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Abstract. In this paper, we consider inverse problem of determining u(x, t) and k(t) functions in
the one-dimensional integro-differential heat equation with the initial- periodic boundary and overde-
termination conditions. The unique solvability of the direct problem are proved. To investigate the
solvability of the inverse problem, we first consider an auxiliary inverse boundary value problem, which
is equivalent to the original one. Existence and uniqueness of the solution of the equivalent problem
is proved using a contraction mapping. Finally, using the equivalency, the existence and uniqueness
of classical solution is obtained.
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1. Introduction

Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen
for approximating a large (infinite) system by using a small part called a unit cell. PBCs are often
used in computer simulations and mathematical models. The topology of two-dimensional PBC is
equal to that of a world map of some video games; the geometry of the unit cell satisfies perfect
two-dimensional tiling, and when an object passes through one side of the unit cell, it re-appears on
the opposite side with the same velocity (see [21]).

The periodic boundary conditions arise from many important applications in heat transfer, life
sciences [20, 1, 15, 16].

In the papers [20, 1, 15, 16], it was prove the existence, the uniqueness and the continuous de-
pendence on the data of the solution and the numerical solution of diffusion problem with periodic
boundary conditions.

The paper [17] investigated the inverse problem of finding a time-dependent diffusion coefficient in
a parabolic equation with the periodic boundary and integral overdetermination conditions. Under
some assumption on the data, the existence, uniqueness, and continuous dependence on the data of
the solution were shown by using the generalized Fourier method.

The problem of determining the kernel k(t) of the integral term in an integro-differential heat
equation were studied in many publications [3]-[10], in which both one- and multidimensional in-
verse problems with classical initial, initial-boundary conditions were investigated. The existence and
uniqueness theorems of inverse problem solutions were proved.

In the present work, one-dimensional integro-differential heat equation is used with periodic bound-
ary condition for the determination of kernel. The existence and uniqueness of the classical solution
of the problem (2.1)-(2.4) is reduced to fixed point principles by applying the Fourier method.

2. Formulation of problem

We consider the initial-periodic boundary problem for the heat equation with a convolution-type
integral term on the right-hand side

ut − uxx =

∫ t

0

k(t− τ)u(x, τ)dτ, (x, t) ∈ DT , (2.1)

u(x, 0) = ϕ(x), (2.2)

u(0, t) = u(1, t), ux(0, t) = ux(1, t), ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1), (2.3)

T is arbitrary positive number and DT := {(x, t) : 0 < x < 1, 0 < t ≤ T}).
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The problem of determining a function u(x, t), (x, t) ∈ DT , that satisfies (2.1)-(2.3) with known
functions k(t) and ϕ(x) will be called the direct problem.

In the inverse problem, it is required to determine the kernel k(t), t > 0, of the integral in (2.1)
using overdetermination condition about the solution of the direct problem (2.1)-(2.3):∫ 1

0

ω(x)u(x, t)dx = h(t), x ∈ (0, 1), (2.4)

where ω(x), h(t) are given functions. In heat propagation in a thin rod in which the law of variation
h(t) of the total quantity of heat in the rod is given in [11]. This integral condition in parabolic
problems is also called heat moments which are analyzed in [12].

Definition 2.1. The pair {u(x, t), k(t)} from the class C2,1(DT ) ∩ C1,0(DT )× C[0, T ] is said to be a
classical solution of problem (2.1)-(2.4), if the functions u(x, t) and k(t) satisfy the following conditions:

(1) The function u(x, t) and its derivatives ut(x, t), uxx(x, t) are continuous in the domain DT ;
(2) the function k(t) is continuous on the interval [0, T ];
(3) equation (2.1) and conditions (2.2)-(2.4) are satisfied in the classical (usual) sense.

We introduce the notation
ϑ(x, t) = ut(x, t)

and obtain the following equivalent problem with respect to function ϑ(x, t):

ϑt − ϑxx = k(t)ϕ(x) +

∫ t

0

k(τ)ϑ(x, t− τ)dτ, (2.5)

ϑ(x, 0) = ϕ′′(x), (2.6)

ϑ(0, t) = ϑ(1, t), ϑx(0, t) = ϑx(1, t), (2.7)∫ 1

0

ω(x)ϑ(x, t)dx = h′(t). (2.8)

Let Cm
(

0; l
)

be the class of m times continuously differentiable with all derivatives up to the m−th

order (inclusive) in (0; l) functions. In the case m = 0 this space coincides with the class of continuous
functions. Cm,k(DT ) is the class of m times continuously differentiable with respect to t and k times
continuously differentiable with respect to x with all derivatives in the domain DT functions.

The functions ϕ, ω and h satisfy the following assumptions:
(A1) ϕ(x) ∈ C4[0, 1]; ϕ(5)(x) ∈ L2[0, 1]; ϕ(0) = ϕ(1);ϕ′(0) = ϕ′(1);ϕ′′(0) = ϕ′′(1); ϕ(3)(0) =

ϕ(3)(1);ϕ(4)(0) = ϕ(4)(1);
(A2) h(t) ∈ C2[0, T ]; h(0) 6= 0;

(A3) ω(x) ∈ C2[0, 1];
∫ 1

0
ω(x)ϕ′(x)dx = h′(0);

∫ 1

0
ω(x)ϕ(x)dx = h(0) 6= 0.

3. Direct problem

As we shall use separation of variables methods, let us denote by λn its eigenvalues and eigenfunc-
tions by Xn(x), i.e

X ′′n(x) + λ2Xn(x) = 0, x ∈ (0, 1),

Xn(0) = Xn(1), X ′n(0) = X ′n(1), n = 0, 1, 2, ....

In [2] , it is known that the system

1, cosλ1x, sinλ1x, cosλ2x, sinλ2x, ..., cosλnx, sinλnx, ... (3.1)

where λn = 2πn(n = 0, 1, ...), is a basis for L2(0, 1).
Since the system (3.1) form a basis in L2(0, 1), we shall seek the ϑ(x, t) of classical solution of the

problem (2.5)-(2.7) in the form

ϑ(x, t) =
∞∑
n=0

ϑ1n(t) cosλnx+
∞∑
n=1

ϑ2n(t) sinλnx, λ = 2πn, (3.2)
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where

ϑ10(t) =

∫ 1

0

ϑ(x, t)dx,

ϑ1n(t) = 2

∫ 1

0

ϑ(x, t) cosλnxdx,

ϑ2n(t) = 2

∫ 1

0

ϑ(x, t) sinλnxdx.

Then applying the formal scheme of the Fourier method, for determining of unknown coefficients
ϑ10(t) and ϑin(t)(i := 1, 2;n = 1, 2, ...) of function ϑ(x, t) from (2.5) and (2.6) we have

ϑ′10(t) = k(t)ϕ10 +

∫ t

0

k(τ)ϑ10(x, t− τ)dτ, (3.3)

ϑ10(t)|t=0 = 0, (3.4)

ϑ′in(t) + λ2
nϑin(t) = k(t)ϕin +

∫ t

0

k(τ)ϑin(x, t− τ)dτ, (3.5)

ϑin(t)|t=0 = −λ2
nϕin, i = 1, 2, n = 1, 2, ..., (3.6)

where

ϕ10 =

∫ 1

0

ϕ(x)dx,

ϕ1n = 2

∫ 1

0

ϕ(x) cosλnxdx,

ϕ2n = 2

∫ 1

0

ϕ(x) sinλnxdx.

The solutions of problems (3.3)-(3.4) and (3.5)-(3.6) satisfy the following integral equations

ϑ10(t) = ϕ10

∫ t

0

k(τ)dτ +

∫ t

0

∫ τ

0

k(α)ϑ10(τ − α)dαdτ (3.7)

and

ϑin(t) = −λ2
kϕine

−λ2
nt + ϕin

∫ t

0

e−λ
2
n(t−τ)k(τ)dτ+

+

∫ t

0

e−λ
2
n(t−τ)

∫ τ

0

k(α)ϑin(τ − α)dαdτ, (i = 1, 2, n = 1, 2, ...) (3.8)

Estimating the functions ϑ10(t), ϑin(t) we obtain the following integral inequality

|ϑ10(t)| ≤ t|ϕ10|‖k‖+ t‖k‖
∫ t

0

|ϑ10(t− τ)|dτ, (3.9)

|ϑin(t)| ≤ λ2
n|ϕin|+

|ϕin|
λ2
n

‖k‖+ ‖k‖t
∫ t

0

|ϑin(t− τ)|dτ, (i = 1, 2, n = 1, 2, ...) (3.10)

where ‖k‖ = maxt∈[0,T ] |k(t)|. Applying Gronwall’s lemma, we obtain the following estimate

|ϑ10(t)| ≤ t|ϕ10|‖k‖et
2‖k‖,

|ϑin(t)| ≤
(
λ2
k|ϕin|+

|ϕin|
λ2
n

‖k‖
)
e‖k‖t

2

.

Using equalities (3.3) and (3.5), we obtain estimates for ϑ′10(t), ϑ′in(t) :

|ϑ′10(t)| ≤ |ϕ10|‖k‖+ t2|ϕ10|‖k‖2et
2‖k‖,
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|ϑ′in(t)| ≤ (λ2
n + t‖k‖)

(
λ2
n|ϕin|+

|ϕin|
λ2
n

‖k‖
)
e‖k‖t

2

+ |ϕin|‖k‖.

Thus we have proved the following lemma:

Lemma 3.1. For any t ∈ [0;T ] and for sufficiently large n, the estimates are valid

|ϑ10(t)| ≤ C1|ϕ10|, |ϑ′10(t)| ≤ C2|ϕ10|

|ϑin(t)| ≤ C3λ
2
n|ϕik|, |ϑ′in(t)| ≤ C4λ

4
n|ϕin|.

here Ci are positive constants.

Formally, from (3.2) by term-by-term differentiation we compose the series

ϑt(x, t) =
∞∑
n=0

ϑ′1n(t) cosλnx+
∞∑
n=1

ϑ′2n(t) sinλnx, (3.11)

ϑxx(x, t) =
∞∑
n=0

λ2
nϑ1n(t) cosλnx+

∞∑
n=1

λ2
nϑ2n(t) sinλnx, (3.12)

In view of Lemma (3.1), the series (3.2), (3.11), and (3.12) for any (x, t) ∈ DT

C4

∞∑
n=1

λ4
n|ϕin|.

We hold the following auxiliary lemma.

Lemma 3.2. If the conditions (A1) then there is equality

ϕin =
1

λ5
n

ϕ
(5)
in , (i = 1, 2) (3.13)

where

ϕ
(5)
1n = 2

∫ 1

0

ϕ(5)(x) cosλnxdx, ϕ
(5)
2n = 2

∫ 1

0

ϕ(5)(x) sinλnxdx

with the following estimate:
∞∑
n=1

|ϕ(5)
in |2 ≤ ‖ϕ(5)‖L2(0,1), (i = 1, 2). (3.14)

If the functions ϕ(x) satisfy the conditions of Lemma 3.2, then due to representations (3.13) and
(3.14) series (3.2), (3.9) and (3.10) converge uniformly in the rectangle DT , therefore, function ϑ(x, t)
satisfies relations (2.5)-(2.7).

Using the above results, we obtain the following assertion.

Lemma 3.3. Let k(t) ∈ C[0, T ], (A1) are satisfied, then there exists a unique solution of the direct
problem (2.5)-(2.7) ϑ(x, t) ∈ C2,1(DT ) ∩ C1,0(DT ).

4. Solvability of inverse problem

In this section it is studied the inverse problem as the problem of determining of functions ϑ(x, t), k(t)
from relations (2.5)-(2.8).

Let us multiply (2.5) by ω(x) and integrate over x from 0 to l. Taking into account conditions
(2.6)-(2.7) and using (3.2), we obtain the relation

k(t) =
1

Θ

(
h′′(t)−

∫ t

0

k(τ)h′(t− τ)dτ −
∞∑
n=0

ϑ1n(t)

∫ 1

0

ω′′(x) cosλnxdx+

+
∞∑
n=1

ϑ2n(t)

∫ 1

0

ω′′(x) sinλnxdx
)
, (4.1)
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where Θ =
∫ 1

0
ω(x)ϕ(x)dx.

The following lemma plays an important role in studying the uniqueness of the solution to problem
(2.5)-(2.8):

Lemma 4.1. If ϑ(x, t), k(t) is a solution of (2.5)-(2.8), then the functions

ϑ10(t) =

∫ 1

0

ϑ(x, t)dx,

ϑ1n(t) = 2

∫ 1

0

ϑ(x, t) cosλnxdx,

ϑ2n(t) = 2

∫ 1

0

ϑ(x, t) sinλnxdx

satisfy system (3.8), (3.9) on the interval [0, T ].

Now, consider the space B2
2,T consisting of functions of the form ϑ(x, t) in domain DT , where the

functions ϑ1n(t)(n = 0, 1, 2, ..), ϑ2n(t)(n = 1, 2, ...) are continuous on [0, T ] and satisfy the condition

‖ϑ10(t)‖C[0,T ] +
( ∞∑
n=1

(λ2
n‖ϑ1n(t)‖C[0,T ])

2
)1/2

+
( ∞∑
n=1

(λ2
n‖ϑ2n(t)‖C[0,T ])

2
)1/2

< +∞.

The norm in the space B2
2,T is

‖ϑ(x, t)‖B2
2,T

= ‖ϑ10(t)‖C[0,T ] +
( ∞∑
n=1

(λ2
n‖ϑ1n(t)‖C[0,T ])

2
)1/2

+
( ∞∑
n=1

(λ2
n‖ϑ2n(t)‖C[0,T ])

2
)1/2

.

We denote by E2
T , the Banach space B2

2,T ×C[0, T ] of vector functions z(x, t) = {ϑ(x, t), k(t)} with
norm

‖z(x, t)‖B2
2,T

= ‖ϑ(x, t)‖B2
2,T

+ ‖k(t)‖C[0,T ].

Now we consider the operator

Λ(ϑ, k) = {Λ1(ϑ, k),Λ2(ϑ, k)}

in the space E2
T , where

Λ1(ϑ, k) = ϑ̃(x, t) ≡
∞∑
n=0

ϑ̃1n(t) cosλnx+
∞∑
n=1

ϑ̃2n(t) sinλnx, Λ2(ϑ, k) = k̃(t)

and the functions ϑ̃10(t), ϑ̃in(t)(i = 1, 2;n = 1, 2, ...), k̃(t) are equal to the right-hand sides of (3.7),
(3.8) and (4.1) respectively.

Using simple transformations from (3.7), (3.8) and (4.1) we obtain following estimates

‖ϑ̃10(t)‖C[0,T ] ≤ |ϕ10|‖k‖C[0,T ]T + ‖k‖C[0,T ]‖ϑ̃10(t)‖C[0,T ]T
2 ≤

≤ ‖ϕ‖L2[0,1]‖k‖C[0,T ]T + ‖k‖C[0,T ]‖ϑ̃(x, t)‖B2
2,T
T 2, (4.2)( ∞∑

n=1

(λ2
n‖ϑin(t)‖C[0,T ])

2
)1/2

≤
( ∞∑
n=1

(λ4
n|ϕin|+ λ2

n‖k‖C[0,T ]|ϑin|T + λ2
n‖k‖C[0,T ]|ϕin|T 2)2

)1/2

≤

≤
√

3
( ∞∑
n=1

(λ4
n|ϕin|)2

)1/2

+
√

3
( ∞∑
n=1

(λ2
n‖k‖C[0,T ]|ϑin|T )2

)1/2

+
√

3
( ∞∑
n=1

(λ2
n‖k‖C[0,T ]|ϕin|T 2)2

)1/2

≤

≤
√

3‖ϕ(4)‖L2[0,1] +
√

3‖k‖C[0,T ]‖ϕ(2)‖L2[0,1]T +
√

3‖k‖C[0,T ]‖ϑ‖B2
2,T
T 2 (4.3)
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‖k‖C[0,T ] ≤
h1

Θ
+
h1

Θ
T‖k‖C[0,T ] +

3ω0

Θ
‖ϑ‖B2

2,T
, (4.4)

where h1 := maxt∈C2[0,T ] |h(t)|, ω0 := maxx∈C2[0,1] |ω(x)|.
Then from (4.2)-(4.4) we find that

‖ϑ‖B2
2,T
≤ A1(T ) +B1(T )‖k‖C[0,T ] + C1(T )‖ϑ‖B2

2,T
+D1(T )‖k‖C[0,T ]‖ϑ‖B2

2,T
, (4.5)

‖k‖C[0,T ] ≤ A2(T ) +B2(T )‖k‖C[0,T ] + C2(T )‖ϑ‖B2
2,T

+D2(T )‖k‖C[0,T ]‖ϑ‖B2
2,T
, (4.6)

where
A1(T ) =

√
3‖ϕ(4)‖L2[0,1], B1(T ) = ‖ϕ‖L2[0,1]T +

√
3‖ϕ(2)‖L2[0,1]T,

C1(T ) = 0, D1(T ) = (1 +
√

3)T 2,

A2(T ) =
h1

Θ
, B2(T ) =

h1

Θ
T, C2(T ) =

3ω0

Θ
, D2(T ) = 0.

From (4.5)-(4.6) we conclude that

‖ϑ‖B2
2,T

+ ‖k‖C[0,T ] ≤ A(T ) +B(T )‖k‖C[0,T ] + C(T )‖ϑ‖B2
2,T

+D(T )‖k‖C[0,T ]‖ϑ‖B2
2,T
, (4.7)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ),

C(T ) = C1(T ) + C2(T ), D(T ) = D1(T ) +D2(T ).

Theorem 4.2. If conditions (A1)-(A3) and condition

(B(T ) + C(T ) +D(T )(A(T ) + 2)) (A(T ) + 2) < 1 (4.8)

hold, then problem (2.5)-(2.8) has a unique solution in the ball S = SR(‖z‖E3
T
≤ R ≤ (A(T ) + 2)) of

the space E2
T .

Proof. In the space E2
T consider the equation

z = Φz, (4.9)

where z = {ϑ, k}, the components Φi(ϑ, k)(i = 1, 2), of operator Φ(ϑ, k), defined by right side of
equations (3.2) and (4.1).

Consider the operator Φi(ϑ, k)(i = 1, 2), in the ball S = SR from E2
T . Analogically to (4.7), we get

that for any z1, z2 ∈ SR the following estimates are valid:

‖Φz‖E2
T
≤ ‖ϑ‖B2

2,T
+ ‖k‖C[0,T ] ≤

A(T ) +B(T )‖k‖C[0,T ] + C(T )‖ϑ‖B2
2,T

+D(T )‖k‖C[0,T ]‖ϑ‖B2
2,T
≤

≤ A(T ) + (B(T ) + C(T ) +D(T )(A(T ) + 2)) (A(T ) + 2) < A(T ) + 2. (4.10)

‖Φz1 − Φz2‖E2
T
≤

≤ B(T )‖k1 − k2‖C[0,T ] + C(T )‖ϑ1 − ϑ2‖B2
2,T

+D(T )R
(
‖k1 − k2‖C[0,T ] + ‖ϑ1 − ϑ2‖B2

2,T

)
. (4.11)

Then taking into account (4.8) in (4.10) and (4.11), it follows that the operator Φ acts in the ball
S = SR and satisfy the conditions of the contraction mapping principle. Therefore, in the ball S = SR
the operator Φ has a unique fixed point {ϑ, k} that is a unique solution of equation (4.9).

In this way we conclude that the function ϑ(x, t) as an element of space B2
2,T is continuous and has

continuous derivatives ϑ(x, t) and ϑxx(x, t) in DT .
From (3.5) it is easy to see that( ∞∑

n=1

(λn‖ϑ′in(t)‖C[0,T ])
2
)1/2

≤
√

2(1 + ‖k‖C[0,T ]T )
∞∑
n=1

(λ3
n‖ϑ‖C[0,T ]) =

√
2(1 + ‖k‖C[0,T ]T )‖ϑ‖B2

T
.

Thus ϑ(x, t) is continuous in the region DT .
Further, it is possible to verify that equation (2.5) and conditions (2.6)-(2.8) are satisfied in the

usual sense. Consequently, {ϑ(x, t), k(t)} is a solution of (2.5)-(2.8) by Lemma 3.2 it is unique. 2
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Remark 4.3. Let the assumptions (A1) - (A3) are satisfied. Then we will derive from (2.5)-(2.8) the
equations (2.1)-(2.4). By denoting ut(x, t) = ϑ(x, t), we obtain

u(x, t) = ϕ(x) +

∫ t

0

ϑ(x, t)dt.
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