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Abstract:  

Introduction. Many physical processes are described by a system of equations 

of the hyperbolic type of the first order. For example, systems of an incompressible 

viscoelastic polymeric fluid, etc. It is well known that second-order equations are 

derived from them with the help of a number of additional restrictions. The solution 

of inverse problems leads directly to the solution of these systems. Systematic 

research in this area was carried out in the 1970s by L.P. Nizhnik, S.P. Belinsky, 

V.G. Romanov and L.I. Slinyuchev began in the work of scientists. 

Methods. In this work we will use the differential equations, functional analysis, 

algebraic methods and also the principle of contraction mappings. 

Results. The article checks the inverse problem for hyperbolic systems of 4 first-

order integro-differential equations with an integral member of the convolution type. 

The direct problem is the initial-boundary value problem for this system on the finite 

interval [0, 1]. When certain data matching conditions are fully met, the inverse 

problem is reduced to solving a system of Volterra-type integral equations with 

respect to the unknowns. In addition, a theorem on the local unique solvability of the 

problem for sufficiently small. 

Discussions. The study of direct and inverse problems posed to a mixed type 

equation is one of the advanced critical and rapidly emerging areas of world science. 

Their numerical implementation provides an applied application for the study of 

these problems. In this paper, we numerically study the boundary value problem 

posed to a model equation of mixed type. To do this, you need to know the concept of 

approximation and stability. The stability of the difference scheme has been proven. 

The order of approximation is calculated in the work. Further, when the stability and 

approximation are proved, it is possible to show the approximation of the numerical 

solution to the exact solution. 

Conclusion.  To sum up, we look the kernel is 4 × 4 dimensional diagonal 

matrix that depends on time. To define that function, we put initial-boundary 

conditions on characteristic lines. Proved the theorem of unique solvability. We get 

the following results, firstly consider the inverse problem of the determination kernel 

in hyperbolic system of n number first-order integro–differential equations, which is 

https://buxdu.uz
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of the form of 4 × 4 matrices depending on variable t , next obtain the theorem of 

exists unique solution, finally proved local theorem in a small interval.    

Keywords: Hyperbolic system, diagonal and inverse quadratic matrices, vector 

functions, convolution kernel, integral equations of Volterra type, principle of 

contraction mappings. 

Introduction. First-order hyperbolic systems of equations describe many 

physical processes associated with the motion of a polymer fluid in a flat channel. As 

an example, we can point out systems of equations for an incompressible viscoelastic 

polymer fluid. 

The Pokrovsky–Vinogradov rheological model is used as a model for the 

hydrodynamics of a polymeric fluid [1, 2]. 

Polymeric liquids are fluid media consisting of long macromolecules entangled 

with each other. In flows with nonzero velocity gradients, such molecules interact in a 

complex way, resting against each other, catching and releasing with time. This 

feature of the molecular structure of a fluid leads to a number of features like the 

strain memory effect, pseudoplasticity (change in fluid viscosity with shear rate) 

and spatial anisotropy. 

The mathematical description of such a complex behavior of the medium is a 

difficult task, in the process of solving which one has to make a large number of 

assumptions and assumptions, often not obvious and controversial, not always 

well argued from a physical point of view. Apparently, it is not worth 

counting on the appearance of a certain universal model of the dynamics of 

polymeric materials, since it is hardly possible to take into account all the various 

features of the behavior of these media within the framework of one model. The 

result of this is a large number of different rheological models for the dynamics 

of liquid polymers, differing in approaches and, as a result, in the relationships 

and properties obtained. In addition, even geometrically simple flows within the 

framework of such models have unusual features that are often unique for 

individual models and require careful analysis. By themselves, these models are 

quite complex mathematically, and the properties of problem solutions for them 

are often poorly understood. 

One way or another, any rheological model of liquid polymers is based on a 

constitutive relation connecting the stress tensor of the medium with the velocity 

gradient tensor. The form of this ratio depends from the generalizing 

assumptions made to obtain it and differ from model to model. In general, we 

can single out two main approaches, or if you like, two main ideas that make it 

possible to obtain this ratio. The first approach is focused on the analysis of 

experimental measurements of fluid properties obtained in the study of 

viscometric flows of real polymers. Using experimental data, within the 

framework of this approach, one can make a number of general assumptions 

regarding conservation laws and obtain constitutive relations by selecting the 

values of one or more of the introduced parameters, achieving correspondence 

solutions of equations with empirical data. 

https://buxdu.uz
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The second approach focuses on modeling the dynamics of the medium 

macromolecules themselves and their interaction with each other. Since the 

motion of molecules in itself is random, to model their dynamics one has to 

involve stochastic equations, which in one way or another take into account 

the Brownian component of the dynamics of microscopic particles. 

Accordingly, to obtain macroscopic relationships, the liquid characteristics are 

averaged over the statistical ensemble. Models that mainly adhere to the first 

approach are called phenomenological [3, 4], and the second – statistical [6, 

5]. Models that somehow combine these approaches are commonly referred to 

as mesoscopic. The latter include and the Pokrovsky–Vinogradov model used in 

this work. 

One of the classical fluid flows is a stationary flow in a straight cylindrical 

or flat channel. Its implementation for a viscous fluid in the stationary case is the 

well- known Poiseuille flow, which is one of the examples of exact analytical 

solutions of the Navier–Stokes equations. A natural desire is to analyze a flow 

of a viscoelastic fluid similar in geometry. In addition to its relative simplicity, 

this type of flow can be considered one of the most interesting from a practical 

point of view, since the study of the flow of polymer melts through pipes is 

important for the production of polymer materials, additive technologies, and 

related industries. Similar flows, among other models, have also been studied for 

the Pokrovsky–Vinogradov model, but, unlike the Poiseuille flow for the Navier–

Stokes equations, cases that allow one to find analytical solutions have not yet 

been considered. 

Analysis of dynamic equations describing such processes, show that Volterrod 

operators of the convolution type of some function are added to the right-hand 

side of the systems of hyperbolic equations, depending on time and the elliptic 

part of the corresponding hyperbolic operators on the left side. 

Following [1], we formulate the generalized rheological model of Vinogradov – 

Pokrovsky, which describes the flows of an incompressible viscoelastic polymeric 

fluid (for example, 

in a flat channel). In dimensionless form (the process of nondimensionalization is 

described in detail in [2]), this mathematical model has the following in 

𝑢𝑥 + 𝑣𝑦 = 0, 
𝑑𝐮

𝑑𝑡
+ ∇𝑝 =

1

𝑅𝑒
𝑑𝑖𝑣Π, 

𝑑𝑎11
𝑑𝑡

− 2𝐴1𝑢𝑥 − 2𝑎12𝑢𝑦 + 𝐾𝐼𝑎11 + 𝛽‖𝜎1‖
2 = 0,                            (1) 

𝑑𝑎12
𝑑𝑡

− 𝐴1𝑣𝑥 − 𝐴2𝑢𝑦 + 𝐾𝐼𝑎12 + 𝛽(𝜎1, 𝜎2) = 0, 

𝑑𝑎22
𝑑𝑡

− 2𝑎12𝑣𝑥 − 2𝐴2𝑣𝑦 + 𝐾𝐼𝑎22 + 𝛽‖𝜎2‖
2 = 0, 

here: 𝑡 - time; 𝑢, 𝑣 − components of the velocity vector 𝐮 in Cartesian coordinates 

𝑥, 𝑦; 𝑝 − pressure; 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1,2 - components of the symmetric anisotropy tensor Π 

of the second rank; 𝝈1, 𝝈2 − columns of the symmetric matrix Π = (𝑎𝑖𝑗) = (𝝈1, 𝝈2);  

https://buxdu.uz
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‖𝜎𝑖‖
2 = (𝜎𝑖 , 𝜎𝑖), 𝑖 = 1,2; 

𝑑𝑖𝑣Π = (𝑑𝑖𝑣𝜎1, 𝑑𝑖𝑣𝜎2)
𝑇, 

𝐾𝐼 = 𝑊−1 +
𝑘̅

3
𝐼, 𝐼 = 𝑎11 + 𝑎22, 𝑘̅ = 𝑘 − 𝛽 the constants 𝑘, 𝛽(0 < 𝛽 < 1) − 

phenomenological parameters do not depend on the molecular weight of the polymer 

and its concentration, characterizing, respectively, the dimensions and orientation of 

the molecular coils of the polymer associated with anisotropy; 𝑅𝑒 =
𝜌𝑢𝐻𝑙

𝜂0
− Reynolds 

number; 𝜌(= const) - medium density; 𝑊 =
𝜏0𝑢𝐻

𝑙
− Weisenberg number; 𝜂0, 𝜏0 - 

initial values of shear viscosity and relaxation time; 𝑙 - characteristic length (see 

figure); 𝑢𝐻 - characteristic speed;  

 
𝐴𝑖 = 𝑊−1 + 𝑎𝑖𝑖 ,    𝑖 = 1,2;
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ (𝐮, ∇).

 

 In the (1) frame, time 𝑡, coordinates 𝑥, 𝑦, velocity vector components 𝑢, 𝑣, 

pressure 𝑝 are related to 
𝑙

𝑢𝐻
, 𝑙, 𝑢𝐻 , 𝜌𝑢𝐻

2 . As we have already noted, the stationary 

solutions of the mathematical model (1) were studied in detail in [2]. Stationary 

solutions were constructed there, similar to the Poiseuille and Couette solutions for 

the Navier–Stokes system of equations. Questions related with linear stability of such 

solutions were considered in [3; 4]. In this work as the initial stationary flow, we take 

the state of rest (mechanical equilibrium):  

 𝑢 = 𝑣 = 𝑎11 = 𝑎12 = 𝑎22 = 0, 𝑝 = 𝑐𝑜𝑛𝑠𝑡. (2) 

    

 

 

 

 

 

 

 

 

 

 

 

 

1. Flat channel. 

In [2], a linear system was constructed, obtained by linearizing equations of 

an incompressible viscoelastic polymeric fluid (1). Linearization was carried out 

with respect to stationary solutions similar to the Poiseuille solutions for the 

system of Navier-Stokes equations. If we take the state of rest (2) in the 

channel (see figure) as a stationary solution, then the linear system will have the 

following view: 

https://buxdu.uz
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                                    U𝑡 + 𝐴1U𝑦 + 𝐴2U𝑥 + 𝐴3U + F0 = 0,                         (3) 

 

𝑡 > 0, 𝑥 ∈ ℝ1,    0 < 𝑦 < 1, 

 

𝐔 = (

𝑢
𝑣
𝛼12
𝛼22

), 𝐴1 = (

0 0 −1 0
0 0 0 0
−𝜅0

2 0 0 0

0 −2𝜅0
2 0 0

), 𝐴2 = (

0 0 0 2
0 0 −1 0
0 −𝜅0

2 0 0
0 0 0 0

) , 

 

 𝐴3 = 𝑊−1(

0 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

),    𝐅𝟎 = (

Ω𝑥
Ω𝑦
0
0

) ;   (4) 

𝑢, 𝑣 are small perturbations of the velocity vector components; 𝑎11(= −𝑎22), 𝑎12, 𝑎22 

- small perturbations of the components of the symmetric anisotropy tensor; 𝛼𝑖𝑗 =
𝑎𝑖𝑗

𝑅𝑒
, 𝑖, 𝑗 = 1,2; Ω = 𝑝 − 𝛼22, 𝑝 − small pressure perturbation; 𝜅0

2 =
1

𝑊𝑅𝑒
.  

  Equation (3) will be considered with integral terms of the convolution type on 

the right side:  

 𝐔𝑡 + 𝐴1𝐔𝑦 + 𝐴2𝐔𝑥 + 𝐴3𝐔 + 𝐅𝟎 = ∫
𝑡

0
Ψ(𝜏)𝐔(𝑦, 𝑡 − 𝜏)𝑑𝜏, 

𝑡 > 0, 𝑥 ∈ ℝ1,    0 < 𝑦 < 1, 

where Ψ(𝑡) = 𝑑𝑖𝑎𝑔(𝜓1, 𝜓2, 𝜓3, 𝜓4)(𝑡)-diagonal matrix, characterizing the viscous 

properties of the medium.  

   Now, applying the Fourier transform with respect to the variable 𝑥, we rewrite  

this system in the form:  

           𝑈̃𝑡 + 𝐴1𝑈̃𝑦 + 𝐵1𝑈̃ = ∫
𝑡

0
Ψ(𝑡 − 𝜏)𝑈̃(𝑦, 𝜏)𝑑𝜏 − 𝐹̃0(𝑦, 𝑡),    0 < 𝑦 < 1, (5) 

where  𝑈̃ = (𝑢̃, 𝑣̃, 𝛼̃12, 𝛼̃22)-column vector, Ω̃ = 𝑝̃ − 𝛼̃22,  

 𝐴1 = (

0 0 −1 0
0 0 0 −1
−𝜅0

2 0 0 0

0 −2𝜅0
2 0 0

), (6) 
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𝐵1 = (𝑖𝜉𝐴2 + 𝐴3) =

(

 
 
 

0 0 0 𝑖𝜉
0 0 −𝑖𝜉 0

0 −𝑖𝜉𝜅0
2

1

𝑊

1

𝑊

0 0
1

𝑊

1

𝑊)

 
 
 

, 𝐹̃0 = (

𝑖𝜉𝑝̃
𝑝̃𝑦
0
0

). 

Let us reduce system (5) to the canonical form.  

       In the case under consideration, there exists a nonsingular matrix 𝑇 such that 

𝑇−1𝐴1𝑇 = Λ, where Λ − is a diagonal matrix with eigenvalues of the matrix 𝐴1,  

 𝑇 = (

1 1 0 0
0 0 1 1
−𝜅0 𝜅0 0 0

0 0 −√2𝜅0 √2𝜅0

). (7) 

The inverse matrix to 𝑇 is defined by the following formula  

                                    𝑇−1 =

(

 
 
 
 

1

2
0 −

1

2𝜅0
0

1

2
0

1

2𝜅0
0

0
1

2
0 −

1

2√2𝜅0

0
1

2
0

1

2√2𝜅0 )

 
 
 
 

.                                          (8) 

       Now, in equation (5), we introduce a new function using the equality  

𝑈̃ = 𝑇𝑉                                                               (9) 

 and multiply this equation on the left by the matrix 𝑇−1. Then for the function V we 

obtain the equation 

 (𝐼4
𝜕

𝜕𝑡
+ Λ

𝜕

𝜕𝑦
+ 𝐶)𝑉 = ∫

𝑡

0
𝑅(𝑡 − 𝜏)𝑉(𝑦, 𝜏)𝑑𝜏 + 𝐹   (10) 

where I4  - means the identity matrix of order 4, Λ =

𝑑𝑖𝑎𝑔(𝜅0, −𝜅0, √2𝜅0, −√2𝜅0), 𝐶 = 𝑇
−1𝐵1𝑇, 𝑅(𝑡) = 𝑇−1Ψ(𝑡)𝑇, 𝐹 = −𝑇−1𝐹̃0(𝑦, 𝑡).  

 

Formulation of the problem 

       In the direct problem, given matrices 𝑅, 𝐶 and vector functions 𝐹, it is required to 

determine in the domain Π = {(𝑦, 𝑡): 0 < 𝑦 < 1, 𝑡 > 0} the vector function 𝑉(𝑦, 𝑡), 
matching equation (10) under the following initial and boundary conditions:  

 𝑉𝑖(𝑦, 𝑡)|𝑡=0 = 𝜑𝑖(𝑦), 𝑖 = 1,4; (11) 

  𝑉𝑖(𝑦, 𝑡)|𝑦=0 = 𝑔𝑖(𝑡), 𝑖 = 1,3; 𝑉𝑖(𝑦, 𝑡)|𝑦=1 = 𝑔𝑖(𝑡), 𝑖 = 2,4; (12) 

https://buxdu.uz
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here 𝜑(𝑦) = (𝜑1, 𝜑2, 𝜑3, 𝜑4)(𝑦), 𝑔(𝑡) = (𝑔1, 𝑔2, 𝑔3, 𝑔4)(𝑡) given functions.  

       In the inverse problem, the matrix function 𝑅(𝑡) > 0, 𝑡 > 0 is assumed to be 

unknown it is required to find it if, with respect to the solution of problem (10) (12), 

additional conditions are known that are specified on the side boundaries of the 

domain Π, 

                                     
𝑉𝑖(𝑡)|𝑦=1 = ℎ𝑖(𝑡), 𝑖 = 1,3;

𝑉𝑖(𝑡)|𝑦=0 = ℎ𝑖(𝑡), 𝑖 = 2,4;
                                       (13) 

 in this case, 𝑅(0) are assumed to be given.   

To date, the problems of determining kernels from one second-order integro-

differential equation [6]-[23] have been widely studied. The numerical solution of 

direct and inverse problems for such equations was studied in [24]-[38]. As a 

rule, second-order equations are derived from systems of first-order partial 

differential equations under some additional assumptions. 

The inverse problem of determining the kernels of the integral terms from a 

system of general first-order integro-differential equations with two independent 

variables was studied in [39]. A theorem of local existence and global 

uniqueness is obtained. 

It seems quite natural to study inverse problems of determining the kernels 

of the integral terms of a system of integro-differential equations directly in terms 

of the system itself. This article is a natural continuation of this circle of 

problems and to a certain extent generalizes the results of [39] to the case of a 

system of equations for an incompressible viscoelastic polymer fluid (1). 

Study of the direct problem 

     Consider an arbitrary point (𝑦, 𝑡) ∈ Π on the plane of variables 𝜇, 𝜏 and 

characterize the equation of system (10) through it until it intersects the boundary 

Π in the region 𝜏 < 𝑡. Its equation has the form  

 𝜇 = 𝑦 + 𝜆𝑖(𝜏 − 𝑡), (14) 

 at 𝜆𝑖 > 0 (that is 𝑖 = 1,3 ) this point lies either on the segment [0,1] of the axis 𝑡 =
0, or on the line 𝑦 = 0, and for 𝜆𝑖 < 0, (that is 𝑖 = 2,4 ) either on the segment [0,1] 
or on the line 𝑦 = 1 (Rice 2).  
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2. Characteristic lines. 

 

 Integrating the 𝑖-th component of equality (10) with respect to characteristic (14) 

from the point (𝑦0
𝑖 , 𝑡0

𝑖 ) to the point (y, t), we find  

𝑉𝑖
1(𝑦, 𝑡) = 𝑉𝑖

1(𝑦0
𝑖 , 𝑡0

𝑖 ) + ∫
𝑡

0

[𝐹𝑖(𝜇, 𝜏) −∑

4

𝑗=1

𝑐𝑖𝑗𝑉𝑗
1(𝜇, 𝜏)]|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 + 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

𝑅(𝜏)𝑖𝑗𝑉𝑗
1(𝜇, 𝜏 − 𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏, 𝑖 = 1,4.                         (15) 

Let us first define in (15) 𝑡0
𝑖  It depends on the coordinates of the point (𝑦, 𝑡). It 

is easy to see that 𝑡0
𝑖 (𝑦, 𝑡) has view,  

 𝑡0
𝑖 (𝑦, 𝑡) =

{
  
 

  
 
{
𝑡 −

𝑦

𝜆𝑖
, 𝑡 ≥

𝑦

𝜆𝑖
,

0,    0 < 𝑡 <
𝑦

𝜆𝑖
,
    𝑖 = 1,3;

{
𝑡 +

1−𝑦

𝜆𝑖
, 𝑡 ≥

𝑦−1

𝜆𝑖
,

0,0 < 𝑡 <
𝑦−1

𝜆𝑖

    𝑖 = 2,4.

 (16)  

Then, from the condition that the pair (𝑦0
𝑖 , 𝑡0

𝑖 ) satisfies equation (15) it follows  
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𝑦0
𝑖 (𝑦, 𝑡) =

{
 
 
 
 

 
 
 
 
{

0,                  𝑡 ≥
𝑦

𝜆𝑖
,

𝑦 − 𝜆𝑖𝑡,    0 < 𝑡 <
𝑦

𝜆𝑖
,
    𝑖 = 1,3;

{
 

 1,                  𝑡 ≥
𝑦 − 1

𝜆𝑖
,

𝑦 − 𝜆𝑖𝑡, 0 < 𝑡 <
𝑦 − 1

𝜆𝑖

    𝑖 = 2,4.

 

  The free terms of the integral equations (15) are determined through the initial and  

boundary conditions (11) and (12) as follows:  

 V𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) =

{
  
 

  
 
{
g𝑖 (𝑡 −

𝑦

𝜆𝑖
) , 𝑡 ≥

𝑦

𝜆𝑖
,

𝜑𝑖(𝑦 − 𝜆𝑖𝑡), 0 ≤ 𝑡 <
𝑦

𝜆𝑖
,
    𝑖 = 1,3;

{
g𝑖 (𝑡 +

1−𝑦

𝜆𝑖
) ,    𝑡 ≥

𝑦−1

𝜆𝑖
,

𝜑𝑖(𝑦 − 𝜆𝑖𝑡),    0 ≤ 𝑡 <
𝑦−1

𝜆𝑖
,
    𝑖 = 2,4.

 (17) 

  We require that the functions 𝑉𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) be continuous in the domain Π. Note 

that in order to fulfill these conditions, the given functions 𝜑𝑖 and 𝑔𝑖 must satisfy the 

matching conditions at the corner points of the domain Π:  

 𝜑𝑖(0) = g𝑖(0),    𝑖 = 1,3;    𝜑𝑖(1) = g𝑖(0),    𝑖 = 2,4. (18) 

       Here the values of functions 𝑔𝑖 at t = 0 and functions 𝜑𝑖   at 𝑦 = 0,1; are 

understood as the limit at these points as the argument tends from the side of 

the point where these functions are defined. 

       Let us assume that all given functions included in (15) are continuous 

functions of their arguments in Π. Then this system of equations is a closed 

system of Voltaire-type integral equations of the second kind with continuous 

kernels and free terms. As usual, such a system has a unique solution in the 

bounded subdomain Π𝑇 = {(𝑦, 𝑡): 0 ≤ 𝑦 ≤ 1,0 ≤ 𝑡 ≤ 𝑇}, 𝑇 > 0 is some fixed 

number, area Π. 

       Let us introduce the vector function 𝑤(𝑦, 𝑡) =
𝜕

𝜕𝑡
𝑉(𝑦, 𝑡)  To obtain a 

problem for a function 𝑤(𝑦, 𝑡) similar to (10)-(12), we differentiate equations 

(10) n boundary conditions (12) with respect to the variable t, and conventionally 

for 𝑡 = 0 we find using the equation (10) and initial conditions (11). In doing so, 

we get 

𝜕𝑤𝑖
𝜕𝑡

+ 𝛾𝑖
𝜕𝑤𝑖
𝜕𝑦

= −∑

4

𝑗=1

c𝑖𝑗𝑤𝑗(𝑦, 𝑡) +∑

4

𝑗=1

𝑅𝑖𝑗(𝑡)𝜑𝑗(𝑦) + 
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+∫
𝑡

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝑡)𝑤𝑗(𝑦, 𝑡 − 𝜏)𝑑𝜏 +
𝜕

𝜕𝑡
𝐹𝑖(𝑦, 𝑡), 𝑖 = 1,4;                      (19) 

 𝑤𝑖(𝑦, 𝑡)|𝑡=0 = Φ𝑖(𝑦), 𝑖 = 1,4; (20) 

  
𝑤𝑖(𝑦, 𝑡)|𝑦=0 =

𝑑

𝑑𝑡
𝑔𝑖(𝑡), 𝑖 = 1,3;

𝑤𝑖(𝑦, 𝑡)|𝑦=1 =
𝑑

𝑑𝑡
𝑔𝑖(𝑡), 𝑖 = 2,4;

 (21) 

 where 

Φ𝑖(𝑦) = 𝐹𝑖(𝑦, 0) − 𝜆𝑖
𝜕

𝜕𝑦
𝜑𝑖(𝑦) −∑

4

𝑗=1

𝑐𝑖𝑗𝜑𝑖(𝑦), 𝑖 = 1,4.                          (22) 

Again, integration along the corresponding characteristics will lead 

problem (19)-(21) to the integral equations 

𝑤𝑖(𝑦, 𝑡) = 𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) + ∫
𝑡

𝑡0
𝑖
∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝜑𝑗(𝜇)|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 + 

+∫
𝑡

𝑡0
𝑖
[
𝜕

𝜕𝑡
𝐹𝑖(𝜇, 𝜏) −∑

4

𝑗=1

𝑐𝑖𝑗𝑤𝑗(𝜇, 𝜏)]

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 +                    (23) 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝜂)𝑤𝑗(𝜇, 𝜏 − 𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏.    𝑖 = 1,4 

             For functions 𝑤𝑖 additional conditions (13) conditions look like    

𝑤𝑖(0, 𝑡) =
𝑑

𝑑𝑡
ℎ𝑖(𝑡), 𝑖 = 2,4;    𝑤𝑖(1, 𝑡) =

𝑑

𝑑𝑡
ℎ𝑖(𝑡), 𝑖 = 1,3.                            (24) 

In equations (23) 𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) are defined as follows: 

𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) =

{
 

 
𝑑

𝑑𝑡
𝑔𝑖 (𝑡 −

𝑦

𝜆𝑖
) , 𝑡 ≥

𝑦

𝜆𝑖

Φ𝑖(𝑦 − 𝜆𝑖𝑡),    0 ≤ 𝑡 <
𝑦

𝜆𝑖
,    𝑖 = 1,3;

 

𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) =

{
 

 
𝑑

𝑑𝑡
𝑔𝑖 (𝑡 +

1 − 𝑦

𝜆𝑖
) ,    𝑡 ≥

𝑦 − 1

𝜆𝑖

Φ𝑖(𝑦 − 𝜆𝑖𝑡),    0 ≤ 𝑡 <
𝑦 − 1

𝜆𝑖
, 𝑖 = 2,4;

 

Let the conditions 
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𝐹𝑖(0,0) − 𝛾𝑖 [
𝜕

𝜕𝑦
𝜑𝑖(𝑦)]

𝑦=0

−∑

4

𝑗=1

𝑐𝑖𝑗𝜑𝑗(0) = [
𝑑

𝑑𝑡
𝑔𝑖(𝑡)]

𝑡=0
, 𝑖 = 1,3;          (25) 

𝐹𝑖(1,0) − 𝛾𝑖 [
𝜕

𝜕𝑦
𝜑𝑖(𝑦)]

𝑦=1

−∑

4

𝑗=1

𝑐𝑖𝑗𝜑𝑗(1) = [
𝑑

𝑑𝑡
𝑔𝑖(𝑡)]

𝑡=0
, 𝑖 = 2,4;        (26)  

It is not difficult to see that the conditions for matching the initial (20) and 

boundary (21) data at the corner points of the domain Π coincide with relations 

(25) and (26). From here it is clear that if the same equalities (25) and (26) hold, 

equations (19) will have unique continuous solutions 𝑤𝑖(𝑦, 𝑡) or the same 

(𝜕/𝜕𝑡)V𝑖(𝑦, 𝑡). So, we have proved the following statement: 

      Theorem 1. Let be 𝜑(𝑦)𝜖𝐶1[0,1] , 𝑔(𝑡)𝜖𝐶1[0,1],Ψ(𝑡)𝜖𝐶[0, 𝑇], 

 𝜑(𝑦)𝜖𝐶1[0,1] 𝐹(𝑦, 𝑡)    and 𝐹𝑡(𝑦, 𝑡)𝜖𝐶(Π𝑇)  the conditions are met (18), (25) и 

(26). Then there is a unique continuo- us solution to problem (19)-(21) in the 

domain Π. 

Study of the inverse problem. Derivation of an equivalent system of 

integral equations 

Consider an arbitrary point (𝑦, 0) ∈ Π and draw characteristic (14) through it 

until it intersects with the side boundaries of the region П. Integrating the 𝑖 -th 

component of equation (19), using the data (22), we find 

𝑤𝑖(𝑦, 0) =
𝑑

𝑑𝑡
ℎ𝑖(𝑡𝑖(𝑦)) − ∫

𝑡𝑖(𝑦)

0

[∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝜑𝑗(𝜇) −∑

4

𝑗=1

𝑐𝑖𝑗𝑤𝑗(𝜇, 𝜏)]|

𝜇=𝑦+𝜆𝑖𝜏

𝑑𝜏 − 

− ∫

𝑡𝑖(𝑦)

0

𝜕

𝜕𝑡
𝐹𝑖(𝜇, 𝜏)|

𝜇=𝑦+𝜆𝑖𝜏

𝑑𝜏 − ∫

𝑡𝑖(𝑦)

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)𝑤𝑗(𝜇, 𝜏 − 𝛼)d𝛼|

𝜇=𝑦+𝜆𝑖𝜏

𝑑𝜏, 

                     (27) 

where 

  𝑡𝑖(𝑦) =
1

𝜆𝑖
{
−𝑦,    𝑖 = 1,3,
1 − 𝑦,    𝑖 = 2,4.

 

Taking into account the initial conditions (21), we rewrite equations (27) in the form 
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∫

𝑡𝑖(𝑦)

0

∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 − ∫

𝑡𝑖(𝑦)

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)𝑤𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏 − 𝛼)𝑑𝛼𝑑𝜏 =

= Φ𝑖(𝑦) −
𝑑

𝑑𝑡
ℎ𝑖(𝑡𝑖(𝑦)) + ∫

𝑡𝑖(𝑦)

0

[∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝜑𝑗(𝑦 + 𝜆𝑖𝜏) +
𝜕

𝜕𝑡
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)] 𝑑𝜏, 𝑖 = 1,4.

 

                                                                                                                                  (28) 

We differentiate the equations with respect to the variables 𝑦. Then we have 

−∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(𝑦 + 𝜆𝑖𝑡𝑖(𝑦), 𝑡𝑖(𝑦)) + 𝜆𝑖 ∫

𝑡𝑖(𝑦)

0

∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 + 

+ ∫

𝑡𝑖(𝑦)

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝑤𝑗(𝑦 + 𝜆𝑖𝑡𝑖(𝑦), 𝑡𝑖(𝑦) − 𝜏)𝑑𝜏 − 

−𝜆𝑖 ∫

𝑡𝑖(𝑦)

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)
𝜕

𝜕𝑦
𝑤𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏 − 𝛼)𝑑𝛼𝑑𝜏

= 𝜆𝑖
𝑑

𝑑𝑦
Φ𝑖(𝑦) +

𝜕2

𝜕𝑡2
 h𝑖(𝑡𝑖(𝑦)) − 

−[∑

4

𝑗=1

𝑅𝑖𝑗(𝑡𝑖(𝑦))𝜑𝑗(𝑦 + 𝜆𝑖𝑡𝑖(𝑦)) +
𝜕

𝜕𝑡
𝐹𝑖(𝑦 + 𝜆𝑖𝑡𝑖(𝑦), 𝑡𝑖(𝑦))] + 

+𝜆𝑖 ∫
𝑡𝑖(𝑦)

0
[∑4𝑗=1 𝑅𝑖𝑗(𝜏)

𝜕

𝜕𝑦
𝜑𝑗(𝑦 + 𝜆𝑖𝜏) +

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)] 𝑑𝜏, 𝑖 = 1,4.                    (29)                                                                                                                                                     

Next, in equations (29), we replace 𝑡𝑗(𝑦) by t, and obtain the following equalities 

−∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(0, t) + 𝜆𝑖 ∫

t

0

∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 + 

+∑

4

𝑗=1

𝑅𝑖𝑗(𝑡)𝜑𝑗(0) + ∫

t

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝑤𝑗(0, t − ф)𝑑𝜏 − 

−𝜆𝑖∫

t

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)
𝜕

𝜕𝑦
𝑤𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏 − 𝛼)𝑑𝛼𝑑𝜏 = 𝜆𝑖

𝑑

𝑑𝑦
Φ𝑖(𝑦) + 
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+
𝜕2

𝜕𝑡2
 h𝑖(t) −

𝜕

𝜕𝑡
𝐹𝑖(0, 𝑡) +                                                 (30) 

+𝜆𝑖 ∫
t

0
[∑4𝑗=1 𝑅𝑖𝑗(𝜏)

𝜕

𝜕𝑦
𝜑𝑗(𝑦 + 𝜆𝑖𝜏) +

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)] 𝑑𝜏, 𝑖 = 1,3;                                                                                                                      

−∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(1, t) + 𝜆𝑖 ∫

t

0

∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 + 

+∑

4

𝑗=1

𝑅𝑖𝑗(𝑡)𝜑𝑗(1) + ∫

t

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝑤𝑗(1, t − 𝜏)𝑑𝜏 − 

−𝜆𝑖∫

t

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)
𝜕

𝜕𝑦
𝑤𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏 − 𝛼)𝑑𝛼𝑑𝜏 = 𝜆𝑖

𝑑

𝑑𝑦
Φ𝑖(𝑦) + 

+
𝜕2

𝜕𝑡2
 h𝑖(t) −

𝜕

𝜕𝑡
𝐹𝑖(1, 𝑡) +                                                     (31) 

+𝜆𝑖∫

t

0

[∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)
𝜕

𝜕𝑦
𝜑𝑗(𝑦 + 𝜆𝑖𝜏) +

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)] 𝑑𝜏, 𝑖 = 2,4; 

We write equalities (30)-(31) in the following compact form 

−∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(𝜃𝑖 , t) + 𝜆𝑖∫

t

0

∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 +

+∑

4

𝑗=1

𝑅𝑖𝑗(𝑡)𝜑𝑗(𝜃𝑖) + ∫

t

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)𝑤𝑗(𝜃𝑖 , t − 𝜏)𝑑𝜏 −

−𝜆𝑖∫

t

0

∫

𝜏

0

∑

4

𝑗=1

𝑅𝑖𝑗(𝛼)
𝜕

𝜕𝑦
𝑤𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏 − 𝛼)𝑑𝛼𝑑𝜏 = 𝜆𝑖

𝑑

𝑑𝑦
Φ𝑖(𝑦) +

 

+
𝜕2

𝜕𝑡2
 h𝑖(t) −

𝜕

𝜕𝑡
𝐹𝑖(𝜃𝑖 , 𝑡) +                                                          (32) 

+𝜆𝑖∫

t

0

[∑

4

𝑗=1

𝑅𝑖𝑗(𝜏)
𝜕

𝜕𝑦
𝜑𝑗(𝑦 + 𝜆𝑖𝜏) +

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)] 𝑑𝜏, 𝑖 = 1,4;

 

here  
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𝜃𝑖 = {
0, 𝑖 = 1,3;
1, 𝑖 = 2,4;

    𝜆𝑖 = {
1, √2,    𝑖 = 1,3;

−1,−√2,    𝑖 = 2,4.
 

Let us introduce the following notation 

Υ = (𝜃𝑖; 𝜑(𝜃𝑖)):= (Υ𝑖𝑙(𝜃𝑖; 𝜑(𝜃𝑖)))
𝑖,𝑙=1

4
=

=
1

2

(

 

𝜑1(𝜃1) + 𝜑2(𝜃1) 0 𝜑1(𝜃1) − 𝜑2(𝜃1) 0

𝜑1(𝜃2) + 𝜑2(𝜃2) 0 −𝜑1(𝜃2) + 𝜑2(𝜃2) 0

0 𝜑3(𝜃3) + 𝜑4(𝜃3) 0 𝜑3(𝜃3) − 𝜑4(𝜃3)

0 𝜑3(𝜃4) + 𝜑4(𝜃4) 0 −𝜑3(𝜃4) + 𝜑4(𝜃4))

 ,
 

Υ = (𝑦;𝜔(𝑦, 𝑡)): = (Υ𝑖𝑙(𝑦;𝜔(𝑦, 𝑡)))𝑖,𝑙=1
4 =

=
1

2
(

𝜔1(𝑦, 𝑡) + 𝜔2(𝑦, 𝑡) 0 𝜔1 − 𝜔2 0
𝜔1(𝑦, 𝑡) + 𝜔2(𝑦, 𝑡) 0 −𝜔1 +𝜔2 0
0 𝜔3(𝑦, 𝑡) + 𝜔4 0 𝜔3 − 𝜔4
0 𝜔3(𝑦, 𝑡) + 𝜔4 0 −𝜔3 +𝜔4

) .
       (33) 

Taking into account (33), we write equations (23) in the following form: 

𝑤𝑖(𝑦, 𝑡) = 𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖) + ∫
𝑡

𝑡0
𝑖 [∑

4
𝑗=1 Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝜓𝑗(𝜏) − ∑

4
𝑗=1 𝑐𝑖𝑗𝑤𝑖(𝜇, 𝜏)]𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 +

+∫
𝑡

𝑡0
𝑖 ∫

𝜏

0
∑4𝑗=1 Υ𝑖𝑗(𝜇;𝑤𝑖(𝜇, 𝜏 − 𝜂))𝜓𝑗(𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)
𝑑𝜏 + ∫

𝑡

𝑡0
𝑖
𝜕

𝜕𝑡
𝐹𝑖(𝜇, 𝜏)|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)
𝑑𝜏.

(34) 

Also using (33) system (32), we rewrite in the form: 

∑

4

𝑗=1

Υ𝑖𝑗(𝜃𝑖; 𝜑(𝜃𝑖))𝜓𝑗(𝑡) = 𝜆𝑖∫
𝑡

0

𝜕

𝜕𝑦
∑

4

𝑗=1

Υ𝑖𝑗 (𝜏;
𝜕

𝜕𝑦
𝜑𝑗(𝑦 + 𝜆𝑖𝜏))𝜓𝑗(𝜏)𝑑𝜏 − 

−∫
𝑡

0

∑

4

𝑗=1

Υ𝑖𝑗 (𝜃𝑖; 𝑤𝑗(𝜃𝑖 , 𝑡 − 𝜏))𝜓𝑗(𝜏)𝑑𝜏 +                                       (35) 

+𝜆𝑖∫
𝑡

0

∫
𝜏

0

∑

4

𝑗=1

Υ𝑖𝑗 (𝑦;
𝜕

𝜕𝑦
𝑤𝑗(𝑦, 𝜏 − 𝛼))𝜓𝑗(𝛼)|

𝑦=𝜃𝑖+𝜆𝑖(𝜏−𝑡)

𝑑𝛼𝑑𝜏 − 

−𝜆𝑖∫
𝑡

0

∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
w𝑗(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏 + 𝜆𝑖

𝑑

𝑑𝑦
Φ𝑖(𝑦) +

𝜕2

𝜕𝑡2
 h𝑖(𝑡) − −

𝜕

𝜕𝑡
𝐹𝑖(𝜃𝑖 , 𝑡)

+∑

4

𝑗=1

𝑐𝑖𝑗w𝑗(𝜃𝑖 , 𝑡) + 𝜆𝑖∫
𝑡

0

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑖(𝑦 + 𝜆𝑖𝜏, 𝜏)𝑑𝜏, 𝑖 = 1,4. 

In what follows, we will assume that the conditions 

𝑑𝑒𝑡Υ (𝜃𝑗; 𝜑(𝜃𝑗)) = 𝐷0 ≠ 0, 
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𝜑1(0)𝜑1(1) ≠ 𝜑2(0)𝜑2(1)   𝜑3(0)𝜑3(1) ≠ 𝜑4(0)𝜑4(1).                (36) 

 Now solving system (35) with respect to 𝜓𝑗(𝑡), we obtain 

𝜓𝑗(𝑡) =
1

𝐷0
∑

4

𝑘=1

[𝜆𝑘∫
𝑡

0

∑

4

𝑙=1

Υ𝑘𝑙 (𝜏;
𝜕

𝜕𝑦
𝜑𝑙(𝑦 + 𝜆𝑘𝜏)𝜓𝑙(𝜏)𝑑𝜏] A𝑘𝑗 (𝜃𝑗; 𝜑(𝜃𝑗)) − 

−
1

𝐷0
∑

4

𝑘=1

[𝜆𝑘∫
𝑡

0

∑

4

𝑙=1

Υ𝑘𝑗(𝜃𝑘; 𝜔𝑙(𝜃𝑘 , 𝑡 − 𝜏))𝜓𝑙(𝜏)𝑑𝜏] A𝑘𝑗 (𝜃𝑗; 𝜑(𝜃𝑗)) + 

+
1

𝐷0
∑

4

𝑘=1

[𝜆𝑘∫

𝑡

0

∫

𝜏

0

∑

4

𝑙=1

Υ𝑘𝑙 (𝑦;
𝜕

𝜕𝑦
𝜔𝑙(𝑦, 𝜏 − 𝛼))𝜓𝑙(ф)|

𝑦=𝜃𝑗−𝜆𝑘(𝑡−𝜏)

    𝑑𝛼𝑑𝜏A𝑘𝑗 − 

−
1

𝐷0
∑

4

𝑘=1

[𝜆𝑘∫

𝑡

0

∑

4

𝑙=1

𝑐𝑘𝑙
𝜕

𝜕𝑦
𝜔𝑙(𝑦 + 𝜆𝑘𝑡, 𝜏)𝜓𝑙𝑑𝜏] A𝑘𝑗 (𝜃𝑗; 𝜑(𝜃𝑗)) +                    (37) 

+
1

𝐷0
∑

4

𝑘=1

[𝜆𝑘
𝜕

𝜕𝑦
Φ𝑘(𝑦) +

𝜕2

𝜕𝑡2
ℎ𝑘(𝑡) −

𝜕

𝜕𝑦
𝐹𝑘(𝜃𝑘 , 𝑡)] A𝑘𝑗 (𝜃𝑗; 𝜑(𝜃𝑗)) + 

+
1

𝐷0
∑

4

𝑘=1

[∑

4

𝑙=1

𝑐𝑘𝑙
𝜕

𝜕𝑦
𝜔𝑙(𝜃𝑗 , 𝑡) + 𝜆𝑘∫

𝑡

0

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑘(𝑦 + 𝜆𝑘𝑡, 𝜏)𝑑𝜏] A𝑘𝑗 (𝜃𝑗; 𝜑(𝜃𝑗)), 

                                                                                                                                                    

where A𝑘𝑗 are algebraic complements of elements Υ𝑖𝑗-matrices. Equations (37) 

include unknown functions
𝜕

𝜕𝑦
𝑤𝑗 , 𝑗 = 1,4.̅̅ ̅̅ ̅ For them we find the integral equations 

from (34) by differentiating them with respect to the variable 𝑦. At the same time, we 

have 

𝜕

𝜕𝑦
𝑤𝑖(𝑦, 𝑡) =

𝜕

𝜕𝑦
𝑤𝑖(𝑦0

𝑖 , 𝑡0
𝑖) −

𝜕

𝜕𝑦
𝑡0
𝑖 [
𝜕

𝜕𝑡
𝐹𝑖(𝑦0

𝑖 , 𝑡0
𝑖 ) −∑

4

𝑗=1

𝑐𝑖𝑗𝑤𝑗(𝑦0
𝑖 , 𝑡0

𝑖 ) + 

+∑

4

𝑗=1

Υ𝑖𝑗(𝑦0
𝑖 ; 𝜑)𝜓𝑗(𝑡0

𝑖 )] + ∫
𝑡

𝑡0
𝑖
[
𝜕

𝜕𝑡𝜕𝑦
𝐹𝑖(𝜇, 𝜏) −∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
𝑤𝑗(𝜇, 𝜏) + 

+
𝜕

𝜕𝑦
𝑡0
𝑖 ∫

𝑡0
𝑖

0

∑

4

𝑗=1

Υ𝑖𝑗 (𝑦0
𝑖 ; 𝐺𝑗(𝑦0

𝑖 , 𝑡0
𝑖 − 𝜏))𝜓𝑗(𝜏)𝑑𝜏 +                                            (38) 
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+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

𝜕

𝜕𝑦
Υ𝑖𝑗 (𝜇;𝑤𝑗(𝜇, 𝜏 − 𝜂))𝜓𝑗(𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏, 𝑖 = 1,4 

                                                                                                                                                                     

where 

𝐺𝑗(𝑦0
𝑖 , 𝑡0

𝑖 − 𝜏) =

{
 

 
𝑑

𝑑𝑡
ℎ𝑗 (

1 − 𝑦

𝜆𝑖
− 𝜏) , 𝑗 = 2,4,

𝑑

𝑑𝑡
𝑔𝑗 (

1 − 𝑦

𝜆𝑖
− 𝜏) , 𝑗 = 1,3.

 

We require compliance with the conditions of agreement 

[
𝑑

𝑑𝑡
 h𝑖(𝑡)]𝑡=0 = 𝐹𝑖(0,0) − 𝜆𝑖

𝜕

𝜕𝑦
𝜑𝑖(𝑦)|

𝑦=0

−∑

4

𝑗=1

𝑐𝑖𝑗𝜑𝑗(0), 𝑖 = 2,4,                  (39) 

[
𝑑

𝑑𝑡
 h𝑖(𝑡)]𝑡=0 = 𝐹𝑖(1,0) − 𝜆𝑖

𝜕

𝜕𝑦
𝜑𝑖(𝑦)|

𝑦=1

−∑

4

𝑗=1

𝑐𝑖𝑗𝜑𝑗(1), 𝑖 = 1,3.                  (40) 

Main result and its proof 

The main result of this work is the following assertion: 

Theorem 2. Let the conditions of Theorem 1 be satisfied, besides 𝜑(𝑦) ∈
𝐶2[0,1], 𝑔(𝑡) ∈ 𝐶2[0, 𝑇], ℎ(𝑡) ∈ 𝐶2[0, 𝑇], and condition (36) and matching 

conditions (39), (40) are satisfied. Then on the interval [0,1] there is a unique solution 

of the inverse problem (19)-(22), from the class Ψ(𝑡) ∈ 𝐶[0,1], and each component  

𝜓𝑖 ∈ 𝐶[0,1]] is defined by specifying ℎ𝑖(𝑡) for 𝑡 ∈ [0,1], 𝑖 = 1,4. 

Proof. Consider now the square 

Π0: = {(𝑦, 𝑡): 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑡 ≤ 1}. 

 Equations (34),(37) and (38), supplemented by the initial and boundary 

conditions from equality (19), form in Π0 a closed system of equations with respect 

to the unknowns  𝑤𝑖(𝑦, 𝑡), 𝜓𝑖(t),
𝜕

𝜕𝑦
𝑤𝑖(𝑦, 𝑡), 𝑖 = 1,4. 

Equations (34), (37) and (38) show that the values of the functions 

𝑤𝑖(𝑦, 𝑡), 𝜓𝑖(t),
𝜕

𝜕𝑦
𝑤𝑖(𝑦, 𝑡), 𝑖 = 1,4 at (y, t) ∈ Π0. are expressed in terms of integrals 

of some combinations of the same  functions over segments lying in Π0. 

We write equations (34), (37), and (38) as a closed system of Voltaire-type 

integral equations of the second kind. To do this, we introduce into consideration the 

vector function 𝑣(𝑦, 𝑡) = (𝑣𝑖
1, 𝑣𝑖

2, 𝑣𝑖
3), 𝑖 = 1,4 defining their components by 

equalities 

https://buxdu.uz



EXACT AND NATURAL SCIENCES 

18                          SCIENTIFIC REPORTS OF BUKHARA STATE UNIVERSITY 2022/3 (91) 

𝑣𝑖
1(𝑦, 𝑡) = 𝑤𝑖(𝑦, 𝑡), 𝑣𝑖

2(𝑦, 𝑡) = 𝜓𝑖(𝑡), 

 𝑣𝑖
3(𝑦, 𝑡) =

𝜕

𝜕𝑦
𝑤𝑖(𝑦, 𝑡) +

𝜕

𝜕𝑦
𝑡0
𝑖 ∑4𝑗=1 Υ𝑖𝑗 (𝑦0

𝑖 ; 𝜑(𝑦0
𝑖 ))𝜓𝑗(𝑡0

𝑖 ). 

Then the system of equations (34),(37) and (38) takes the operator form 

𝑣 = L𝑣                                                                      (41) 

   where operator L = (L𝑖
1, L𝑖

2, L𝑖
3), 𝑖 = 1,4 in accordance with the right-hand sides of 

equations (34), (37) and (38) is defined by the equalities 

𝐿𝑖
1𝑣 = 𝑣𝑖

01(𝑦, 𝑡) + ∫

𝑡

𝑡0
𝑖

[∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝑣𝑗
2(𝜏) −∑

4

𝑗=1

𝑐𝑖𝑗𝑣𝑗
1(𝜇, 𝜏)]

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 +

+ ∫

𝑡

𝑡0
𝑖

∫

𝜏

0

∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝑣𝑗
1(𝜇, 𝜏 − 𝜂))𝑣𝑗

2(𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏,    𝑖 = 1,4.                  (42)

 

𝐿𝑖
2𝑣 = 𝑣𝑖

02(𝑦, 𝑡) +
1

Υ0
∫
𝑡

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝜏;
𝜕

𝜕𝑦
𝜑𝑙(𝑦 + 𝜆𝑘𝜏)) 𝑣𝑙

1(𝜏)𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖)) 

−
1

Υ0
∫
𝑡

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝜃𝑘;
𝑑

𝑑𝑡
ℎ𝑙(𝜃𝑘 , 𝑡 − 𝜏)) 𝑣𝑙

2(𝜏)𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖)) +        (43) 

+
1

Υ0
∫
𝑡

0

∫
𝜏

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝑦;
𝜕

𝜕𝑦
𝑣𝑙
1(𝑦, 𝜏

− 𝛼)) 𝑣𝑙
2(𝜏)|

𝑦=𝜃𝑖−𝜆𝑘(𝑡−𝜏)

𝑑𝛼𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖)) − 

−
1

Υ0
∑

4

𝑘=1

[∫
𝑡

0

∑

4

𝑙=1

𝜆𝑘𝑐𝑘𝑙
𝜕

𝜕𝑦
𝑣𝑙
1(𝑦 + 𝜆𝑘𝑡, 𝜏)𝑣𝑙

2(𝜏)𝑑𝜏] A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖)),    𝑖 = 1,4. 

𝐿𝑖
3𝑣 = 𝑣𝑖

03(𝑦, 𝑡)

+ ∫ [∑

4

𝑗=1

𝜕

𝜕𝑦
Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝑣𝑗

2(𝜏) −∑

4

𝑗=1

𝑐𝑖𝑗
𝜕

𝜕𝑦
𝑣𝑗
1(𝜇, 𝜏)]

𝑡

𝑡0
𝑖

|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏

− 
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−
𝜕

𝜕𝑦
𝑡0
𝑖 ∫

𝑡0
𝑖

0

∑

4

𝑗=1

Υ𝑖𝑗 (𝑦0
𝑖 ; 𝐺(𝑦0

𝑖 , 𝑡0
𝑖 − 𝜏)) 𝑣𝑗

2(𝜏)𝑑𝜏 +                                        (44) 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

𝜕

𝜕𝑦
Υ𝑖𝑗(𝜇; 𝑤𝑗(𝜇, 𝜏 − 𝜂))𝑣𝑗

2(𝜂)𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏,   𝑖 = 1,4. 

                                                                                                                                                                                                                                                                                                                                    

The following notations are introduced in these formulas: 

𝑣𝑖
01(𝑦, 𝑡) = 𝑤𝑖(𝑦0

𝑖 , 𝑡0
𝑖 ) + ∫

𝑡

𝑡0
𝑖

𝜕

𝜕𝑡
𝐹𝑖(𝜇, 𝜏)|

𝜇=𝑦+𝜆𝑖(𝑦−𝑡)

𝑑𝜏, 

𝑣𝑖
02(𝑦, 𝑡) =

1

Υ0
∑

4

𝑘=1

[𝜆𝑘
𝜕

𝜕𝑦
Φ𝑘(𝑦) +

𝜕2

𝜕𝑡2
ℎ𝑘(𝑡) −

𝜕

𝜕𝑦
𝐹𝑘(𝜃𝑘, 𝑡)] A𝑘𝑖(𝜃𝑖; ц(𝜃𝑖)) + 

+
1

Υ0
∑

4

𝑘=1

[∑

4

𝑙=1

𝑐𝑘
𝜕

𝜕𝑦
ℎ𝑙(𝜃𝑖 , 𝑡) + 𝜆𝑘∫

𝑡

0

𝜕2

𝜕𝑡𝜕𝑦
𝐹𝑘(𝑦 + 𝜆𝑘𝑡, 𝜏)𝑑𝜏] A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖)), 

𝑣𝑖
03(𝑦, 𝑡) =

𝜕

𝜕𝑦
𝑤𝑖(𝑦0

𝑖 , 𝑡0
𝑖 ) −

𝜕

𝜕𝑦
𝑡0
𝑖 [
𝜕

𝜕𝑡
𝐹𝑖(𝑦0

𝑖 , 𝑡0
𝑖 ) −∑

4

𝑗=1

𝑐𝑖𝑗𝑤𝑖(𝑦0
𝑖 , 𝑡0

𝑖 ) + 

+∑

4

𝑗=1

Υ𝑖𝑗 (𝑦0
𝑖 ; ц(𝑦0

𝑖 ))𝜓𝑗(𝑡0
𝑖 )] + ∫

𝑡

𝑡0
𝑖

𝜕

𝜕𝑡𝜕𝑦
𝐹𝑖(𝜇, 𝜏)|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

. 

       On the set of continuous functions Cσ (П0), we define the norm 

∥ 𝑣 ∥𝜎= max
1≤𝑖≤4,1≤𝑙≤3

sup
(𝑦,𝑡)∈Π0

|𝑣𝑖
𝑙(𝑦, 𝑡)𝑒−𝜎𝑡|, 

𝜎 ≥ 0 -some number to be chosen later. 

      Obviously, for 𝜎 = 0 this space coincides with the space of continuous functions 

with the usual norm ∥ 𝑣 ∥𝜎. Because of the inequalityc 

𝑒−𝜎 ∥ 𝑣 ∥≤∥ 𝑣 ∥𝜎≤∥ 𝑣 ∥, 

norm ∥ 𝑣 ∥𝜎 and∥ 𝑣 ∥ equivalent. 

Next, consider the set of functions 𝑆(𝑣0, 𝑟) ⊂ 𝐶𝜎(Π0), satisfying the inequality 

‖𝑣 − 𝑣0‖𝜎 ≤ 𝑟,                                                              (45) 
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where is a vector function 𝑣0(𝑦, 𝑡) = (𝑣𝑖
01(𝑦, 𝑡), 𝑣𝑖

02(𝑡), 𝑣𝑖
03(𝑦, 𝑡)) , 𝑖 = 1,4 is 

determined by the free terms of the operator equation (43). It is easy to see that 𝑣 ∈
𝑆(𝑣0, 𝑟) satisfies the estimate∥ 𝑣 ∥𝜎≤ ‖𝑣0‖𝜎 + 𝑟 ≤ ‖𝑣

0‖ + 𝑟:= 𝑟0. So 𝑟0 −is a 

known number. 

Let us introduce the following notation: 

𝜑0: = max
1≤𝑖≤4

‖𝜑𝑖‖𝐶2[0,1], 𝑔0: = max
1≤𝑖≤4

‖𝑔𝑖‖𝐶2[0,1], 𝐹0: = max
1≤𝑖≤4

‖𝐹𝑖‖𝐶2[Π0], ℎ0:

= max
1≤𝑖≤4

‖ℎ𝑖‖𝐶2[0,1], 

Υ0𝜑0 = max
1≤𝑖,𝑗≤4

‖Υ𝑖𝑗(𝑦 + 𝜆𝑖(𝜏 − 𝑡); 𝜑)‖𝐶1(Π0)
, 𝐴0: = max

1≤𝑖,𝑗≤4
{|𝐴ij(𝜃i; 𝜑(𝜃i))|}. 

The operator 𝐴 takes the space 𝐶𝜎(Π0) into itself. Let us show that, given an 

appropriate choice of 𝜎, it is a contraction operator on the set 𝑆(𝑣0, 𝑟). Let us first 

verify that the operator 𝐴 maps the set 𝑆(𝑣0, 𝑟)  into itself, i.e. it follows from the 

condition 𝑣(𝑦, 𝑡) ∈ 𝑆(𝑣0, 𝑟)that 𝐴𝑣 ∈ 𝑆(𝑣0, 𝑟), if 𝜎 satisfies some restrictions. 

Indeed, for any (𝑦, 𝑡) ∈ Π0 and any 𝑣 ∈ 𝑆(𝑣0, 𝑟) the inequalities hold: 

|(𝐿𝑖
1𝑣 − 𝑣𝑖

01)𝑒−𝜎𝑡| = |∫
𝑡

𝑡0

∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝑒
−𝜎(𝑡−𝜏)𝑣𝑗

2(𝜏)𝑒−𝜎𝑡|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 − 

−∫
𝑡

𝑡0
𝑖
∑

4

𝑗=1

𝑐𝑖𝑗𝑒
−𝜎(𝑡−𝜏)𝑣𝑗

1(𝜇, 𝜏)𝑒−𝜎𝑡|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 + 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝑣𝑖
1(𝜇, 𝜏 − 𝜂))𝑒−𝜎(𝜏−𝜂)𝑣𝑗

2(𝜂)𝑒−𝜎𝜂𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏| ≤ 

≤ 4[(Υ0𝜑0 + 𝑐0) ∥ 𝑣 ∥у+ Υ0 ∥ 𝑣 ∥𝜎
2 ]∫

𝑡

0

𝑒−𝜎(𝑡−𝜏)𝑑𝜏 ≤ 

≤
4

𝜎
((Υ0𝜑0 + 𝑐0) + Υ0𝑟0)𝑟0: =

1

𝜎
𝛼11, 

|(𝐿𝑖
2𝑣 − 𝑣𝑖

02(𝑦, 𝑡))𝑒−𝜎𝑡|

= |
1

𝐷0
∫

𝑡

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝑦 + 𝜆𝑘𝜏;
𝜕

𝜕𝑦
𝜑𝑙(𝑦 + 𝜆𝑘𝜏)) 𝑒

−𝜎(𝑡−𝜏) × 

× 𝑣𝑙
2(𝜏)𝑒−𝜎𝜏𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖))

−
1

𝐷0
∫
𝑡

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝜃𝑘;
𝑑

𝑑𝑡
ℎ𝑙(𝜃𝑘 , 𝑡 − 𝜏)) 𝑒

−𝜎(𝑡−𝜏) × 
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× 𝑣𝑙
2(𝜏)𝑒−𝜎𝜏𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖))

+
1

𝐷0
∫

𝑡

0

∫

𝜏

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘Υ𝑘𝑙 (𝑦;
𝜕

𝜕𝑦
𝑣𝑙
1(𝑦, 𝜏 − 𝛼)) 𝑒−𝜎(𝑡−𝜏) × 

× 𝑣𝑙
2(𝜏)𝑒−𝜎𝜏|

𝑦=𝜃𝑖−𝜆𝑘(𝑡−𝜏)
𝑑𝛼𝑑𝜏A𝑘𝑖 (𝜃𝑖; 𝜑(𝜃𝑖) −

1

𝐷0
∫
𝑡

0

∑

4

𝑘=1

∑

4

𝑙=1

𝜆𝑘𝑐𝑘𝑙𝑒
−𝜎(𝑡−ф) × 

× [𝑣𝑙
3(𝑦 + 𝜆𝑘𝑡, 𝜏) −

𝜕

𝜕𝑦
𝑡0
𝑖 ∑

4

𝑝=1

Υ𝑙𝑝 (𝑦0
𝑖 ; 𝜑(𝑦0

𝑖 )) 𝑣𝑝
2(𝑡0

𝑖 )] 𝑒−𝜎𝜏𝑑𝜏A𝑘𝑖(𝜃𝑖; 𝜑(𝜃𝑖))| ≤
 

≤
16𝐴0
𝐷0

[Υ0(𝜑0 + ℎ0+∥ 𝑣 ∥𝜎) + 𝑐0(1 + Υ0𝜑0)] ∥ 𝑣 ∥𝜎 ∫
𝑡

0

𝑒−𝜎(𝑡−𝜏)𝑑𝜏 ≤ 

≤
16𝐴0
𝜎𝐷0

[Υ0(𝜑0 + ℎ0 + 𝑟0) + 𝑐0(1 + Υ0𝜑0)]𝑟0: =
1

𝜎
𝛼12, 

 |(𝐿𝑖
3𝑣 − 𝑣𝑖

03)𝑒−𝜎𝑡| = |∫
𝑡

𝑡0
𝑖 ∑

4
𝑗=1

𝜕

𝜕𝑦
Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝑒

−𝜎(𝑡−𝜏)𝑣𝑗
2(𝜏)𝑒−𝜎𝑡|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)
𝑑𝜏 − 

− ∫

𝑡

𝑡0
𝑖

∑

4

𝑗=1

𝑐𝑖𝑗𝑒
−𝜎(𝑡−𝜏)

(

 
 
𝑣𝑗
3

−  
𝜕

𝜕𝑦
𝑡0
𝑖 ∫

𝑡0
𝑖

0

∑

4

𝑝=1

Υ𝑗𝑝 (𝑦0
𝑗
; 𝜑(𝑦0

𝑗
)) 𝑣𝑝

2(𝑡0
𝑖 )

)

 
 
𝑒−𝜎𝜏|

|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

 

× 𝑑𝜏 −
𝜕

𝜕𝑦
𝑡0
𝑖 ∫

𝑡0
𝑖

0

∑

4

𝑗=1

Υ𝑖𝑗 (𝑦0
𝑖 ; 𝐺(𝑦0

𝑖 , 𝑡0
𝑖 − 𝜏)) 𝑒−𝜎(𝑡−𝜏)𝑣𝑗

2(𝜏)𝑒−𝜎𝜏𝑑𝜏 + 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

𝜕

𝜕𝑦
Υ𝑖𝑗(𝜇; 𝑣𝑗

1(𝜇, 𝜏 − 𝜂))𝑒−𝜎(𝜏−𝜂)𝑣𝑗
2(𝜂)𝑒−𝜎𝜂𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝑡−𝑡)

𝑑𝜏| ≤ 

≤ 4[Υ0(𝜑0 + ℎ0+∥ 𝜈 ∥𝜎) + 𝑐0(1 + Υ0𝜑0)] ∥ 𝜈 ∥𝜎 ∫
𝑡

0

𝑒−𝜎(𝑡−𝜏)𝑑𝜏 ≤ 
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≤
4

𝜎
[Υ0(𝜑0 + ℎ0 + 𝑟0) + 𝑐0(1 + Υ0𝜑0)]𝑟0: =

1

𝜎
𝛼13. 

From here and from formulas (41) and (42)-(44) it follows that 

 ‖L𝑣 − 𝑣0‖𝜎 = max {max
1≤𝑖≤4

sup
(𝑦,𝑡)∈Π0

|( L𝑖
1𝑣 − 𝑣𝑖

01)𝑒−𝜎𝑡|, max
1≤𝑖≤4

sup
𝑡∈[0,1]

|(L𝑖
2𝑣 − 𝑣𝑖

02)𝑒−𝜎𝑡|, 

  max
1≤𝑖≤4

sup
𝑡∈[0,1]

|(L𝑖
3𝑣 − 𝑣𝑖

03)𝑒−𝜎𝑡|} ≤
1

𝜎
𝛼0, 

where  𝛼0: = max(𝛼1, 𝛼2, 𝛼3). Choosing 𝜎 > (1/𝑟)𝛼0, we obtain that the operator 𝐿 

takes the set 𝑆(𝑣0, 𝜌) into itself. 

Let us now take any functions 𝑣, 𝑣̃ ∈ 𝑆(𝑣0, 𝑟) and estimate the norm of the 

difference 𝑈𝑣 − 𝑈𝑣̃. Using the obvious inequality 

|𝑣𝑖
𝑘𝑣𝑖

𝑙 − 𝑣̃𝑖
𝑘𝑣̃𝑖

𝑙|𝑒−𝜎𝑡 ≤ |𝑣𝑖
𝑘 − 𝑣̃𝑖

𝑘||𝑣𝑖
𝑙|𝑒−𝜎𝑡 + |𝑣̃𝑖

𝑘||𝑣𝑖
𝑙 − 𝑣̃𝑖

𝑙|𝑒−𝜎𝑡 ≤ 2𝑟0 ∥ 𝑣 − 𝑣̃ ∥𝜎 , 

and estimates for the integrals similar to those given above, we obtain 

|(𝐿𝑖
1𝑣 − 𝐿𝑖

1𝑣̃)𝑒−𝜎𝑡| =

= |∫
𝑡

𝑡0
𝑖
∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝜑(𝜇))𝑒
−𝜎(𝑡−𝜏)(𝑣𝑗

2(𝜏) − 𝑣̃𝑗
2(𝜏))𝑒−𝜎𝑡|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 − 

−∫
𝑡

𝑡0
𝑖
∑

4

𝑗=1

𝑐𝑖𝑗𝑒
−𝜎(𝑡−𝜏)(𝑣𝑗

1(𝜇, 𝜏) − 𝑣̃𝑗
1(𝜇, 𝜏))𝑒−𝜎𝑡|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏 + 

+∫
𝑡

𝑡0
𝑖
∫
𝜏

0

∑

4

𝑗=1

Υ𝑖𝑗(𝜇; 𝑣𝑖
1(𝜇, 𝜏 − 𝜂))𝑒−𝜎(𝜏−𝜂)(𝑣𝑗

2(𝜂) − 𝑣̃𝑗
2(𝜂))𝑒−𝜎𝜂𝑑𝜂|

𝜇=𝑦+𝜆𝑖(𝜏−𝑡)

𝑑𝜏| ≤ 

≤ 4[(Υ0𝜑0 + 𝑐0) ∥ 𝑣 − 𝑣̃ ∥𝜎+ 2𝑟0Υ0 ∥ 𝑣 − 𝑣̃ ∥𝜎]∫
𝑡

0

𝑒−𝜎(𝑡−𝜏)𝑑𝜏 ≤ 

≤
4

𝜎
((Υ0𝜑0 + 𝑐0) + 2Υ0𝑟0) ∥ 𝑣 − 𝑣̃ ∥𝜎: =

1

𝜎
𝛼21 ∥ 𝑣 − 𝑣̃ ∥𝜎 . 

Similarly, we obtain the following estimates 

|(𝐿𝑖
2𝑣 − 𝐿𝑖

2𝑣)𝑒−𝜎𝑡| ≤
16𝐴0
𝜎𝐷0

[Υ0(𝜑0 + ℎ0 + 2𝑟0) + 𝑐0(1 + Υ0𝜑0)] ∥ 𝑣 − 𝑣̃ ∥𝜎:

=
1

𝜎
𝛼22 ∥ 𝑣 − 𝑣̃ ∥𝜎 , 
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 |(𝐿𝑖
3𝑣 − 𝐿𝑖

3𝑣)𝑒−𝜎𝑡| ≤
4

𝜎
[Υ0(𝜑0 + ℎ0 + 2𝑟0) + 𝑐0(1 + Υ0𝜑0)] ∥ 𝑣 − 𝑣̃ ∥𝜎: = 

=
1

𝜎
𝛼23 ∥ 𝑣 − 𝑣̃ ∥𝜎 . 

Hence we have 

 
∥ L𝑣 − L𝑣̃ ∥𝜎= max {max

1≤𝑖≤4
sup

(𝑦,𝑡)∈Π0

|( L𝑖
1𝑣 − L𝑖

1𝑣̃)𝑒−𝜎𝑡|, max
1≤𝑖≤4

sup
𝑡∈[0,1]

|(L𝑖
2𝑣 − L𝑖

2𝑣̃)𝑒−у𝑡|,
 

max
1≤𝑖≤4

sup
𝑡∈[0,1]

|(L𝑖
3𝑣 − A𝑖

3𝑣̃)𝑒−𝜎𝑡|} ≤
1

𝜎
𝛽0 ∥ 𝑣 − 𝑣̃ ∥𝜎 , 

Where 𝛽0: = max(𝛽1, 𝛽2, 𝛽3). Choosing now 𝜎 > 𝛽0, we get that the operator 

𝐿 shrinks the distance between elements 𝑣, 𝑣̃ by 𝑆(𝑣0, 𝜌). 

As follows from the above estimates, if the number 𝜎 is chosen from the 

condition 𝜎 > 𝜎∗: = max{𝛼0, 𝛽0}, then the operator 𝐿 is contractive on 𝑆(𝑣0, 𝜌). In 

this case, according to the Banach principle [40, pp. 87-97], equation (41) has a 

unique solution in 𝑆(𝑣0, 𝜌).Theorem 2 is proved. 
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