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Abstract. In this paper, we consider the time-fractional integro-differential diffusion equation with initial-boundary conditions.
At the beginning, an auxiliary problem, which is equivalent to the original problem, is introduced. Then the auxiliary problem is
reduced to an equivalent of Volterra-type integral equation with respect to unknown function. Applying the method of successive
approximation, we prove the main result of the article, which is a global existence and uniqueness theorem of problem solution.

INTRODUCTION AND SETTING UP THE PROBLEM

Nowadays, the fractional differential equations have many successful applications in various modern science and
engineering technology areas [1, 2, 3, 4, 5]. Fractional differential equations have been adapted as mathematical
models [6]. For example, in models of viscoelastic behavior [7, 8], anomalous diffusion [9], compartment models ,
economics [10], epidemiology [11], dynamics of particles , biology [12] and etc.

Researchers have proposed several new methods to find an analytical solution of fractional differential equations.
Such as, In the paper [13], a maximum principle for the generalized time-fractional diffusion equation over an open
bounded domain is formulated and proved. In the article [14] is considered initial value/boundary value problems
for fractional diffusion-wave equation and established the unique existence of the weak solution. In this paper [15],
is investigated the functional variable method and the modified Riemann-Liouville derivative for the exact solitary
wave solutions and periodic wave solutions of the time-fractional Klein-Gordon equation. This method is effective
for handling nonlinear time-fractional differential equations.

Direct and inverse problems for integro-differential equations of parabolic and hyperbolic type have been studied
by many researcher(see [16, 17, 18, 19, 20, 21, 22, 23, 24]). In last articles are proved for posed problem existence and
global uniqueness, a stability theorems.The inverse problem of determining the convolution kernels of integral terms
from a system of first-order integro-differential equations of general form with two independent variables was studied
in [25]. The theorem of local existence and global uniqueness is obtained. In the work of [26] the method for studying
the work of [25] was applied to the investigating of the inverse problem of determining the diagonal relaxation matrix
from the system of Maxwell’s integro-differential equations.

In this paper, we investigate the existence and uniqueness for integro-differential time—fractional diffusion equation
with initial-boundary conditions.

Consider the problem of determining of functions u(x,¢), from the following equations with fractional derivative in
time £ :

9% — e + )t = /(:k(t —u(x,1)dt, (vf)€Dr,ac (0,1), )
uli—o = @(x), x€10,1], 2)
u|x=0 = U (t)v u‘x:l = ‘U.Q(t), (P<0) =M (O)a (P(l) = “2(0)7 re [OaT]a (3)

with the Caputo time fractional derivative d% of order 0 < a < 1, defined by

) = gz [ 0= w(@a, @
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where I" is the Euler’s Gamma function, Dy = {(x,7)|x € (0,{), t € (0,T]}, 1 > 0,T > 0 are arbitrary fixed numbers,
©(x), 11 (1), Ua () are given functions of x € [0,!] and ¢ € [0, T].
Problem (1)-(3) is equivalent to the auxiliary problem of determining the function ¥ (x,7), from the equations

9O — Ve +a(x) O (x,1) = /O k(D) B (x,t — T)dT — a(x)b(x) + /O k(= D)b(x, )T — 9% b(x.1), )
V=0 = @(x) — w1 (0), (6)
19|x:0 = ‘0‘)::[ =0, @)

where © (x,1) = u(x,t) — (1) — 7 (Ua(t) — 11 (2)) = u(x,t) — b(x,1).

PRELIMINARIES

In this section, we recall basic definitions and notations from fractional calculus (see [4], pp. 69-79), which will be
use in the future.

Two parameter Mittag-Leffler function. The two parameter M-L function E, g(z) is defined by the following
series:

k

ha Z
Ea_ﬁ (z) = k;o W»

where a, 8,z € C with R(a) > 0, 53() is denote the real part of the complex number ¢. The Mittag-Leffler function
has been studied by many authors who have proposed and studied various generalizations and applications.

Proposition 1. Let 0 < oo < 2 and B € R be arbitrary. We suppose that K is such that To,/2 < k¥ < min{n,ra}.
Then there exists a constant C = C(o, B, k) > 0 such that

’Eavﬁ(z)‘ < 1+ |Z|’ K< |arg(Z)| <.

For the proof, we refer to ( [4], pp. 40-45) for example.
Proposition 2. (see [4], pp. 40-45) For 0 < a < 8 < 1, the following hold:
1. For A > OJB_lEaﬁ (=A%) is completely monotonic function.
2. Fort €0,T], we have
Eqp(—At%) <ooand Jo(t —5)* 1 Eq g(—A(t —5)*)ds < oo.
3. Futhermore, for A € R* 1t € (0,T]

At?

a—1 2% <
At Eq o(—At%) T A

< oo,

~ | =

Proposition 3. (see [4], pp. 42-45) Let 0 < o < 1 and A > 0, then we have

%Em] (—At%) = A% Eg q(—At%), £>0.

Proposition 4. (see [4], pp. 42-45) For0 < a <1, 1 >0, we have 0 < Eq o(—7) < ﬁ Moreover, Eq o(—1M) is

a monotonic decreasing function with n > 0.
We will use these facts everywhere in this article.
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THE MAIN RESULT

In this section we show that the problem has a unique solution.
Theorem 1. If problem (5)-(7) has a solution such that

lim u,sin(A,x) =0, 0<t<T, )

x—1—0

then this solution is unique.
Applying the method of separation of variables, we seek a solution of (5)-(7) with the form

B(x,1) = T(1)X (x). )

Substituting (9) into (5) with F (x,#;u,a,k, 1, 1y) = 0, where
t t
Fx, 0,k 1, o) = a(x) 9 (x,1) + / K(T)0 (x,7 — T)dT — a(x)b(x,1) + / K(T)b(x, T)dT — 3%(x,1). (10)
0 0
Carrying out a separation of the variables, we obtain the following one-dimensional eigenvalue problem:

" 2y
{X +A2X =0, an

X(0)=0, X(I)=0,

where A is a constant of the separation of variable. The boundary condition for X (x) follows from the corresponding
conditions for function ¥. For example from

9(0,1) = X(0)T(t) =0 (12)

it follows X (0) = 0, since T'(¢) # 0 (we have only non-trivial solution).
The solution of equation (11) have the form

X, (x) = sin(Ayx). (13)
The eigenvalues
A2 = (?)2 neN, (14)
have corresponding eigenfunctions
X, (x) = Ay sin(A,x), (15)

where A,, is some constant factor. We choose this so that the norm in L2 [0,1] of the function X, with weight 1 equals
unity

1
1
/ X, (x)2dx = A2 / sin (Zopx)dx = 1. (16)
0
0

Hence A, = % So,
2
X (x) = 7 sin(A,x) 17)

is the orthonormal eigenfunction corresponding to —A,,. Then the sequence {X,},c is orthonormal basis in L?[0,1].
Let a function ¥ (x,7) stand for a solution to problem (5)-(7) which satisfies condition (8).
We consider the integral

1
To(t) = / B (x,1) X (x)dx. (18)
0
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Introduce an auxiliary integral, namely,
TE(r) = / B (x,1) Xy (x)dx, (19)

here € is given sufficiently small positive value. Fractional differentiating equality (18) and make use of Eq. (5), we
get the correlation

l—¢
(32T#) ( / 0% (x,1) X, (x)dx = / (azﬁxx+F(x,t;ﬂ,a,k,yl,uz))Xn(x)dx
€
=d? / DX (x)dx + /F(x,t;ﬁ,a,k,uh[.LZ)X,,(x)dx:a211 +EE(t;9,a,k, 1y, 1), (20)
€ €
where
I—¢
Ep(t:9,a,k, p, o) = /F(x,t;19,a,k,u1,uz)Xn(x)dX- 21
€
Calculating integral I; by part, we conclude that
[—¢€ —¢
I = DX (x)dx = (19XX,,(x) f;s — Bxan(x)dx)
€ €
l—¢€
<19 X, (x)]578 — 90X () |56 + ﬁme(x)dx> : (22)
€
Proceeding to the limit in integral /; as € — 0, taking into account conditions (6), (8), from formula (20) arrives
(O T) (1) + A Ty (1) = B (139, 0.k, 12), (23)
where
l
F,(t;0,a,k, 1, ) = /F(x,t;ﬁ,aJc,/.Ll,ug)Xn(x)dx. (24)
0
The initial conditions (6) give:
I
/19 x,0)X, :/ X, (x)dx = @,. (25)
0

The initial-value problem (23), (25) is equivalent in the space C[0,T] to the Volterra integral equation of the second
kind

!
T,(t) = @uEq(—A2t%) —|—/0 (t— 1) 'Eqo (A7 (t — 7)) Fy(739,a,k, 11, o) dT. (26)
Now, we investigate the integral equation (26) on [0, T]. The following assertion is true.
Lemma 1. If (¢(x),a(x)) € C[0,1],(u1 (¢),42(2)) € C([0,T])), k(t) € C([0,T)), then there is a unique classical
solution u(x,t) to problem (1)-(3) of the class C>*([0,1] x [0,T]) (C>*(Dr) = {u(x,t) € C*[0,1];t € (0,T];u(x,t) €

AC[0,T];x € [0,1]} .) In what follows we also use the usual class C(Dr) of continuous in D functions.
Proof. Problem (5)-(7) is equivalent to the integral equation

Ber) = / Gl &) (0(E) - i@ + [ [ Gusle.£.1 - D1a(E) (&, Dtz
+//Ga1 /k 9,7 a)dadédr - //Gm (5,&.1 — T)a(§)b(E, )dEdT
+/O /O Ga_yl(x,é,t—f)/o k(r—a)b(;r)dadgdr—/o /0 Gt (%, .1 — T)I%b(E, D) dEdT,  (27)
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where

Ge, 2
1

i o— ﬁEa_’a,ﬁJrl(—l,%tO‘)sin (?é) sin (?x)

is the Green function of the initial-boundary problem for one-dimensional fractional diffusion equation.
There exist some positive constants L;, M;, K such that

Ly:= max Eq (=A%), Ly:= max Egq(—A(t —9)%),
0<t<T 0<s<i<T

Mo := ||allcioy, My :=max(||tillcifory), i:=1,2,
My = @llcioq, Ms:= || kllcpo,r)s

max A, (t—17)* 'Eqa(—Au(t —7)%) <K.

0<t<t<T

Let us denote the sum of the first three summand on the right-hand side of (27) by F(x,?), for this equation, we
consider in the domain D7 the sequence of functions

t ol t pl 1—T
= [ | Geax&.0a@)01 (Gt —v)atdr+ [ [ Gar(x8.0) [ KB (&t 5~ B)apazar,
0 J0 0 Jo 0 28)

where
Do (x,1) :/OlGa,a(x,é,t) (‘P(é)*ﬂl(o))dé*/t/lGaJ(x,é,t—T)a(é)b(é,r)dédﬂp
+/Ot/OZGO‘!1(xvévt / k(t b(&,B)dBdEdt — // Ga1(x,8,t —1)07b(€, 1)dédT,

for (x,t) € Dr.
Firstly, used proposition 2 we estimate following integral term

2 (=<}

‘G(x,l(x7§,l)’ = 7 Z
<2

— 1

1 Eaa(—Aat®)[sin( 70| sin( )

n
l

sin(— )‘sm ‘—M<<x=

; 1+MT“)

If the conditions of Lemma 1 are fulfilled, we have that ¥ (x,#) € C>! (Dr). Then, it follows from (28) that all
U,(x,1) in Dy possess the same property.
According to the formula (27), we estimate 9, (x,#) in the domain Dy:

|00 (x,1)| < Fo,

orenl< [ [ Gaalo & Da@)lI (e s - Dlaaz
t pl t—T T
+/0 /0 Ga,l(x,z;,r)/o k()| 90(&,7 — 7 — a)|dadEd < tFoMI <M0+M32>,

02001 < [ [ Gaa (08, al@)1 911~ gz
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t l t—T t2 T T
+/0 /0 Ga,l(x,g,r)/o lk(a)||91(E,t —T—a)|dadEdt < EFOMZIZ <M0+M32> <M0+M33>,

o5l < [ [ Guae & D@l 1oa(é 1~ Dlazar

¢l t—1 £ T T T
+/0 /0 Gml(x,é,r)/o |k((x)\|192(§,t7Tfa)|dad§d'c§§F0M3l3 <M0+M32> <M0+M33) (M0+M34).

Thus, for arbitrary n = j, we have

j T TJ ] T
|9(x,1)] <F0— Mi /H(Mo—i—Mg_) <F0,(M1)JH(M0+M3.>, (j>1).
pal i+1 Jj! ol i+1

Now based on the terms on the right side of the inequalities, we can construct the following positive series:

T 2 T 3 T
Fo+TFMI | Mo+ M;~ F—Mlz Mo+ M5 —— F—MZS Mo+ M; ——
o+ 71Tk ( o+ 32>+ 0 H( o+ 3i+1>+ 0 H( o+ 3i+1>

~.

T T
e+ Fy(M1)! H(M0+M31> +..
J' i=1 +

The convergence of this series can be indicated by the D’ Alambert criterion

T
lim Gntl _ = lim <a0+k0n> =0.

n—eo  qa, n—>°°n—|—1

It follows from the above estimates that the series
B(x,t) = Z O (x,1)

converges in D7, and its sum ©(x,7) belongs to the functional space C>! (D). Since the sequence u,, (x,?), determined
by equality (28) converges to u(x,?) uniformly in D7, then u(x,?) is a solution of equation (27).

Now show that this solution is the only one. Suppose that there are two solutions 9! (x,#) and ¥ (x,¢). Then their
difference Z(x,1) = % (x,t) — ©'(x,) is a solution to the equation

ot )
x,1) = / / Gar (%, &, 7)a(E)Z(E,t — T)dEdT
—I-/ / Ga,i(x / - k(@)Z(&t—1—a)doddr.

Let Z(¢) denote the supremum of the module of the function Z(x,#) for x € (0,/) at each fixed ¢ € (0,T). Then we
have the inequality

2(1) < (M0+M3TMI/ 1)dt, 1 € [0,T).
0

Applying the Gronwall lemma here, we obtain that Z(¢) = 0 for ¢ € [0,T], which means that Z(x,7) = 0 in Dr, i.e.
B®!(x,1) = ©2(x,t) in Dr. Therefore, equation (27) has a unique solution in D7. The lemma is proved.

040004-6

1G'3G°60 ¥20C YoIen €1



CONCLUSION

In this work, the initial-boundary problem for integro-differential diffusion equation was considered. Used the Fourier
method and approximation series methods, to investigate the solvability of the problem. Further, on the basis of the
equivalency of integral equation’s the existence and uniqueness theorem for the classical solution of the considered
problem is proved.
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