубежных ученых

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯИ РОДСТВЕННЫЕ ПРОБЛЕМЫ АНАЛИЗА


Бухара, Узбекистан, 04-05 ноябрь, 2021 год

Institute of Mathematics named after V.I. Romanovskiy at the AS of Uzbekistan

Bukhara branch of the Institute of Mathematics

ABSTRACTS

of the Republican Scientific Conference with the participation of foreign scientists

ЎзР ФА В.И. Романовский номидаги Математика институти Математика институти Бухоро бўлинмаси

ДИФФЕРЕНЦИАЛ ТЕНГЛАМАЛАР ВА АНАЛИЗНИНГ ТУРДОШ МАСАЛАЛАРИ

хорижий олимлар иштирокидаги илмий конференцияси

МАТЕРИАЛЛАРИ

Бухоро, Ўзбекистон, 04–05 ноябр, 2021 йил ======= • ========

Институт Математики имени В.И. Романовского АН РУз Бухарское отделение института Математики

ТЕЗИСЫ ДОКЛАДОВ

Республиканской научной конференции с участием зарубежных ученых

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И РОДСТВЕННЫЕ ПРОБЛЕМЫ АНАЛИЗА

Бухара, Узбекистан, 04-05 ноябрь, 2021 год

Institute of Mathematics named after V.I. Romanovskiy at the AS of Uzbekistan
Bukhara branch of the Institute of Mathematics

ABSTRACTS

of the Republican Scientific Conference with the participation of foreign scientists

DIFFERENTIAL EQUATIONS AND RELATED PROBLEMS OF ANALYSIS

Bukhara, Uzbekistan, November 04-05, 2021

ЛИТЕРАТУРА

- 1. Соболев С.Л. Введение в теорию кубатурных формул.- М.: Наука, 1974,- 808 с.
- 2. **Соболев С.Л., Васкевич В.Л.** Кубатурные формулы. Новосибирск: Издательство ИМ СО РАН, 1996. 484 с.
- 3. **Шадиметов Х.М.** Оптимальные решетчатые квадратурные и кубатурные формулы в пространствах Соболева. -Ташкент: Издательство Fan va texnologiya 2019. 224 с.
- 4. Boltaev A.K., Shadimetov Kh.M., Nuraliev F.A. The extremal function of interpolation formulas in $W_2^{(2,0)}$ space. Вестник КРАУНЦ, Физ-мат, науки, 2021, Т36, №3, -С. 109 118.

ЭКСТРЕМАЛЬНАЯ ФУНКЦИЯ И НОРМА ФУНКЦИОНАЛА ПОГРЕШНОСТИ ОПТИМАЛЬНЫХ ИНТЕРПОЛ§ЦИОННЫХ ФОРМУЛ ТИПА ЭРМИТА В ПРОСТРАНСТВЕ С.Л.СОБОЛЕВА $L_2^m(S)$ ДЛЯ ФУНКЦИЙ ЗАДАННЫХ В n- МЕРНОЙ ЕДИНИЧНОЙ СФЕРЕ

Жалолов О.И. 1,a , Хаятов Х.У. 1,b , Мухсинова М.Ш. 1

¹ Бухарский государственный университет, Бухара, Узбекистан o_jalolov@mail.ru; wera00@mail.ru;

В работе [1] С.Л.Соболевым решена задача интерполирования функций n-переменных в пространстве $L_2^{(m)}(\Omega)$ решена задача 1, т.е. вычислена нормы функционала погрешности интерполяционной формулы.

Допустим, что в n+1 произвольно расположенных точках $\{\theta_i\}$ $(i=\overline{0,N})$, которые всюду ниже мы будем называть узлами интерполирования, дани значения $f(\theta_0), f(\theta_1), \ldots, f(\theta_N)$ функции $f(\theta)$.

Требуется построит интерполяционную формулу типа Эрмита $P_f(\theta)$, т.е.

$$f(\theta) \cong P_f(\theta) = \sum_{\lambda=0}^{N} \sum_{|\alpha| \le m} (-1)^{|\alpha|} C_{\lambda}^{(\alpha)}(\theta) f^{(\alpha)}(\theta^{(\lambda)}), \tag{1}$$

совпадающую функцией $f(\theta)$ в узлах интерполирования:

$$f(\theta_i) = P_f(\theta_i), i = 0, 1, ...N,$$
 (2)

здесь точки $\theta^{(\lambda)} \in S$ и параметры $c_{\lambda}(\theta)$ называем соответственно узлами и коэффициентами интерполяционной формулы (1), S-n- мерная единичная сфера.

Важной задачей в теории интерполирование является нахождение максимума ошибки интерполяционной формулы $f(\theta) \cong P_f(\theta)$ над данном классом функций. Значение этой функции в некоторой точки z есть функционал определенный как

$$<\ell_N^{(\alpha)}(\theta), f(\theta)> = \int_S \ell_N^{(\alpha)}(\theta) f(\theta) d\theta$$
$$= f(z) - P_f(z) = f(z) - \sum_{\lambda=0}^N C_\lambda^{(\alpha)}(z) f^{(\alpha)}(\theta),$$

где ясно, что
$$P_f(z)=\sum\limits_{\lambda=0}^N\sum\limits_{|\alpha|\leq m}(-1)^{|\alpha|}\,C_\lambda^{(\alpha)}(z)f^{(\alpha)}(\theta^{(\lambda)})$$

интерполяционная формула типа Эрмита и

$$\ell_N^{(\alpha)}(\theta) = \delta^{(\alpha)}(\theta - z) - \sum_{\lambda=0}^N \sum_{|\alpha| \le m} C_\lambda^{(\alpha)}(z) \delta^{(\alpha)}(\theta - \theta^{(\lambda)})$$
 (3)

функционал погрешности этой интерполяционной формулы, $C_{\lambda}^{(\alpha)}(z)$ - коэффициенты, а $\theta^{(\lambda)}$ узлы формулы $P_f(z), \theta^{(\lambda)} \in S, \ \delta(\theta)$ - дельта- функция Дирака и $f(\theta) \in L_2^m(S)$. Определение. Пространство $L_2^m(S)$ - определяется как пространство функций за-

данных на S и обладающих квадратично суммируемыми обобщёнными производными порядка m, норма которых определяется равенством [2,3]

$$||f(\theta)/L_2^m(S)||^2 = \sum_{k=1}^{\infty} \sum_{\ell=1}^{\sigma(n,k)} a_{k,\ell}^2 k^m (k+n-2)^m,$$

и предположим, что 2m > n.

Теорема 1. Норма функционала погрешности ℓ_N интерполяционной формулы типа Эрмита (1) над пространством $L_{2}^{m^{*}}(S)$ равна

$$\left\| \ell_{N}^{(\alpha)} / L_{2}^{m^{*}} \left(S \right) \right\| = \left\{ \sum_{k=1}^{\infty} \sum_{\ell=1}^{\sigma(n,k)} \frac{\left[\sum_{|\alpha| \leq m} \left(Y_{k,\ell}^{(\alpha)} \left(z \right) - \sum_{\lambda=1}^{N} c_{\lambda}^{(\alpha)} \left(z \right) Y_{k,\ell}^{(\alpha)} \left(\theta \right) \right) \right]^{2}}{k^{m} \left(k + n - 2 \right)^{m}} \right\}^{\frac{1}{2}},$$

где $Y_{k,l}\left(\theta\right)$ - сферические гармоники порядка k вида ℓ и $\sigma\left(n,k\right)$ - число линейно независимых сферических гармоник т.е. $\sigma\left(n,k\right)=\frac{(k+n-3)!}{k!(n-2)!}\left(n+2k-2\right)$. **Теорема 2.** Существует некоторая функция $u\left(\theta\right)\in L_2^m\left(S\right)$

$$u^{(\alpha)}(\theta) = \sum_{|\alpha| \le m} \sum_{k=1}^{\infty} \sum_{\ell=1}^{\sigma(n,k)} b_{k,\ell} Y_{k,\ell}^{(\alpha)}(\theta),$$

где

$$b_{k,\ell} = \frac{\sum\limits_{|\alpha| \le m} \left[Y_{k,\ell}^{(\alpha)}\left(z\right) - \sum\limits_{\lambda=1}^{N} c_{\lambda}^{(\alpha)}\left(z\right) Y_{k,\ell}^{(\alpha)}\left(\theta^{(\lambda)}\right) \right]}{k^{m} \left(n + k - 2\right)^{m}},$$

и называется экстремальная функция для нормы функционала погрешности (3) интерполяционной формулы (1).

Литература

- 1. Соболев С.Л Об интерполировании функций n переменных. Докл. АНСССР, 1961, 137,c. 778-781.
- 2. Салихов Г.Н. Кубатурные формулы для многомерных сфер. Ташкент: Фан, 1985.-104с.
- 3. Соболев С.Л. Введение в теорию кубатурных формул. М.: Наука, 1974. -808с.

Hayotov A.R., Khayriev U.N. Extremal function of the optimal quadrature formulas
in the space $\widetilde{W_2}^{(m,m-1)}$ of periodic functions
Berdimurodov M.A. ΓΟCT P 34.12-2015 (Kuznechik) shifrlash algoritmini tahlili
Bozarov B.I., Nuraliyev F.A. Sobolev fazosida vaznli optimal kvadratur formulalar va
kompyuter tomografiyasida tasvirlarni qayta tiklash
Fozilova M.R. Bitta singulyar koeffitsientga ega boʻlgan giperbolik tipdagi differensial
tenglama uchun qoʻyilgan boshlangʻich masalani toʻrlar usulida yechish
Hayotov A.R., Karimov R.S. Gilbert fazosida optimal ayirmali formula qurish Imomova Sh.M., Xamidov M.O. Bir o'lchovli giperbolik tenglamani chekli elementlar
usuli bilan yechish
Nafasov A.Y. Klassik chegaraviy masalalarni stoxastik usulda yechish
Shadimetov X.M., Davronov J.R. $\frac{d^4}{dx^4} + 1$ differensial operatorning $D_2[\beta]$ diskret analogi
Асракулова Д.С., Боборахимова М.И. О периодическом решении диффузионной
логистической модели из речной экологии
Арипов М.М., Сайфуллаева М.З. Математическая модель распространение вируса
Болтаев А.К., Сапарбаев З.С. Элемент Рисса одной интерполяционной формулы
Жалолов О.И. , Хаятов Х.У. , Мухсинова М.Ш. Экстремальная функция и норма функционала погрешности оптимальных интерполяционных формул типа Эрмита в пространстве $C.Л.$ Соболева $L_2^m(S)$ для функций заданных в n - мерной единичной сфере.
Жалолов Ф.И., Каримова С.Х. Кубатурные формулы в пространстве периодических функций С.Л.Соболева $\tilde{W}_{2}^{(m)}(T_{n})$.
Жалолов О.И., Файзиева Ш.Д. Кубатурные формулы типа Эрмита в пространстве Соболева.
Жалолов Ик.И., Ярашов И.Б. Преобразование Фурье функции $\overline{\nu}_m(x)$ И опреде-
лении дискретного аналога одного дифференциального оператора
Жумаев Жура., Тошева М.М. Моделирование теплопроводности вблизи верти-
кально расположенного источника с учетом изменения плотности среды
Жураев Г. У., Мусурмонов Х.О., Мусурмонова М.О. Нестационарные попе-
речные волны сдвига в упруго-пористой среде, ограниченной двумя концентрически-
ми сферическими поверхностями
Ибрагимов И. А., Ходжиев С.О., Иномов Д. И., Эшонов Б. Б. Моделирование
и метод расчёта деформаций равнинных рек
Карчевский А. Л. Численное решение задачи продолжения поля на реальных дан-
Holix
Каюмов Ш., Арзикулов Г.П., Марданов А.П., Хаитов Т.О. K построению u
решение математический модели задачи теории нелинейной фильтрации
Хайдаров Ш. А., Элибоев Н. Р. Надежнаная модель надежности восстанавли-
ваемой технической системы

Tahrir hay'ati

Bosh muharrir:

Durdiyev Durdimurod Qalandarovich

Muharrirlar jamoasi:

Durdiyev Umidjon Durdimuratovich – f.-m.f.f.d.(PhD),
Dilmurodov Elyor Baxtiyorovich – f.-m.f.f.d.(PhD),
Bozorov Zavqiddin Ravshanovich – f.-m.f.f.d.(PhD),
Jumayev Jonibek Jamolovich – f.-m.f.f.d.(PhD),
Babayev Samandar Samiyevich – f.-m.f.f.d.(PhD),
Rahmonov Askar Ahmadovich – f.-m.f.f.d.(PhD),
Xudoyorov San'at Samadovich – BuxDU tayanch doktoranti.

Rassomlar:

Babayev Samandar Samiyevich – f.-m.f.f.d.(PhD), Xayatov Xurshid Usmanovich – BuxDU katta oʻqituvchisi.

Buxoro shahri, M.Iqbol koʻchasi, 11 – uy.