DE GRUYTER Nonautonomous Dynamical Systems 2023; 10: 20220163

Research Article

Durdimurod Kalandarovich Durdiev* and Jonibek Jamolovich Jumaev

One-dimensional inverse problems of
determining the kernel of the integro-
differential heat equation in a bounded
domain

https://doi.org/10.1515/msds-2022-0163
received April 23, 2021; accepted February 16, 2023

Abstract: The integro-differential equation of heat conduction with the time-convolution integral on the
right side is considered. The direct problem is the initial-boundary problem for this integro-differential
equation. Two inverse problems are studied for this direct problem consisting in determining a kernel of the
integral member on two given additional conditions with respect to the solution of the direct problems,
respectively. The problems are replaced with the equivalent system of the integral equations with respect to
unknown functions and on the basis of contractive mapping the unique solvability inverse problem.
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1 Introduction: setting up the problems

Problems of determining coefficients, right sides, or other physical parameters in differential equations and
partial differential equations (PDEs) equations, given additional “experimental” information about their
solutions, arise quite often in various applications. These problems are inverse to the “direct” ones where a
differential equation and initial and boundary data are given [1]. Inverse problems for parabolic and
hyperbolic PDEs arise naturally in geophysics, oil prospecting, in the design of optical devices, and in
many other areas where the interior of an object is to be imaged by measuring field in available domains.
Problems of identification of memory kernels in such equations have been intensively studied starting at
the end of the last century (see [2-6]). Nowadays, the study of inverse problems for parabolic integro-
differential equations is the subject of many studies, of which we mention previous works [7-12] as being
closest to the topic of this work. We consider the initial-boundary problem of determining a function
u(x, t), x € (0,1),t € (0, T) from the following equations:

t
U — QPUyy = Ik(r)u(x, t— 1)t + h(x,t), xe (0,0, 0<t<T; 1)
0

ult:0 = (p(X)! X € [07 l]; (2)
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Ulx=o = Uy(),  Uly=; = (), 0<t<T, ¢(0)=u(0), () = u,(0), 3)

where a is a positive constant, and | and T are arbitrary positive numbers. When k(t), h(x, t), ¢(x), u,(t),
and p,(t) are given functions, this problem is called as a direct problem.

In the inverse problem, it is assumed that the kernel k(t), t > O of the integral term in (1) is unknown
and it is required to determine it using additional information about the solution of the direct problem:

l

Iu(x, Hdx = f(t), te(0,T) )
0
or
u(xo, t) = f(t), xo¢€ (0,0, te(0,T). (5)

In this case, p(x), x € [0, 1], u,(t), p,(£), t € (0, T) are assumed to be given functions. In the sequel, we will
call the problem of determining functions u(x, t), k(t), x € (0,1),t € (0, T) from equations (1)-(4) as
Inverse problem 1 and the problem of determining functions u(x, t), k(t), x € (0, I), t > O from equations
(1)-(3), (5) as Inverse problem 2.

For simplicity, we denote by J the function u,, i.e., u; = 9. We differentiate the equalities equation (1)
with respect to t, and using condition (2), we obtain

t
9 — a8y = k()p(x) + jk(r)S(x, t - )dr + h(x, £). ©)
0

The initial condition for 9 will be obtained by setting t = 0 in equality (1) and using equality (2):
=0 = a’¢p" (x). (7
To obtain the boundary conditions for 9(-,t) the equation differentiates equality (3) with respect to t:
o = H(1), et = ML), O < t < T, a%p"(0) = /(0), 22" (D) = u}(0). (8)

By differentiating the additional conditions (4) and (5) with respect to t, we obtain these conditions with
respect to the function 9 for inverse problem 1:

1
j 9(x, H)dx = f'(), t € (0, T) )
0

and for inverse problem 2:
S(XO’ t) = f’(t)) te (0) T)' (10)

We replace the initial-boundary problems (6)—(8) with the equivalent Volterra integral equation. To do
this, from equations (6) to (8), we derive for 9(x, t) the equation [see [13, pp. 180-219]]:
1 T
906, 1) = Pix, ) + j IG(X, £t - 0| k@) + Ik(a)@(.{, 7 — ada |dedr, (1)
00 0
where

¢l
Yx, t) = I G(x, &, t — T)h (&, T)dédT
00

t
2 ELC ’ 5 ’
200 [ g - orgonel ) e 1) sin 2
0

M8

I
+ gI(p()() sin P xdx +
=l l

0
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and

[ee] 2
Gx, &, t-1) = %Zé(#) Qq)sin@f sin?x
n=1

is the Green function of the initial-boundary problem for one-dimensional heat equation.
Now we write two properties of Green function (see [13, pp. 200-221]), which will be needed in the
future.

Remark 1. The integral of the Green function does not exceed 1:

1
IG(X, £,0dE<1,x € 0,1, t € (0, T].
0

Remark 2. The function G(x, &, t) is infinitely continuously differentiable with respect to x, &, t and

Ge(x, &, t)isbounded for0 < x <, 0 < é<,0<t<T,ie,
2
|Gt(x’ 5’ t- T)l < 7'

2 Direct problem

Lemma 1. Let
(p(x), @'(x), ¢"(x)) € C(0, D), (h(x, t), he(x, t)) € C(Dyr),
(), 1) (), (1), py (1) € C(0, T), k(t) € C(O, T),

and the matching conditions in (3) and (8) are met. Then there is the unique classical solution 9(x, t) to
problems (6)—(8) of the class C>\(Dyr), which is twice continuously differentiable with respect to x and once
continuously differentiable with respect to t in the domain D,y functions, Dir = {0 < x < 1,0 <t < T}.

We also use the usual class C(D;r) of continuous in D;r functions.
To prove Lemma 1, we rewrite equation (11) in the form

t 1 1
90k, £) = j jc(x, £t - Dh(&, T)dEdr + Y %jqo(x)sin%xdx
00 n=1f © %

2
nman nan

t 2
+ 273# j(yl'(r) - (—1)"y2'(r))e(7) Tdr e(T) tsin%x (12)
0

t 1 t 1 T
N IIG(X, £, t - DDpE)dEdr + j Gx, £, t - T)Ik(a)ﬂ(.{, T - a)dadédr,
00 00 0

and denoting the sum of the first three summands on the right-hand side of (12) by ®(x, t), for this equation,
we consider in the domain D;r the sequence of functions

t 1l T
94, £) = D(x, £) + j IG(X, £t T)jk(a).f)n,l(.f, 7 - wydadédr, n=1,2,.., (13)
00 (0]

where 9y(x, t) = 0 for (x, t) € Dyr. If the conditions of Lemma 11 are fulfilled, we have that ®(x, t) € C>1(Dr).
(see [14, pp. 39-44]) Then, it follows from (13) that all 9,(x, t) in D;r possess the same property.
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Denote Zy(x, t) = (X, t) — Ir-1(x, t) and Dg = ||D|ic(p,- According to formula (13), we estimate Z,(x, t)
in the domain Djr:

|Z1(x, t)] < Do,
t 1 T ,
\Zo(x, £)] < I jG(x, £t T)I|k(a)||zl(§, 7 - @)|dadédr < cpok(,%,
00 0 '

ko = max |k(t)],
te[0,T]

t 1 T

4
1Z50x, )] < I jG(x, £t - T)Ilk(a)l|Zz({, 7 - @)|dadédr < CDOkS%.
00 0

Thus, for arbitrary n = k, we have
£20k-1)
Zi(x, t)| < Dokl ——.
|Zk(x, t)| < Dok 21!
It follows from the aforementioned estimates that the series
3 18X, £) = Sps(x, O]
n=1
converges in Djr, and its sum u(x, t) belongs to the functional space C>'(Dr). Since the sequence 9,(x, t)
determined by equality (13) converges to 9(x, t) uniformly in D;r, then 9(x, t) is a solution of equation (11).

Now show that this solution is the only one. Suppose that there are two solutions 9'(x, t) and 9(x, t).
Then their difference Z(x, t) = 9%(x, t) — 9!(x, t) is a solution to the equation

t 1 T
206, 1) = ”G(x, £t-1) f K@)Z(E, a)dadgdr.
00 0

Let Z(t) denote the supremum of the module of the function Z(x, t) for x € (0, I) at each fixed t € (0, T).
Then we have the inequality

t
) < kJIZ(T)dT, te[o, T].
(0]

Applying the Gronwall lemma here, we obtain that Z(t) = 0 for ¢ € [0, T], which means that Z(x, t) = 0 in
Dr,i.e., 9(x, t) = 9%(x, t) in D;r. Therefore, equation (11) has a unique solution in D;r. The lemma is proved.

3 Inverse problem 1

Using the additional condition for inverse problem 1, from (11) we have

1 1 1 1
FE) = jzp(x, fdx + I IG(X, £, t - D(D)pE)dEdrdx + I
0 0 0 0

O"N
o'-—.‘n
O C— ~

G(x, &, t - T)Ik(a)l?({, 7 - a)dadédrdx.
0

Differentiating this equality with respect to t, we arrive at equation:



DE GRUYTER One-dimensional inverse problems = 5

It l

£t = jw[(x t)dxj j 6x, £, OkOp@)gdx + [ ko) [Gix, &, ¢ - Dyp(dzdrax

0 00 00 0
T 11

* jij(" St - T>Ik(a)9(~f 7 - a)dadddrdx + ”G(x £, O)Ik(a)B(E t — a)dadédx.
000

00

Since G(x, &, 0) = 6(x — &), where §(-) is the Dirac’s delta function, and taking into account the following
relations:

1 1 t t
jg@,f)a(x - £)d¢ = g(x), jG<x, £, 0>jk(a>8<f, t - a)dads = j k(@)9(x, t - a)da,
0 0 0 0

we rewrite the last equation in the form

lt

£1(8) = I¢t(x £)dx + k(t)j(p(x)dx " ”k(r)jet(x £, t - Dp(E)dedrdx

0 I I 0 00 I (14)
t T t
+ j I j G, &, t - r)_[k(a)B(.f 7 - a)dadédrdx + j Ik(a)s(x t - adadx.
000 00

In what follows, we denote
- I(p(X)dX.

Next we write equality (14) as the integral equation of the second order with respect to unknown
function k(t)

k() = —
%

I
0
We represent the system of equations (11) and (15) in the form

Ag = g, (16)

where g = (g, &) = (9(x, t), k(t)) is the vector function and A = (4;, 4,) is defined by the right sides of
equations (11) and (15):

1t 1
F0) - flpt(x odx - [ ko [ Gx g ¢ - Dpoagarax
0 0 (15)

O ey ~

0
1t T

k(a)9(x, t — a)dadx - G(x, &, t — 1) | k(@)I9(¢, T — a)dadédrdx |.
[[Joeseo] |

Ag = g6, ) + j j G0x,§.t - r)[gz(ryp(m [a@s. - a)da}dfdf a7)

00

1t 1 1t
g = 8(t) - i[ [ [em |6 gt~ np@rasaras - [ [es@pon ¢ - axdadx
(p() 00 0 00 (18)

_ jijt(x, &t - T)jgz(a)gl(f, T-— a)dad{d‘rdx].
000 0

The following notations were introduced in equalities (17) and (18):
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1
8o(X, 1) = (8u(x, 1), 80x(1)) = | Y(x, 1), (’% f'® - _[llit(x, t)dx
0 0

Theorem 1. Suppose f(t) € C’[0, T], ¢, # O and the conditions of Lemma 1 are fulfilled. Then the operator
equation (16) has a unique solution in domain Dyr for arbitrary fixedl > 0 and T > O.

To prove Theorem 1, we define for the unknown vector function g(x, t) € C(D;r) the following weight
norm:

lIgls = maX{ sup |g(x, )e |, sup [g,(x, t)e““l} = max{lglly, lglo}, o= 0.
(x,t)e Dr te[0,T]

At 0 = 0, this norm coincides with the usual norm

lgl = maX{ sup |g(x,t)l, sup Igz(t)l}.

(x,t)e Dr te[0,T]

The number ¢ > 0 will be chosen later. Denote by B(g,, p) the ball of vector functions g with center at the

point g, and radius p > 0, i.e., B(g,, p) = {g : g — &lls < p}. The number p > 0 will also be chosen later.
Obviously, lgll < p + lg,l for g(x, t) € B(g,, p). We prove that the operator A is contracting in the

Banach space B(g,, p) if the numbers ¢ and p will be chosen in suitable way. Remind that operator A is

contractive if the following two conditions are met (see [15, pp. 87-97]):

(1) If g(x, t) € B(gy, p), then Ag € B(g,, p);

(2) If g', g2 are arbitrary two elements of B(g,, p), then the inequality |Ag! — Ag?|, < ulg* - g2l is valid
with u € (0, 1).

Note that the weight norm |- |, is equivalent to the usual norm ||-|:

I-le < 1I-Il < €Tll-l, o= 0. (19)

The convolution operator is commutative and invariant with respect to multiplication by e~%:
t t
(= 1o)(O) = [ (e = 9os)ds = [t = 5)ds = (hy » hXO), 0)
0 0

e %(hy * hy)(t) = (e™'hy(t)) * (e~ hy(t)). (21)
The last formula implies the estimation
Ihy * halle < llhallglIhalls T (22)

Moreover, since

t t

Ie“’sds = Ie“’“‘”ds < % 0=0, (23)
0 0
we have
um*mmSéwmmmS%Mmmm 620 (24)

using (19) and the results of [12].
First, we check the first condition of contractive mapping. For simplicity, we denote ¢, = maxy¢(o,;|@(x)|.
Let g(x, t) be an element of B(g,, p), i.e., g € B(gy, p). Then for (x, t) € D;r we have
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lAig - goillo = sup [(Aig - go)e |
(x,t)eDyr

t 1
- sup e | [ [ 60 gt~ D mp@)agdr + j jG(x,s t—r)jgz(a)gl(s 7 - a)dadgdr
00

(x,t)eDir
00

t 1
< sup | [ 6t ¢ - Dgmep@et-Dagar
(x,t)eDyr
00
t
+ sup _[ ) _[ Gx, &, t - T)Igz(a)e‘gagl(f, T - @) Odadfdr
(x,t)eDyr o
+ gl
< 1D, 1 o+ 1D

If we choose o as

_ P
(P + 8+ (p+ lgT)’

then |Aig — gy lls < p, i.e., the first condition of contractive mapping for 4 is satisfied.
Now we carry out the estimations for A;:

1428 — 8ollo = sup [(Az8 - gpy)e™|
te(0,T)

t l 1t

1
— _— p-ot _ —
_zilépn %e _(U z(T)IGt(X &, t - T)p(§)dsdrdx + I_[gz(a)gl(x t — a)dadx

0 00
T

It 1
v [ Jon gt~ e 7 - wdadgdrax
000 0
gy(T)e-oTe-ot-0 j Gi(x, &, t - T)p(¥)dgdrdx
g(a)e %g (x, t — w)e *-Ddadx

1
+ sup —

et fGt(x, £t~ T>Ig2<a>e*wgl(f, 7 - e Vdadfdrdx .
te(0,T) Po

t

0

l

|
+ sup —
te(0,T) Po

0

1

0

O e O C—

Denoting each summand in last formula by I, i = 1, 2, 3, we estimate them. For the expression I; we
obtain

gy(T)e-TeotD jaxx, £,t - p(E)dédrdx

0

o%~

I
L= sup — I
te(0,7) Po o

t 11
< —||g2||a sup je ot-") j IGt(x, £, t - T)d€drdx
te(0,T) o 0 %0

_2Aep + 118l 1
- Po o

Using relations (19)—(24), we estimate L, as follows:
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It
h=sup — | [ [e@gx t - e rdads
te(0,T) Po 0
I
= sup 1 I(gz x g)(t)e %tdx
te(0,T) Po p
I
1
= (’T S(UI;) I{[(gz - goz) * (gl - g01)](t) + (gz * g01)(t) + (g1 * goz)(t) - Cgoz * g01)(t)}eiatdx
0te(O,
0

1
1 1 1 1
< (ngz - Zallol8: - Sulo T+ 1l + 1ol + g0l ||g02||)dx

l 2 1
< _(pZT + —(p + ||g0||)"g0|| + _||g0”2)
Po o g

Conducting the similar estimates alike as for the case I; we have for L

1t
L= sup + II et [Gx, £, t - T)ng(a)e oug (&, 7 - a)e-oT-Odadédrdx
te(0,T) (po
_ AT + lgol)® 1

) Ict(x, £, t - )dédrdx .
®o o

/
|

1
< Lglolgls sup j
(po te(0,T) o

Accordingly, we obtain

148 - 8ulle<h+L+ 5
_App g1 pAT 2 + gl 1 UolP 1| AT + gl 1 (25)
- ®, o, ®, o @, 0 ®, o

Now we can choose p, o such that there hold the inequalities:

2
plT<1

Po 3
lligol? < 1

3 ’

P03
2(p + I18ID(; + lIgoll + T(p + lIg,lD) < lp
3P

Po0

It follows that if

Po _

p < 3T P>
|\g,|I* T
ng 70 <0,
@

18TI2( o, @,
B, = p ( 37‘31 + Ilgoll)(qJ1 + gl + T(ﬁ + Ilgoll))

then Ag € B(g,, p).
So, if the inequality

0 > 0, = max{f;, B,} (26)
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and p € (0, p,) hold, then the operator A, maps B(g,, p) into itself, i.e., A,g € B(gy, p).

As a result, we conclude that if o, p satisfy the conditions ¢ > max{oy, 03}, p € (0, p,), then operator A
maps B(g,, p) into itself, i.e., Ag € B(g,, p).

Second, we check the second condition of contractive mapping. In accordance with (17) for the first
component of operator A we obtain

I(Ag! — Agily < sup G(x, &, t — 1)[gy(1) - gH(D)]p(&)dédre

(x,t)eDir

o(—\a

T

G(X,E,t—T)XJ g€, 7 - a) - gAgl(¢, T — a)ldad&dre™|.

0

+ sup
(x,t)eDir

|
|

o_‘N

Here the integrand in the last integral can be estimated as follows:

”gzl gzgl ”0 = ”(gz 2)g1 + 8 (gl g12)||0
<2lg" - &%llo max(lig; o g5 o)
< 2lIgoll + p)lig* ~ &%llo-

Therefore,
1
I(Ag" - Ag™lls < E((pl +2(0 + lgohDlg" - g°llo-

It is obvious that if we choose 0 as o > 05 = ¢, + 2(p + lIgoI)T, then[|(Ag! — Ag?)ill, < % gt - g2lly, i.e., the
second condition of contractive mapping for 4, is satisfied.
The second component of A can be estimated in the following form:

1
I(Ag' - Ag?allo = sup — I
te(0,T) Po o

g} - g2I(1) I Gx, &, t — T)p(E)dEdrdxet
0

+ sup—

te(0,T) Po te(0,T) Po

O C— ~ O%N»

t !
I Jglleotdadx | + sup — I
0 0

O%N

1 T
IGt(X’ f’ t- T)J-[gzlgll
0 0

- g2gtle"tdadédrdx |.

We denote the summands in this equality by Ji, 5, 5, respectively, and carry out the estimates for them
separately. The estimate for J; has the form

It l
12l
h= sup | [ [ig] - glime e 70 [ G . - Dp@agarax | < A
00

Ig! - g%l.
te(0,T) Po o

Taking into account the relation
g *8 -8 gl =(8 -8) * (g -8+ (& —8) * (g —8n) + 8 * (& — &)+ 8 * (& -8

estimate J, and J; as follows:
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1t
1
]2: sup — If[gzgl gzgl e 'dadx
te(0,T) Po %
1
1
= sup — I[gz1 * gl — g * gfledx
te(0,T) Po .

l
<—[lig} - & lolg; — SolloeT + llg; — &7llo 17 ~ 8oallo T + lIgoullollg — & llo + lgoallollgy — &7llo]
()

2l 1
s—ﬁﬂ+4%m@—§m
(p (02

0

1t 1 T
1
B=sup | [ [ [Gn g - [ sl - edel + (6 - gDgdedadgarax
te(0,T) Po 0 0 5
1t T
< sup 1 J‘J‘e*"(”) fGt(x, &t - ‘r)J‘(gz1 - g)e %gle o dad&drdx
te(0,T) Po 0
1t
+ sup 1 Ije olt- T)IGt(x &t - ‘r)j(g1 oage~0(T-Adadé drdx
te(0,T) Po 0

1 4(p + |lg,IDIT
g_l&—@lwé—ym
o Do

Summing the obtained estimates for J;, i = 1, 2, 3, we have

2 T
P + 8o + (p +(£go”) )Ilgl

g o

2
I(Ag" — Ag*)alle <h + ] + )5 < ;(PT +

0

_g2||a-

Now we choose numbers g, p so that the expression at||g' — g2||, becomes less than 1, i.e., the inequality

2 T
Ao, pr 10l 20 lsb)
P\ O o g

is fulfilled. This inequality is valid if numbers o, p will be chosen from conditions

2pTl 1
¢ 3
21 1
1 E((Pl + gyl < —,
4IT
—(p +lgl) < =
Po0

Solving these inequalities with respect to g, p we obtain

Po _
P=tm =P

6l
Joy=—(¢, + 1D < o,
Do

20, + 12IT
. Do llgoll <o
Do

From these estimates, it is clear that if 0 and p are chosen from condition o > g, and p < (0, p,), then the
operator A, satisfies the second condition of contracting mapping.
As a result, we conclude that if ¢ and p are taken from conditions
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o> maX(Ul, 03, 03, Oy, 05)

and p € (0, min(p,, p,)) = (0, p,), then the operator A carries out contracting mapping the ball B(g,, p) into
itself and according to the Banach theorem in this ball it has a unique fixed point, i.e., there exists a unique
solution of operator equation (16). Hence, Theorem 1 is proved.

4 Inverse problem 2

In Section 1, Inverse problem 2 was reduced to the problem of determining the kernel k(t), ¢ ¢ (0, T)
from equations (6)—(8) and (10). To obtain the integral equation for k(t) in this case we use equation (11) for
solution direct problem and additional condition (10). As a result, we have

1 t
" 1
ko= )(f O~ 900,00~ o !G(xO, £,0) ! k@9, ¢ - a)dadé

7)

t 1 T

(p(x ” Ge(xo, &, t - r)fk(a)&(g, T - a)dadédr.
0

00 0

We represent the system of equations (11) and (27) in the form of operator equation
Ag =g, (28)

where g = (g;, 8) = (9(x, t), k(t)) is the vector function, and A = (4, 4,) are defined by the right parts of
equations (11) and (27).

Theorem 2. Suppose f(t) € CY0, T], p(xo) # 0 and the conditions of Lemma 1 are fulfilled. Then the operator
equation (28) has a unique solution in domain Dy for arbitrary fixedl > 0 and T > O.

Proof. We introduce the vector function by formula

8o, t) = (801> 8o) (X, 1) = (IIJ(X t), ﬁ(f"(t) - (%, t)))-

Then, in accordance with equalities (11) and (27), the components of operator A will have the form:

Ag =Y, B) + f jc(x £t -1 e + jgz(a)glof r - ayda |dédr,

00

Ag, = (50 - P (%o, 1)) -

t
o ¢, o>jgz<a>g1(.f, t - aydadg

(29)

t 1

- j Gu(xo, &, t - T)Igz(a)gl £, 7 - a)dadédr.
0

00

The conditions of contractive mapping for operator A; were received in the previous section. Here, it is shown
that A, has the property of a contraction mapping operator. Let g(x, t) € B(Dr). Then, it is easy to see that

IAsg - goolle < SUD —— jG(XO,s 0>jg2(a)gl(e t - e dads
te(0,T) P,

t 1

(p(x ) I I Gixo, 5, € - T)fgz(a)gl(f T - Qe dad{dr | = P, + Py
0

00



12 —— Durdimurod Kalandarovich Durdiev and Jonibek Jamolovich Jumaev DE GRUYTER

P = sup

G ’ 0 * t Utd <
te(0,1) ‘P(Xo) I (X0, §, 0)(8, * gP()e"d¢ | <

1 2 1
—(pzT + 200 + g Dlgl + —||go||2);
(02 02

0

t 1 -
- - et 2T + lIsoll?”
(P(Xo) .([IGt(XO, &t T)_[gz(a)gl(& T — @)e%dadédr | < ot
0 0
- 2 Ty, 200+ ISl
1428 = Slo = oS 07T + (o + IgoDlall + o) + = 7
p ‘Pg);?) -
6T p(xo) (x0)
(PZ(XO)( 3T + ||go||)(||go|| + T( 3T + ||g0||) <o, (30)
_ Mgl
®*(xo)

It follows that if 0 > max(6,, 6,) = B, p < K3, then A,g € B(g,, p).
So, if the inequality 0 > 0y = max(f,, ;) holds, then the operator A maps A,g € B(g,, p) into itself.
Consider next the property of contraction mapping operator for A. Then we have

1
I(Ag! - AgPhlls < ;((pl +20p + lIgoDlIg? - g%llo-

The second component Ag can be estimated in the analogous way:

2T 2ol 4T(P+||go"))”1 2
o) 0p(xo) P(x0)0 ”

I(Ag' — Ag?)alls < (

If T > 0O satisfies condition (26),

X
p < gDéTO) = Ky
0; 6llgll <o,
»(xo)
1o, - 2000 + 6Tlgoh) _ - 31)
o(xo)
05 =2¢, < 0,
2
0 = 5<p(Xo) + 4|8l T < a.

From these estimates it is clear that if g, p are chosen from condition ¢ > 0, = max(6s, 6y, 6s, 65), p < K4,
then the operator A in the set B(g,, p) is a contraction map. According to the principle of contracting
operators, therefore, if o, p are taken from condition o > max(ay, 02), p < min(xs, k), then the operator
A in the set B(g,, p) has a unique fixed point. Hence, the theorem is proved. O
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