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Abstract. This article is concerned with the study of the unique solvability of inverse boundary value problem for integro-
differential heat equation. To study the solvability of the inverse problem, we first reduce the considered problem to an auxiliary
system with trivial data and prove its equivalence (in a certain sense) to the original problem. Then using the Banach fixed point
principle, the existence and uniqueness of a solution to this system is shown.

INTRODUCTION AND FORMULATION OF PROBLEM

Mathematical physics usually studies well-posed problems, that is, the problems that have solutions which are unique
and stable to small changes in the data in suitable functional spaces. Such problems, as a rule, are called direct
problems. In this case, it is assumed that a differential equation is specified, as well as certain initial and boundary
conditions. However, in applications there are interesting problems, where the differential (or integro-differential)
equation is only partially specified, namely, some functions that are part of the differential equation (either in the
right-hand side, integrant in integro-differential equations or the initial and boundary conditions) remain unknown.
The problems, in which these unknowns are to be determined on some information about the solutions of direct
problems for differential equations, are called inverse problems.

Inverse problems are widely used to solve practical problems in many branches of science and engineering. The
study of inverse kernel determination problems for hyperbolic and parabolic integro-differential equations with an
integral term of convolution type is very interesting from both the practical and theoretical viewpoint. Such equations
in the case of a parabolic equation arise in problems of heat propagation in media whose state at a given time instant
depends on their state at all previous time instants.

The inverse problem finding coefficient for parabolic and hyperbolic equations is studied in the works of many
authors; a detailed bibliography can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In last articles are proved that the
problem is locally solvable in time or in the case where the norms of its data are sufficiently small.

In [12, 13, 14, 15, 16, 17, 18] papers are considered inverse problem for a fractional diffusion equation determining
the reaction coefficient depending of the spatial variable and on time. Local existence and global uniqueness, a
stability theorems are proved.

Inverse problems for integro-differential equation of multi and one-dimensional parabolic type are investigated by
many author with initial, initial-boundary, overdetermination conditions (see [19, 20, 21, 22, 23, 24, 25, 26, 27] ). As
a result, is proved the global unique solvability of the inverse problem and obtained a stability estimate of a solution
of the inverse problem.

Inverse problems for integro-differential equation of parabolic type can be found in papers [28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41] and the problems studied in them are close to the problem considered in this article. In
the above papers, the existence and uniqueness theorems were proved for the solution of the problem of finding the
kernel for various overdetermination conditions.

In the present paper, we investigate the inverse problem of the simultaneous determination of two unknowns: the
coefficient a(t) and the heat relaxation function k(t) in the integro-differential heat equation. For this, two simple
observations are given at two different points.
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Consider the problem of determining of functions u(x, t), a(t),k(t), from the following equations:

ut −uxx +a(t)u =
∫ t

0
k(t− τ)u(x,τ)dτ, (x, t) ∈ DT , (1)

u|t=0 = ϕ(x), x ∈ [0,1], (2)
u|x=0 = u|x=1 = 0, ϕ(0) = ϕ(1) = 0, t ∈ [0,T ], (3)

u(x0, t) = h0(t),
∫ 1

0
u(x, t)dx = h1(t), x0 ∈ (0,1), ϕ(x0) = h0(0),

∫ 1

0
ϕ(x)dx = h1(0), (4)

where DT = {(x, t)|x ∈ (0,1), 0 < t ≤ T} , T > 0 is arbitrary fixed number.
In equation (1) on the left side there is a heat conduction operator acting on the function u(x, t), and on the right

side there is a convolution type integral. In fact, if a and the kernel k of the integral are known in equation (1), then the
problem of finding the function u from equation (1), based on conditions (2), (3) is called the direct problem. Note
that direct problem in this case is initial-boundary problem for the equation (1).

Since after finding functions a and k the solution of the direct problem becomes known, it is convenient to call the
solution of the inverse problem (1)-(4) the problem of finding functions u, k, a.

In the inverse problem, it is required to find a and the kernel k of the integral in equation (1) if the additional
conditions (4) are known with respect to the solution of the direct problem. The functions ϕ in condition (2) and the
function hi in (4) are called the data of the direct and inverse problems, respectively. The last conditions in (4) are
matching conditions for given functions.

INVESTIGATION OF DIRECT PROBLEM

Before we proceed to studying the inverse problem, let us show that the direct problem has a unique solution.
Let a(t), k(t) ∈C[0,T ], T > 0 being some number. Then the direct problem (1)-(3) is equivalent to the problem

of determining the function u(x, t) from the equation

Ut −Uxx =
∫ t

0
k0(t,τ)U(x,τ)dτ, (5)

U |t=0 = ϕ(x), (6)
U |x=0 = 0,U |x=1 = 0, (7)

where U(x, t) = e−
∫ t

0 a(τ)dτ u(x, t), k0(t,τ) = k(t− τ)e−
∫ t

τ a(α)dα .
Lemma 1. If ϕ(x)∈C(0,1), k(t)∈C([0,T ]), ϕ(0) = ϕ(1) = 0 then there is the unique classical solution U(x, t)

to the problem (5)-(7) of the class C2,1(DT ).
C2,1(DT ) is the class of twice continuously differentiable with respect to x and once continuously differentiable

with respect to t in the domain DT of functions. In what follows we also use the usual class C(DT ) of continuous in
DT functions.

Proof. Problem (5)-(7) is equivalent to the integral equation

U(x, t) =
∫ 1

0
G(x,ξ , t− τ)ϕ(ξ )dξ +

∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
k0(t,τ)U(ξ ,α)dαdξ dτ, (8)

where

G(x,ξ , t− τ) = 2
∞

∑
n=1

e−(πn)2(t−τ) sin(πnξ )sin(πnx)

is the Green function of the initial-boundary problem for one-dimensional heat equation.
Let us denote the sum of the first one summand on the right-hand side of (8) by Φ(x, t), for this equation, we

consider in the domain DT the sequence of functions

Un(x, t) = Φ(x, t)+
∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
k0(t,τ)Un−1(ξ ,α)dαdξ dτ, n = 1,2, ..., (9)
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where U0(x, t) = 0 for (x, t) ∈ DT . If the conditions of Lemma 1 are fulfilled, we have that Φ(x, t) ∈C2,1 (DT ) [42].
Then, it follows from (8) that all Un(x, t) in DT possess the same property.

Denote Zn(x, t) = Un(x, t)−Un−1(x, t) and Φ0 = ‖Φ‖C(DT ). According to the formula (8), we estimate Zn(x, t) in
the domain DT :

|Z1(x, t)| ≤Φ0,

|Z2(x, t)| ≤
t∫

0

dτ

∫
Rn

G(x−ξ , t− τ)

τ∫
0

|k0(τ,α)| |Z1(ξ ,α)|dαdξ ≤

≤Φ0k0k00
t2

2!
, k0 = max

t∈[0,T ]
|k(t)|, k00 = ea0T ,a0 = max

t∈[0,T ]
|a(t)|,

|Z3(x, t)| ≤
∫ t

0

∫ l

0
G(x,ξ , t− τ)

×
τ∫

0

|k0(τ,α)| |Z2(ξ ,τ−α)|dαdξ dτ ≤Φ0 (k0k00)
2 t4

4!
.

Thus, for arbitrary n = j, we have

∣∣Z j(x, t)
∣∣≤Φ0 (k0k00)

j−1 t2( j−1)

2( j−1)!
.

It follows from the above estimates that the series
∞

∑
n=1

[Un(x, t)−Un−1(x, t)]

converges in DT , and its sum U(x, t) belongs to the functional space C2,1 (DT ) . Since the sequence Un(x, t), determined
by equality (9) converges to U(x, t) uniformly in DT , then U(x, t) is a solution of equation (8).

Now show that this solution is the only one. Suppose that there are two solutions U1(x, t) and U2(x, t). Then their
difference Z(x, t) =U2(x, t)−U1(x, t) is a solution to the equation

Z(x, t) =
t∫

0

l∫
0

G(x,ξ , t− τ)

τ∫
0

k0(τ,α)Z(ξ ,α)dαdξ dτ.

Let Z̃(t) denote the supremum of the module of the function Z(x, t) for x ∈ (0,1) at each fixed t ∈ (0,T ). Then we
have the inequality

Z̃(t)≤ k0k00T
t∫

0

Z̃(τ)dτ, t ∈ [0,T ].

Applying the Gronwall lemma here, we obtain that Z̃(t) = 0 for t ∈ [0,T ], which means that Z(x, t) = 0 in DT , i.e.
U1(x, t) =U2(x, t) in DT . Therefore, equation (8) has a unique solution in DT . The lemma is proved.

AUXILIARY PROBLEM

Suppose that the data of problem (1)-(4) are sufficiently smooth functions. The degree of smoothness for each function
will be determined later.

The following assertation is true:
Lemma 2. Problem (1)–(4) is equivalent to the following auxiliary problem of determining functions u(x, t), k(t),

a(t):

ωt −ωxx +a′(t)ϕ ′′(x)+a′(t)
∫ t

0
ω(x,τ)dτ +a(t)ω(x, t) = k(t)ϕ ′′(x)+

∫ t

0
k(τ)ω(x, t− τ)dτ, (x, t) ∈ DT , (10)
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ω|t=0 = ϕ
(IV )(x)−a(0)ϕ ′(x), x ∈ [0,1], (11)

ω|x=0 = 0,ω|x=1 = 0, t ∈ [0,T ], (12)

ω|x=x0 = h′′0(t)+a′(t)h0(t)+a(t)h′0(t)− k(t)ϕ(x0)−
∫ t

0
k(τ)h′0(t− τ)dτ, t ∈ [0,T ], (13)∫ 1

0
ω(x, t)dx = h′′1(t)+a′(t)h1(t)+a(t)h′1(t)− k(t)h1(0)−

∫ t

0
k(τ)h′1(t− τ)dτ, t ∈ [0,T ], (14)

where ω(x, t) = utxx(x, t),

a(0) =
ϕ ′′(x0)−h′0(0)

ϕ(x0)
, (15)

ϕ(IV ) is the fourth derivative of the function ϕ(x).
Proof. By setting ϑ(x, t) = ut(x, t) and differentiating in t, we reduce (1)-(4) to the problem

ϑt −ϑxx +a′(t)
∫ t

0
ϑ(x,τ)dτ +a′(t)ϕ(x)+a(t)ϑ(x, t) = k(t)ϕ(x)+

∫ t

0
k(τ)ϑ(x, t− τ)dτ, (x, t) ∈ DT , (16)

ϑ |t=0 = ϕ
′′(x)−a(0)ϕ(x), x ∈ [0,1], (17)

ϑ |x=0 = 0,ϑ |x=1 = 0, t ∈ [0,T ], (18)

ϑ(x0, t) = h′0(t),
∫ 1

0
ϑ(x, t) = h′1(t), t ∈ [0,T ]. (19)

From condition (17) and (19), requiring the matching condition at the points (0,x0) we obtain

a(0) =
ϕ ′′(x0)−h′0(0)

ϕ(x0)
=

ϕ ′(1)−ϕ ′(0)−h′1(0)∫ 1
0 ϕ(x)dx

.

Hence it follows that if (u,k,a) is solution of problem (1)-(4), then (16)-(19) has a solution (ϑ ,k,a) with the same k,a
as well. Let us prove the converse. Let (ϑ ,k,a) satisfy relations(16)-(19), then

u(x, t) =
∫ t

0
ϑ(x,τ)dτ +ϕ(x).

Let us show that relation (1) holds. It follows from (16)-(19) that

ut −uxx +a(t)u−
∫ t

0
k(t− τ)u(x,τ)dτ =

= ϑ(x, t)−
∫ t

0
ϑxx(x,τ)dτ−ϕ

′′(x)+a(t)
∫ t

0
ϑ(x,τ)dτ +a(t)ϕ(x)−

−
∫ t

0
k(τ)

∫ t−τ

0
ϑ(x,α)dαdτ−

∫ t

0
k(τ)ϕ(x)dτ =

=
∫ t

0

[
ϑτ(x,τ)−ϑxx(x,τ)+a′(τ)

∫
τ

0
ϑ(x,α)dα +a(τ)ϑ(x,τ)+a′(τ)ϕ(x)− k(τ)ϕ(x)−

−
∫

τ

0
k(x,α)ϑ(x,τ−α)dα

]
dτ = 0.

This completes the proof of the equivalence of problems (1)-(4) and (16)-(19).
Now consider the second auxiliary problem. It is obtained from problem (16)-(19) for the function p(x, t) =ϑx(x, t),
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pt − pxx +a′(t)
∫ t

0
p(x,τ)dτ +a′(t)ϕ ′(x)+a(t)p(x, t) = k(t)ϕ ′(x)+

∫ t

0
k(τ)p(x, t− τ)dτ, (20)

p|t=0 = ϕ
′′′(x)−a(0)ϕ ′(x); (21)

px|x=0 = 0, px|x=1 = 0; (22)

px|x=x0 = h′′0(t)+a′(t)h0(t)+a(t)h′0(t)− k(t)ϕ(x0)−
∫ t

0
k(τ)h′0(t− τ)dτ, (23)∫ 1

0
px(x, t)dx = h′′1(t)+a′(t)h1(t)+a(t)h′1(t)− k(t)h1(0)−

∫ t

0
k(τ)h′1(t− τ)dτ. (24)

The derivation of the equations in the opposite way under the matching conditions

ϕ
(IV )(0)−a(0)ϕ ′′(0) = ϕ

(IV )(1)−a(0)ϕ ′′(1) = 0,

h′′0(0)+a′(0)h0(0)+a(0)h′0(0)− k(0)ϕ(x0) = ϕ
(IV )(x0)−a(0)ϕ ′′(x0),

ϕ
(III)(1)−ϕ

(III)(0)+a(0)(ϕ ′(0)−ϕ
′(1)) = h′′1(0)+a′(0)h1(0)+a(0)h′1(0)− k(0)h1(0),

which follows (21)-(23), can be proved by complete analogy with the previous case.
Therefore, if the problem (16)-(19) has a solution (ϑ ,k,a), then the problem (20)-(23) has a solution (p,k,a) with

the same k,a, moreover, p(x, t) = ϑx(x, t). Conversely, let (p,k,a) satisfy relations (20)-(23).
Hence it follows that

ϑ(x,0) =
∫ x

0
p(y,0)dy =

∫ t

0
(ϕ ′′′(y)−a(0)ϕ ′(y))dy = ϕ

′′(x)−a(0)ϕ(x);

i.e., condition (17) is satisfied. It remains to show that equation (16) holds. It follows from relations (20)-(23) that

ϑt −ϑxx +a′(t)
∫ t

0
ϑ(x,τ)dτ +a′(t)ϕ(x)+a(t)ϑ(x, t)− k(t)ϕ(x)−

∫ t

0
k(τ)ϑ(x, t− τ)dτ =

=
∫ x

0

[
pt(y, t)− pyy(y, t)+a′(t)

∫ t

0
p(y,τ)dτ +a′(t)ϕ ′(y)+a(t)p(y, t)−

−k(t)ϕ ′(y)−
∫ t

0
k(τ)p(y, t− τ)dτ

]
dy+a′(t)ϕ(0)− k(t)ϕ(0) = 0.

We have thereby proved the equivalence of problems (16)-(19) and (20)-(23). In similar way, one can show that
problem (20)-(23) is equivalent to problem (10)-(13) for the function ω = px. This implies the equivalence of problems
(1)-(4) and (10)-(13). The lemma is proved.

FORMULATION OF MAIN RESULT AND ITS PROOF

In this section existence and uniqueness for the problem (10)-(13) is proved using the contraction mapping principle.
The idea is to write the integral equations for unknown functions ω(x, t),k(t),a(t) as a system with a nonlinear
operator, and prove that this operator is a contraction mapping operator for sufficiently small T . The existence and
uniqueness then follow immediately.

From problem (10)-(13), we obtain

ω(x, t) = ω0(x, t)+
∫ t

0

∫ 1

0
G(x,ξ , t− τ)k(τ)ϕ(ξ )dξ dτ−

∫ t

0

∫ 1

0
G(x,ξ , t− τ)a(τ)ω(ξ ,τ)dξ dτ−

−
∫ t

0

∫ 1

0
G(x,ξ , t− τ)a′(τ)ϕ(ξ )dξ dτ−

∫ t

0

∫ 1

0
G(x,ξ , t− τ)a′(τ)

∫
τ

0
ω(ξ ,α)dαdξ dτ +

+
∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
k(α)ω(ξ ,τ−α)dαdξ dτ, (25)
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where

ω0(x, t) =
∫ 1

0
G(x,ξ , t)(ϕ(IV )(ξ )−a(0)ϕ ′(ξ ))dξ .

By setting x = x0 in integral equation (25) and and integrated over x from 0 to 1 in equation (25) by taking into
account condition (13), for the functions k(t),a′(t)), we obtain the integral equations

k(t) =
1
∆

[
h1(t)

(
ω0(x0, t)−h′′0(t)

)
−h0(t)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
+

+
1
∆

∫ t

0

∫ 1

0
h1(t)G(x0,ξ , t− τ)

[
k(τ)ϕ(ξ )−a(τ)ω(ξ ,τ)−a′(τ)ϕ(ξ )−a′(τ)

∫
τ

0
ω(ξ ,τ−α)dα

]
dξ dτ−

− 1
∆

∫ 1

0

∫ t

0

∫ 1

0
h0(t)G(x,ξ , t− τ)

[
k(τ)ϕ(ξ )−a(τ)ω(ξ ,τ)−a′(τ)ϕ(ξ )−a′(τ)

∫
τ

0
ω(ξ ,τ−α)dα

]
dξ dτdx−

−a(t)
∆

(
h1(t)h′0(t)−h0(t)h′1(t)

)
+

1
∆

∫ t

0
k(τ)

(
h1(t)h′0(t− τ)−h0(t)h′1(t− τ)

)
dτ, (26)

where

∆ = h1(0)h0(t)−ϕ(x0)h1(t).

a′(t) =
1
∆

[
h1(0)(ω0(x0, t)−h′′0(t))−ϕ(x0)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
+

+
1
∆

∫ t

0

∫ 1

0
h2(0)G(x0,ξ , t− τ)

[
k(τ)ϕ(ξ )−a(τ)ω(ξ ,τ)−a′(τ)ϕ(ξ )−a′(τ)

∫
τ

0
ω(ξ ,τ−α)dα

]
dξ dτ−

− 1
∆

∫ 1

0

∫ t

0

∫ 1

0
ϕ(x0)G(x,ξ , t− τ)

[
k(τ)ϕ(ξ )−a(τ)ω(ξ ,τ)−a′(τ)ϕ(ξ )−a′(τ)

∫
τ

0
ω(ξ ,τ−α)dα

]
dξ dτdx−

−a(t)
∆

(
h1(0)h′0(t)−ϕ(x0)h′1(t)

)
+

1
∆

∫ t

0
k(τ)

(
h1(0)h′0(t− τ)−ϕ(x0)h′1(t− τ)

)
dτ. (27)

a(t) = a(0)+
∫ t

0
a′(τ)dτ. (28)

Equations (25)-(28) form a complete system of integral equations for the unknown functions ω(x, t),k(t),a′(t),a(t).
We represent this system in the form of the operator equation

ψ = Aψ, (29)

where ψ =(ψ1,ψ2,ψ3,ψ4) :=(ω(x, t),k(t)+a(t)β (t),a′(t)+a(t)γ(t),a(t)),
(

β (t)= 1
∆

(
h1(t)h′0(t)−h0(t)h′1(t)

)
,γ(t)=

1
∆

(
h1(0)h′0(t)−ϕ(x0)h′1(t)

))
is the vector-function and unknown functions are represented by functions ψ1,ψ2,ψ3,ψ4

as follows:

ω(x, t) = ψ1(x, t), k(t) = ψ2(t)−ψ4(t)β (t), a′(t) = ψ3(t)−ψ4(t)γ(t), a(t) = ψ4(t).

A = (A1, A2, A3, A4) is defined by the right sides of equations (25)-(28):

(Aψ)1(x, t) = ω0(x, t)+
∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )dξ dτ−

−
∫ t

0

∫ 1

0
G(x,ξ , t− τ)ψ4(τ)ψ1(ξ ,τ)dξ dτ−

∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ3(τ)−ψ4(τ)γ(τ)

)
ϕ(ξ )dξ dτ−

−
∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ3(τ)−ψ4(τ)γ(τ)

)∫ τ

0
ψ1(ξ ,α)dαdξ dτ +

+
∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0

(
ψ2(α)−ψ4(α)β (α)

)
ψ1(ξ ,τ−α)dαdξ dτ,
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(Aψ)2(t) =
1
∆

[
h1(t)

(
ω0(x0, t)−h′′0(t)

)
−h0(t)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
+

+
1
∆

∫ t

0

∫ 1

0
h1(t)G(x0,ξ , t− τ)

[(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )−ψ4(τ)ψ1(ξ ,τ)−

−
(

ψ3(τ)−ψ4(τ)γ(τ)
)

ϕ(ξ )−
(

ψ3(τ)−ψ4(τ)γ(τ)
)∫ τ

0
ψ1(ξ ,τ−α)dα

]
dξ dτ−

− 1
∆

∫ 1

0

∫ t

0

∫ 1

0
h0(t)G(x,ξ , t− τ)

[(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )−ψ4(τ)ψ1(ξ ,τ)−

−
(

ψ3(τ)−ψ4(τ)γ(τ)
)

ϕ(ξ )−
(

ψ3(τ)−ψ4(τ)γ(τ)
)∫ τ

0
ψ(ξ ,τ−α)dα

]
dξ dτdx+

+
1
∆

∫ t

0

(
ψ2(τ)−ψ4(τ)β (τ)

)(
h1(t)h′0(t− τ)−h0(t)h′1(t− τ)

)
dτ,

(Aψ)3(t) =
1
∆

[
h1(0)(ω0(x0, t)−h′′0(t))−ϕ(x0)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
+

+
1
∆

∫ t

0

∫ 1

0
h2(0)G(x0,ξ , t− τ)

[(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )−ψ4(τ)ψ1(ξ ,τ)−

−
(

ψ3(τ)−ψ4(τ)γ(τ)
)

ϕ(ξ )−
(

ψ3(τ)−ψ4(τ)γ(τ)
)∫ τ

0
ψ1(ξ ,τ−α)dα

]
dξ dτ−

− 1
∆

∫ 1

0

∫ t

0

∫ 1

0
ϕ(x0)G(x,ξ , t− τ)

[(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )−ψ4(τ)ψ1(ξ ,τ)−

−
(

ψ3(τ)−ψ4(τ)γ(τ)
)

ϕ(ξ )−
(

ψ3(τ)−ψ4(τ)γ(τ)
)∫ τ

0
ψ(ξ ,τ−α)dα

]
dξ dτdx−

+
1
∆

∫ t

0

(
ψ2(τ)−ψ4(τ)β (τ)

)(
h1(0)h′0(t− τ)−ϕ(x0)h′1(t− τ)

)
dτ,

(Aψ)4(t) = a(0)+
∫ t

0

(
ψ3(τ)−ψ4(τ)γ(τ)

)
dτ.

Let ψ0 := (ψ01,ψ02,ψ03,ψ04), where

ψ01 = ω0(x, t),ψ02 =
1
∆

[
h1(t)

(
ω0(x0, t)−h′′0(t)

)
−h0(t)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
,

ψ03 =
1
∆

[
h1(0)(ω0(x0, t)−h′′0(t))−ϕ(x0)(

∫ 1

0
ω0(x, t)dx−h′′1(t))

]
,ψ04 = a(0).

Theorem 1. If the conditions ϕ(x) ∈ C4 (0,1) , hi(t) ∈ C2
[
0,T
]
, i = 0,1, ϕ(0) = ϕ(1) = 0, ϕ(x0) =

h0(0),
∫ 1

0 ϕ(x)dx = h1(0) are met, then there exists sufficiently small number T ∗ ∈ (0,T ) that the solution to the
system of integral equations (25)–(28) in the class of functions ω(x, t) ∈C2,1 (DT ) , k(t) ∈C (0,T ] , a(t) ∈C1 (0,T ]
exists is unique. Thus, there is the unique classical solution to the problem (1)-(4).

Proof. Consider the functional space of vector functions ψ ∈C(DT ) with the norm given by the relation

‖ψ‖= max

{
max

(x,t)∈DT

|ψ1(x, t)| , max
t∈[0,T ]

|ψ2(t)| , max
t∈[0,T ]

|ψ3(t)| , max
t∈[0,T ]

|ψ4(t)|
}

=

= max
{
‖ψ1‖,‖ψ2‖,‖ψ3‖,‖ψ4‖

}
.

In this space, by B(ψ0,‖ψ0‖) we denote the ball with center ψ0 and radius ‖ψ0‖, i.e. B(ψ0,‖ψ0‖) = {ψ : ‖ψ−ψ0‖ ≤
‖ψ0‖}. Obviously, ‖ψ‖ ≤ 2‖ψ0‖.
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Let us show that A is a contraction operator in the ball B(ψ0,‖ψ0‖) provided that T is sufficiently small number.
For simplicity, we denote

h0 := max

{
sup

t∈(0;T )
|hi(t)| , sup

t∈(0,T )

∣∣h′i(t)∣∣ , sup
t∈(0,T )

∣∣h′′i (t)∣∣
}
, i = 0,1, β = max

t∈[0,T ]
|β (t)| ,γ = max

(t)∈[0,T ]
|γ(t)|

ϕ0 := max

{
sup

x∈(0,1)
|ϕ(x)| , sup

x∈(0,1)

∣∣ϕ ′(x)∣∣ , sup
x∈(0,1)

∣∣ϕ ′′(x)∣∣} .

Let us verify the first condition of a fixed point argument [43]. Let ψ ∈ B; then ‖ψ‖ ≤ 2‖ψ0‖. In addition, for
(x, t) ∈ DT , we have estimates

‖(Aψ)1−ψ01‖= sup
(x,t)∈DT

|(Aψ)1−ψ01| ≤

≤ sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ2(τ)−ψ4(τ)β (τ)

)
ϕ(ξ )dξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)ψ4(τ)ψ1(ξ ,τ)dξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ3(τ)−ψ4(τ)γ(τ)

)
ϕ(ξ )dξ dτ

∣∣∣∣+
sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
ψ3(τ)−ψ4(τ)γ(τ)

)∫ τ

0
ψ1(ξ ,α)dαdξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0

(
ψ2(α)−ψ4(α)β (α)

)
ψ1(ξ ,τ−α)dαdξ dτ

∣∣∣∣≤
≤ 2T‖ψ0‖ [(2+β + γ)ϕ0 +‖ψ0‖(1+2T +T β +T γ)] .

‖(Aψ)2−ψ02‖= sup
t∈(0,T )

|((Aψ)2−ψ02)| ≤

≤ 4T h0‖ψ0‖
∆

(ϕ0(2+β + γ)+‖ψ0‖(1+2T +T γ +T β )+h0(1+β )) ;

‖(Aψ)3−ψ03‖= sup
t∈(0,T )

|((Aψ)3−ψ03)| ≤

≤ 4T ϕ0‖ψ0‖
∆

(ϕ0(2+β + γ)+‖ψ0‖(1+2T +T γ +T β )+h0(1+β )) ;

‖(Aψ)4−ψ04‖= sup
t∈(0,T )

|((Aψ)4−ψ04)| ≤ 2‖ψ0‖T (1+ γ).

Denote T1 = min{T11,T12,T13,T14} , where T1i, i = 1,4 are the positive roots of the following equations, respectively

2T
[
(2+β + γ)ϕ0 +‖ψ0‖(1+2T +T β +T γ)

]
= 1,

4T h0

∆

(
ϕ0(2+β + γ)+‖ψ0‖(1+2T +T γ +T β )+h0(1+β )

)
= 1,

4T ϕ0

∆

(
ϕ0(2+β + γ)+‖ψ0‖(1+2T +T γ +T β )+h0(1+β )

)
= 1,

2T (1+ γ) = 1.

If we choose T so that T < T1, then Aψ ∈ B(ψ0,‖ψ0‖).
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We now check the second condition of a fixed point argument

‖(Aψ
1−Aψ

2)1‖ ≤ sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
[ψ1

2 (τ)−ψ
2
2 (τ)]− [ψ1

4 (τ)−ψ
2
4 (τ)]β (τ)

)
ϕ(ξ )dξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)[ψ1

4 (τ)ψ
1
1 (ξ ,τ)−ψ

2
4 (τ)ψ

2
1 (ξ ,τ)]dξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

(
[ψ1

3 (τ)−ψ
2
3 (τ)]− [ψ1

4 (τ)−ψ
2
4 (τ)]γ(τ)

)
ϕ(ξ )dξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
[ψ1

1 (ξ ,α)ψ1
3 (τ)−ψ

2
1 (ξ ,α)ψ2

3 (τ)]dαdξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
[ψ1

1 (ξ ,α)ψ1
4 (τ)−ψ

2
1 (ξ ,α)ψ2

4 (τ)]γ(τ)dαdξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
[ψ1

1 (ξ ,τ−α)ψ1
2 (α)−ψ

2
1 (ξ ,τ−α)ψ2

2 (α)]dαdξ dτ

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ 1

0
G(x,ξ , t− τ)

∫
τ

0
[ψ1

1 (ξ ,τ−α)ψ1
4 (α)−ψ

2
1 (ξ ,τ−α)ψ2

4 (α)]β (α)
)

dαdξ dτ

∣∣∣∣ .
The integrand in the second integral can be estimated as follows:∥∥ψ

1
4 ψ

1
1 −ψ

2
4 ψ

2
1
∥∥= ∥∥(ψ1

4 −ψ
2
4 )ψ

1
1 +ψ

2
4 (ψ

1
1 −ψ

2
1
∥∥≤

≤ 2
∥∥ψ

1−ψ
2∥∥max

(∥∥ψ
1
1
∥∥ ,∥∥ψ

2
4
∥∥)≤ 4‖ψ0‖

∥∥ψ
1−ψ

2∥∥ .
Therefore,

‖(Aψ
1−Aψ

2)1‖ ≤ ‖ψ1−ψ
2‖
(
2‖ψ0‖(2+β + γ)T 2 +((2+β + γ)ϕ0 +4‖ψ0‖)T

)
;

The next components can be estimated in a similar way,

‖(Aψ
1−Aψ

2)2‖ ≤
2h0

∆

(
((2+β + γ)ϕ0 +h0(1+β )+4‖ψ0‖)T +2‖ψ0‖(2+β + γ)T 2)‖ψ1−ψ

2‖;

‖(Aψ
1−Aψ

2)3‖ ≤
2ϕ0

∆

(
((2+β + γ)ϕ0 +h0(1+β )+4‖ψ0‖)T +2‖ψ0‖(2+β + γ)T 2)‖ψ1−ψ

2‖;

‖(Aψ
1−Aψ

2)4‖ ≤ (1+ γ)T‖ψ1−ψ
2‖.

Denote T2 = (T21,T22,T23,T24); where T2i, i = 1,4 are the positive roots of the following equations, respectively

2‖ψ0‖
(

2+β + γ

)
T 2 +

(
(2+β + γ)ϕ0 +4‖ψ0‖

)
T = 1,

2h0

∆

(
((2+β + γ)ϕ0 +h0(1+β )+4‖ψ0‖)T +2‖ψ0‖(2+β + γ)T 2

)
= 1,

2ϕ0

∆

((
(2+β + γ)ϕ0 +h0(1+β )+4‖ψ0‖

)
T +2‖ψ0‖(2+β + γ)T 2

)
= 1,(

1+ γ

)
T = 1.

Therefore, if the number T ∗ is small enough to ensure that condition T ∗ ∈ (0,min(T1,T2)) is satisfied, then A is
contraction operator on B. Then, by the Banach principle, integral equations (25)-(28) has a unique solution in B.
Theorem is proved.

If we put the coefficient a(t) and the kernel k(t) to the problem (1), get the direct problem (1) - (3). In this case, the
function u(x, t) is defined as uniquely.

CONCLUSION

In this work, inverse problem was considered for determining the coefficient a(t) and the kernel k(t) included in the
equation (1) with by using overdetermination conditions (4) of the solution of problem with the initial and boundary
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conditions (2), (3). Sufficiently conditions are obtained for given functions, under which the inverse problem have
unique solutions for small interval.
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