INTERNATIONAL SCIENCES, EDUCATION AND NEW LEARNING TECHNOLOGIES

Social Sciences & Humanities

DOI: https://doi.org/10.5281/zenodo.10910352

INFORMATION TECHNOLOGY IN CONSTRUCTION MANAGEMENT

Sayfullaeva Madina Ismatovna

Teacher, Bukhara State University, madina.sayfullaeva@gmail.com

Abstract. The article discusses the relevance and necessity of using modern information technologies in construction management. The author cites several areas of application of IT in the area under study, as well as the advantages and disadvantages of the use of information technologies in the management of construction processes identified during the study.

Key words: Construction, information technology, construction process management.

Construction, of course, is one of the most important areas of the economy, because it is here that the foundations for the development of society and the well-being of citizens are formed. Construction production volumes, being a barometer of economic stability, always reflect the current state of affairs in the construction industry.

Information technologies are penetrating all areas of life, including construction. It started with simple solutions to calculation problems, but over time, IT has evolved into highly complex management systems capable of effectively coordinating and controlling the most large-scale and complex construction projects. Today's technologies can significantly increase construction efficiency, improve control over deadlines and budgets, and also minimize the risks of possible errors and omissions.

Information technology has a significant impact on construction management, and the introduction of new digital tools and methods helps improve the efficiency, manageability and quality of projects. Here are several areas where information technology is used in construction management:

1. Digital Twins of Construction Projects: A study of the use of digital models (BIM) to create virtual twins of construction projects, their application in design, planning, construction and life cycle management of the facility.

- 2. Integration of information systems in construction: Assessing the integration of various information systems such as ERP (Enterprise Resource Planning), CRM (Customer Relationship Management), CAD (Computer-Aided Design) and others, for managing projects, resources and communications.
- 3. Mobile technologies and cloud computing: Analysis of the use of mobile applications, cloud platforms and IoT technologies (Internet of Things) for collecting data on construction sites, monitoring processes and exchanging information between project participants.
- 4. Automation of construction processes: Research of robotic systems, automated machines and control algorithms to optimize construction operations, improve occupational safety and reduce work completion times.
- 5. Big Data and analytics in construction: The role of big data and analytical tools in forecasting demand for building materials, optimizing procurement and managing risks in construction projects.
- 6. Virtual and augmented reality in construction: Evaluation of the use of VR (Virtual Reality) and AR (Augmented Reality) for project visualization, staff training, quality control and improving interaction between process participants.
- 7. Cybersecurity in the construction industry: Study of methods for protecting information and critical infrastructure in the context of digitalization of construction processes, the threat of cyber attacks and measures to prevent incidents.

The use of information technology (IT) in construction management has a number of benefits that significantly improve the efficiency and effectiveness of processes in the industry. Table 1 lists the main benefits of using IT in construction management.

Table 1.
Advantages and disadvantages of using information technology in construction management.

Advantages	Flaws
Improved Project Management: IT allows	High implementation costs: Implementing
you to more effectively plan, control and	and maintaining IT systems requires
manage all aspects of a construction project,	significant investment, especially for small
including budgeting, work schedules,	and medium-sized enterprises, which can be a
resources and tasks.	barrier to their widespread use.
Greater accuracy and reduced errors:	Difficulties in training and adaptation of
Automation systems and digital technologies	personnel: The introduction of new
help reduce the likelihood of errors in	technologies requires training of personnel and
calculations, design and execution of work,	getting used to new work processes, which can
which leads to improved quality and reduced	require time and resources.
risk.	

Resource Optimization: The use of IT	Compatibility and Integration Issues:
allows for more efficient allocation and use of	Different IT systems may have compatibility
resources such as materials, equipment and	and integration issues with each other, making
labor, which helps reduce costs and improve	it difficult for different project participants to
the economic efficiency of the project.	share data and collaborate.
Improved Communication and	Cybersecurity risks: Connecting to the
Collaboration: Project management systems,	Internet and using cloud technologies
electronic document management systems,	increases the risk of cyber attacks and data
cloud platforms and other IT solutions	leaks, requiring additional measures to ensure
improve communication between project	information security.
participants, allowing for more effective	
collaboration and information sharing.	
Faster decision making: IT provides access	Need for constant updating and support: IT
to up-to-date project data, analytical reports	systems require constant updating, support and
and forecasts, which helps you make	maintenance to keep them operational and
informed decisions based on factual	compliant with modern requirements and
information and the current status of the	standards.
project.	
Improved Safety and Control: IT solutions	Technology and vendor dependency:
can be used to improve construction site	Businesses may face dependency on specific
safety, monitor work processes, control	technologies and IT service providers, which
access and prevent accidents.	can create risks and limitations in decision-
	making.
Greater level of transparency: The use of	Limited availability and reliability of
IT provides a higher level of transparency in	communications: The need for constant
project management, which is important for	access to the Internet and high reliability of
all stakeholders, including clients, contractors	communications can be a problem in remote or
and regulators.	sparsely populated areas where
	communications infrastructure is limited.
Opportunity for innovation: IT allows the	Risk of Data Loss: Inadequate data backup
introduction of innovative technologies, such	and disaster protection can result in the loss of
as digital twins of construction sites, robotic	critical information, which can negatively
systems, analytical tools, etc., which	impact the progress of construction projects.
contributes to the development of the industry	
and increases its competitiveness.	

Overall, the application of information technology in construction management enables more efficient, transparent and safe project execution, which is key to success in today's construction industry.

Although the application of information technology (IT) in construction management has many advantages, it also comes with some disadvantages and challenges (Table 1). But these shortcomings are not insurmountable obstacles, and

many of them can be successfully overcome with proper planning, staff training, the use of reliable IT solutions and enhanced security measures.

Overall, the use of information technology in construction management can significantly improve management processes and project performance, but requires a comprehensive approach to implementation, staff training and data security. Before making a decision to implement IT, it is necessary to carefully evaluate all the pros and cons, taking into account the specifics of a particular project and company.

List of used literature:

- 1. Хаирова, Д. Р., & Сайфуллаева, М. И. (2021). Тенденции развития цементной индустрии в Узбекистане. Бюллетень науки и практики, 7(6), 358-362.
- 2. Сайфуллаева, М. (2023). РАЗВИТИЕ СТРОИТЕЛЬНОЙ ОТРАСЛИ БУХАРСКОЙ ОБЛАСТИ КАК ФАКТОР СТАБИЛЬНОГО РОСТА. Nashrlar, 368-371.
- 3. Sayfullayeva, M., & Xairova, D. (2023). КОРПОРАТИВНОЕ УПРАВЛЕНИЕ В СТРОИТЕЛЬНОЙ ИНДУСТРИИ: ТЕНДЕНЦИИ, ПРОБЛЕМЫ И ОСОБЕННОСТИ. Iqtisodiyot va ta'lim, 24(2), 115-120.
- 4. Niyozova, I. (2020). Sifrovaya ekonomika razvitiya infrastruktur gosudarstvo. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 1(1).
- 5. Сайфуллаева, М. И. (2023). Особенности корпоративного управления в строительной отрасли Республики Узбекистан. ББК 65я434 Э40, 59.
- 6. Niyozova, I. (2021). The Transition To The Green Economy And The Importance Of Strategy. Центр научных публикаций (buxdu. uz), 8(8).
- 7. Сайфуллаева, М. И. (2020). Влияние пандемии на туристический сектор Узбекистана. Экономика и социум, (11 (78)), 1251-1254.
- 8. Сайфуллаева, М. И. (2020). НЕКОТОРЫЕ ВОПРОСЫ ПРОФЕССИОНАЛЬНОЙ ОРИЕНТАЦИИ СОВРЕМЕННОЙ МОЛОДЕЖИ. Іп Эффективность применения инновационных технологий и техники в сельском и водном хозяйстве (pp. 584-585).