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Abstract
There is one-to-one correspondence between quadratic operators (mapping ℝm 
to itself) and cubic matrices. It is known that any quadratic operator correspond-
ing to a stochastic (in a fixed sense) cubic matrix preserves the standard simplex. 
In this paper we find conditions on the (non-stochastic) cubic matrix ensuring that 
corresponding quadratic operator preserves simplex. Moreover, we construct several 
quadratic non-stochastic operators which generate chaotic dynamical systems on the 
simplex. These chaotic behaviors are splitted meaning that the simplex is partitioned 
into uncountably many invariant (with respect to quadratic operator) subsets and the 
restriction of the dynamical system on each invariant set is chaos in the sense of 
Devaney.
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1 Introduction

Non-linear dynamical systems arise in many problems of biology, physics and other 
sciences. In particular, such dynamical systems describe the behavior of populations 
of different species with population models1. [25].

It is known that there are some populations with regular behavior and other ones 
with chaotic behavior [1]. The chaos means sensitivity of behavior of the population 
to the tiniest changes in initial conditions (the initial state of the population) and 
unpredictable behavior. Mathematically studying a chaotic behavior is useful to our 
understanding of chaos as a phenomenon. In this paperm, we consider several quad-
ratic (non-linear) mappings arising in population dynamics, which may generate a 
chaotic behavior. Let us give some basic notations:

Chaos. For discrete-time dynamical systems, a mathematical definition of chaos 
is as follows [4]. Let f be a function defined on some state space X. Denote f n(x) , 
meaning f is applied to x ∈ X iteratively n times.

Furthermore, let A be a subset of X. Then f (A) = {f (x) ∶ x ∈ A} . If f (A) ⊂ A , 
then A is an invariant set under function f.

A continuous map f ∶ X → X is said to be topologically transitive if, for 
every pair of non-empty open sets A,B ⊂ X , there exists an integer n such that 
f n(A) ∩ B ≠ �.

Devaney’s definition (see2. [4, 7] for more details) of chaos is stated as follows:
A continuous map f is chaotic if f has an invariant set A ⊂ X such that 

(1) f satisfies weak sensitive dependence on its initial conditions on A,
(2) The set of points initiating periodic orbits are dense in A,
(3) f is topologically transitive on A.

In [2] it was observed that sensitive dependence on initial conditions follows as a 
mathematical consequence of the other two properties.

Even simple processes can lead to chaos. This is reason why so hard to predict the 
weather and the stock market. One beautiful example is the game of billiards [30]. 
Chaotic models are used in certain populations [10] and in the population growth 
[9]. Chaos can also be found in ecological systems, such as hydrology [34]. Some 
biological application is found in cardiotocography. Models of warning signs of fetal 
hypoxia can be obtained through chaotic modeling [35].

Time evolution operators3. Time evolution is the change of state by the passage 
of time. In general, time is not required to be a continuous parameter, but may be 
discrete or even finite.

Consider a system with state space X for which evolution is deterministic and 
reversible. For concreteness, let us suppose time set �  is the set ℝ or ℕ0 = {0} ∪ ℕ.

Then time evolution is given by a family of state mappings

1 https://en.wikipedia.org/wiki/Chaos. theory
2 https://plato.stanford.edu/entries/chaos/.
3 https://en.wikipedia.org/wiki/Time evolution.
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where Ft,s(x) is the state of the system at time t, whose state at time s is x. The fol-
lowing identity holds

The mappings Ft,s(x) are called evolution operators.
A state space with a distinguished evolution operators is called a dynamical 

system.

Example  1. Markov process of square matrices. One of well-studied time evolution 
is Markov process, which is defined by linear mappings as follows. A family of sto-
chastic matrices {Fs,t = U

[s,t] ∶ s, t ≥ 0} is called a Markov process if it satisfies the 
Kolmogorov-Chapman equation (i.e., equation (1.1)):

Let E = {1, 2,… ,m} . A distribution (or state) of the set E is a probability measure 
x = (x1,… , xm) , i.e., an element of the simplex:

Let x(0) = (x
(0)

1
,… , x(0)

m
) ∈ Sm−1 be an initial distribution on E. Denote by 

x(t) = (x
(t)

1
,… , x(t)

m
) ∈ Sm−1 the distribution of the system at the moment t. For arbi-

trary moments of time s and t with s < t the matrix U[s,t] =
(
U

[s,t]

ij

)
 gives the transi-

tion probabilities from the distribution x(s) to the distribution x(t) . Moreover x(t) 
depends linearly from x(s):

2. Quadratic stochastic process. Following [3] denote by S the set of all possible 
kinds of stochasticity and denote by � the set of all possible multiplication rules of 
cubic matrices.

Let M[s,t] =
(
P
[s,t]

ijk

)
m

i,j,k=1
 be a cubic matrix with two parameters.

A family {Fs,t = M
[s,t] ∶ s, t ∈ �} is called (see [3, 12, 25] for details) a Markov 

process of cubic matrices (or a quadratic stochastic process) of type (�|�) if for each 
time s and t the cubic matrix M[s,t] is stochastic in sense � ∈ S and satisfies the 
Kolmogorov-Chapman equation (for cubic matrices):

with respect to the multiplication � ∈ �.

Ft,s ∶ X → X, ∀t, s ∈ � ,

(1.1)Fu,t(Ft,s(x)) = Fu,s(x).

(1.2)U
[s,t] = U

[s,𝜏]
U
[𝜏,t]

, for all 0 ≤ s < 𝜏 < t.

Sm−1 =

{
x ∈ ℝ

m ∶ xi ≥ 0,

m∑
i=1

xi = 1

}
.

x
(t)

k
=

m∑
i=1

U
[s,t]

ik
x
(s)

i
, k = 1,… ,m.

(1.3)M
[s,t] = M

[s,𝜏] ∗𝜇 M
[𝜏,t]

, for all 0 ≤ s < 𝜏 < t.
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Quadratic stochastic processes arise naturally in the study of biological and phys-
ical systems with interactions. Assume that the matrix 

(
P
[s,t]

ijk

)
 is 3-stochastic (i.e., 

P
[s,t]

ijk
≥ 0 and 

∑
k P

[s,t]

ijk
= 1 ), then the probability distribution x(t) (for the quadratic 

process) can be found by the formula of the total probability as

where k = 1,… ,m, 0 ≤ s < t.
For case when P[s,t]

ijk
 does not depend on s, t the theory of corresponding quadratic 

stochastic operator is well developed (see [5, 6, 8, 11, 17] - [32] and references 
therein).

3. Discrete-time quadratic dynamical systems. In this paper we consider discrete 
time, i.e., 𝕋 = ℕ0 = {0} ∪ ℕ and in the equality (1.4) we assume the coefficients 
P
[s,t]

ijk
 do not depend on s and t, but the cubic matrix ℙ =

(
Pijk

)
 is not assumed to be 

stochastic.
In general, a quadratic operator V, V ∶ x ∈ ℝ

m
→ x� = V(x) ∈ ℝ

m corresponding 
to a cubic matrix ℙ is defined by:

Without loss of generality we assume Pij,k = Pji,k . Indeed, if this equality is not satis-
fied then we can introduce

The aim of this paper is to find conditions on the cubic matrix ℙ ensuring that cor-
responding operator preserves simplex Sm−1 . Moreover, we want to construct several 
quadratic (non-stochastic) operators which generate chaotic dynamical systems on 
the simplex.

2  Quadratic non‑stochastic operators

The following theorem gives conditions for coefficients of V to preserve the simplex.

Theorem 2.1 For a quadratic operator V (given by (1.5)), to preserve a simplex Sm−1 
it is sufficient that 

 (i) 
m∑
k=1

Pij,k = 1, i, j = 1,… ,m;

 (ii) 0 ≤ Pii,k ≤ 1, i, k = 1,… ,m;

(1.4)x
(t)

k
=

m∑
i,j=1

P
[s,t]

ijk
x
(s)

i
x
(s)

j
,

(1.5)V ∶ x�
k
=

m∑
i,j=1

Pij,kxixj, k = 1,… ,m.

Pij,k =
1

2
(Pij,k + Pji,k).



Quadratic non-stochastic... Page 5 of 17    17 

 (iii) −
1

m−1

√
Pii,kPjj,k ≤ Pij,k ≤ Pij,k ≤ 1 +

�
(1 − Pii,k)(1 − Pjj,k) and necessary that 

the conditions (i), (ii) and
 (iii’) −

√
Pii,kPjj,k ≤ Pij,k ≤ 1 +

�
(1 − Pii,k)(1 − Pjj,k)

are satisfied.
Proof Necessity. Following [32] we prove necessity of conditions (i), (ii), (iii’).

Assume V preserves the simplex. The condition (ii) is needed to 
V(ei) = (Pii,1,… ,Pii,m) ∈ Sm−1 , for vertices ei = (0, ..., 0, 1, 0, ...0) (here 1 is the 
ith coordinate). Because in this case V(ei) = (Pii,1,… ,Pii,m) , which also requires ∑m

k=1
Pii,k = 1 (a particular case of the condition (i)). To show that (i) is necessary, 

let us take x = �ei + �ej , where �, � ≥ 0 , � + � = 1 . Then for V(x) we have

Since V preserves simplex, we have

and since � = 1 − � we have

which for � = 1∕2 by 
∑m

k=1
Pii,k = 1 gives i).

To obtain condition (iii’) in (2.1) we denote

Then inequalities (2.1) equivalent to find conditions on parameters a, b, c such that 
f (�) ∈ [0, 1] for each � ∈ [0, 1] . We have f (0) = c ∈ [0, 1] and f (1) = a ∈ [0, 1].

Case: a − 2b + c = 0 . That is b = (a + c)∕2 ≥ 0 . Then f (�) = 2(b − c)� + c . The 
graph of this linear function connects points (0, c) and (1, a) and contained in [0, 1]2.

Case: a − 2b + c ≠ 0 . In this case the function f (�) has its extremum point

Therefore, f (�) ∈ [0, 1] if and only if one of the following conditions holds 

(1) �0 ∉ (0, 1)

(2) �0 ∈ (0, 1) and f (�0) ∈ [0, 1].

By elementary analysis, it is easy to see that solution to the inequalities associated 
with conditions (1) and (2) is

x�
k
= Pii,k�

2 + 2Pij,k�� + Pjj,k�
2, k = 1,… ,m.

(2.1)0 ≤ Pii,k�
2 + 2Pij,k�� + Pjj,k�

2 ≤ 1, k = 1,… ,m.

m∑
k=1

x�
k
=

m∑
k=1

(
Pii,k�

2 + 2Pij,k�(1 − �) + Pjj,k(1 − �)2
)
= 1

(2.2)a = Pii,k, b = Pij,k, c = Pjj,k.

f (�) = (a − 2b + c)�2 + 2(b − c)� + c.

�0 =
c − b

a − 2b + c
.
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This using notations (2.2) shows that condition (iii’) is necessary.
Sufficiency. Let x ∈ Sm−1 . We show that x� = V(x) = (x�

1
,… , x�

m
) ∈ Sm−1 . Using 

condition (i) we get

As mentioned above the condition (ii) is needed to have V(ei) ∈ Sm−1.
Now using (iii) we show that x′

k
≥ 0:

Therefore the quadratic operator V preserves the simplex.   ◻

Remark 2.2 

1. In [31], for m = 2 , it is proven that the conditions (i), (ii) and (iii’) are sufficient 
and necessary to preserve the simplex.

2. In case m ≥ 3 the conditions (i), (ii) and (iii’) are not sufficient to preserve the 
simplex. Indeed, consider the example (satisfying (i), (ii) and (iii’)): 

 Then for the first coordinate of the corresponding quadratic operator V we have 

−
√
ac ≤ b ≤ 1 +

√
(1 − a)(1 − c).

m∑
k=1

x�
k
=

m∑
k=1

m∑
i,j=1

Pij,kxixj =

m∑
i,j=1

(
m∑
k=1

Pij,k

)
xixj

=

m∑
i,j=1

xixj =

m∑
i=1

xi

m∑
j=1

xj = 1, ∀k = 1,… ,m.

x�
k
=

m�
i,j=1

Pij,kxixj =
�
i<j

�
Pii,k

m − 1
x2
i
+ 2Pij,kxixj +

Pjj,k

m − 1
x2
j

�

≥
�
i<j

�
Pii,k

m − 1
x2
i
−

2

m − 1

�
Pii,kPjj,kxixj +

Pjj,k

m − 1
x2
j

�

=
�
i<j

⎛⎜⎜⎝

�
Pii,k

m − 1
xi −

�
Pjj,k

m − 1
xj

⎞⎟⎟⎠

2

≥ 0.

Pii,1 = 1, Pii,k = 0, ∀i = 1,… ,m; ∀k = 2,… ,m;

Pij,1 = −
√
Pii,1Pjj,1 = −1, ∀i ≠ j;

Pij,k ∈ [0, 2],∀i ≠ j, k ≥ 2 with

m∑
k=2

Pij,k = 2.

x�
1
=

m∑
i=1

x2
i
− 2

∑
1≤i<j≤m

xixj =

(
x1 −

m∑
i=2

xi

)2

− 4
∑

2≤i<j≤m

xixj

= (2x1 − 1)2 − 4
∑

2≤i<j≤m

xixj.
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 Take x ∈ Sm−1 such that x1 = 1∕2 and xj > 0 , j ≥ 2 with 
∑m

j=2
xj = 1∕2 . Then 

x′
1
< 0 , i.e., x� = V(x) ∉ Sm−1.

3. The following is a quadratic operator V0 , with the conditions 

which does preserve the simplex S2 : 

where 

 This example shows that our condition (iii) is not necessary to preserve the sim-
plex, because for this operator we have: 

Remark 2.3 By a given cubic matrix (Pij,k) , one can define another kind of quadratic 
operator W ∶ (x, y) ∈ ℝ

m ×ℝ
m
→ x� = W(x, y) ∈ ℝ

m , i.e.,

In [15] such an operator have been considered. Question: Under what conditions on 
the cubic matrix (Pij,k) from W(Sm−1 × Sm−1) ⊂ Sm−1 it follows that V(Sm−1) ⊂ Sm−1 ? 
In [16] this question is solved for Volterra QSO on two-dimensional simplex. We 
will answer this question, for general quadratic operators, in a separate paper.

Definition 2.4 A quadratic operator (1.5), preserving a simplex, is called non-sto-
chastic if at least one of its coefficients Pij,k , i ≠ j is negative.

Definition 2.5 Let V ∶ Sm−1 → Sm−1 be a quadratic non-stochastic operator (QnSO). 
It is called a Volterra QnSO (VQnVO) if

(iv) Pij,k = 0, for all k ∉ {i, j}.

−
√

Pii,kPjj,k ≤ Pij,k < −
1

m − 1

√
Pii,kPjj,k, for some i, j, k,

V0 ∶

⎧
⎪⎨⎪⎩

x�
1
=

1

2
x2
2
− x2x3 +

1

2
x2
3
+

3

2
x1x2 +

3

2
x1x3 =

1

2
(x3 − x2)

2 +
3

2
x1(x2 + x3)

x�
2
=

1

2
x2
1
− x1x3 +

1

2
x2
3
+

3

2
x1x2 +

3

2
x2x3 =

1

2
(x1 − x3)

2 +
3

2
x2(x1 + x3)

x�
3
=

1

2
x2
1
− x1x2 +

1

2
x2
2
+

3

2
x1x3 +

3

2
x2x3 =

1

2
(x2 − x1)

2 +
3

2
x3(x1 + x2),

P11,1 = 0 P22,1 = 0.5 P33,1 = 0.5 P12,1 = 0.75 P13,1 = 0, 75 P23,1 = −0.5

P11,2 = 0.5 P22,2 = 0 P33,2 = 0.5 P12,2 = 0.75 P13,2 = −0.5 P23,2 = 0.75

P11,3 = 0.5 P22,3 = 0.5 P33,2 = 0 P12,3 = −0.5 P13,3 = 0.75 P23,3 = 0.75.

P23,1 = −
√

P22,1P33,1 < −
1

2

√
P22,1P33,1,

P13,2 = −
√

P11,2P33,2 < −
1

2

√
P11,2P33,2,

P12,3 = −
√

P11,3P22,3 < −
1

2

√
P11,3P22,3.

(2.3)W ∶ x�
k
=

m∑
i,j=1

Pij,kxiyj, k = 1,… ,m.
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Theorem 2.6 If for a quadratic operator the conditions (i), (ii), (iii’) of Theorem 2.1 
are satisfied then it is not a VQnSO.

Proof Assume (i), (ii), (iii’) are satisfied then we get

Moreover, by (iii’) we have

Similarly we get 0 ≤ Pki,k . Thus all coefficients of Volterra quadratic operator are 
non-negative. Hence it is not VQnSO.   ◻

3  One‑dimensional QnSO

Here we give a review of results related to the one-dimensional QnSO. Consider 
arbitrary QnSO on S1:

where

Using x + y = 1 , the operator (3.1) can be reduced to the function

Under condition (3.2) we have f ∶ [0, 1] → [0, 1] . The dynamical system generated 
by f can be fully studied. In [21, Sect. 2.2], the case b ≥ 0 of this (stochastic) opera-
tor was studied. In [32] a class of QnSOs V ∶ S1 → S1 were studied.

Here to avoid several cases, we consider the case a = c = 1 , then b ∈ [−1, 1] . The 
operator is QnSO iff b ∈ [−1, 0) . Therefore, using x + y = 1 from the second equal-
ity of (3.1) we get

Denote � = 2(1 − b) . From b ∈ [−1, 0) it follows that � ∈ (2, 4].
The function g(y) ≡ g�(y) = �y(1 − y) is well known as a logistic map. For an 

initial point x0 ∈ [0, 1] consider the trajectory (dynamical system):

Pkk,k = 1, Pki,k + Pik,k = 1.

Pii,k = 0, i ≠ k.

−
√

Pii,k

√
Pkk,k ≤ Pik,k ⇒ 0 ≤ Pik,k, i ≠ k.

(3.1)
x� = ax2 + 2bxy + cy2

y� = (1 − a)x2 + 2(1 − b)xy + (1 − c)y2,

(3.2)a, c ∈ [0, 1], b ∈ [−
√
ac, 1 +

√
(1 − a)(1 − c)].

f (x) = (a − 2b + c)x2 + 2(b − c)x + c.

y� = 2(1 − b)y(1 − y), b ∈ [−1, 0).
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For � ∈ (2, 4] this dynamical system has the following properties4.:

Remark 3.1 

• The function g(y) has two fixed points 0 and 1 − 1

�
.

• If � between 2 and 3, the trajectory will eventually approach the fixed point 
1 −

1

�
 , but first will fluctuate around that value for some time.

• If � between 3 and 1 +
√
6 ≈ 3.44949 , from almost all initial point x0 the tra-

jectory will approach 2-periodic orbit. These two values are dependent on �.
• With � between 3.44949 and 3.54409 (approximately), from almost all initial 

point x0 the trajectory will approach 4-periodic orbit (permanent oscillations 
among four values).

• With � increasing beyond 3.54409, from almost all initial points the trajectory 
will approach oscillations among 8 values, then 16, 32, etc.

• At � approximately equal to 3.56995 from almost all initial points, we no 
longer see oscillations of finite period. Slight variations in the initial point 
yield dramatically different results over time, a prime characteristic of chaos.

• A rough description of chaos is that chaotic systems exhibit a great sensitivity 
to initial points. The logistic map for most values of 𝜇 > 3.56995 exhibits cha-
otic behavior.

Remark 3.2 We do not know any quadratic stochastic operator with chaotic behavior 
of trajectories. In the (above considered) case: a = c = 1 , b ∈ [−1, 0) , the operator 
(3.1) has the form

Since P12,1 = b < 0 , this operator is non-stochastic. For arbitrary initial point 
(x0, 1 − x0) ∈ S1 , its trajectory has the form (xn, 1 − xn) , where xn is defined by (3.3). 
Therefore, from above-mentioned properties of the logistic map, it follows that when 
−1 ≤ b < −0.784975 the operator (3.4) generates a chaotic dynamical system on the 
one-dimensional simplex.

4  Examples of two‑dimensional QnSO

1. Consider the following example of QnSO on the two-dimensional simplex S2:

(3.3)xn+1 = g(xn), n = 0, 1, 2,…

(3.4)
x� = x2 + 2bxy + y2

y� = 2(1 − b)xy.

4 https://en.wikipedia.org/wiki/Logistic map.
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where a ∈ [0, 2] . Note that P12,1 = P13,1 = −a∕2.
1.1. Fixed points. The fixed points are solutions to the system

In case y = z = 0 we get the fixed point p0 = (1, 0, 0) . For y + z ≠ 0 we get x = 1

2+a
 . 

Consequently, the following is a family of fixed points

1.2. On invariant sets. Recall that a set M is called invariant with respect to an oper-
ator V if V(M) ⊂ M.

It is easy to see that the following sets are invariant with respect to (4.1):

Denoting t = y + z we reduce the operator (4.1) to the following

Since x = 1 − t . The operator (4.3) coincides with (3.4). Therefore, under condition 
1.56995 < a ≤ 2 this operator and (4.1) generate chaotic dynamical systems. Moreo-
ver, using y + z = t one can study trajectories of (4.1) by related trajectories of (4.3). 
For example, if a trajectory (xn, tn) of (4.3) has a limit, say (�, �) , then the corre-
sponding trajectory (xn, yn, zn) has property that

The fixed point t∗ = 1 −
1

2+a
 of the function (2 + a)t(1 − t) gives an invariant set with 

y + z = t∗ , i.e.,

Note that the above mentioned fixed point py is the following

Moreover,

(4.1)
x� = x2 + y2 + z2 − axy − axz + 2yz

y� = (2 + a)xy

z� = (2 + a)xz,

(4.2)
x = x2 + y2 + z2 − axy − axz + 2yz

y = (2 + a)xy,

z = (2 + a)xz.

py =
(

1

2 + a
, y, 1 −

1

2 + a
− y

)
, where y ∈

[
0, 1 −

1

2 + a

]
.

M0 = {(x, y, z) ∈ S2 ∶ y = 0}, M1 = {(x, y, z) ∈ S2 ∶ z = 0},

M� = {(x, y, z) ∈ S2 ∶ y = �z}, � ∈ [0,+∞).

(4.3)x� = x2 + t2 − axt

t� = (2 + a)xt.

lim
n→∞

xn = �, lim
n→∞

(yn + zn) = �.

X = {(x, y, z) ∈ S2 ∶ x =
1

2 + a
}.

py = X ∩M�, where � =
(2 + a)y

1 + a − (2 + a)y
.
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Therefore, it suffices to study restrictions of the operator (4.1) on each these invari-
ant sets.

Restriction of the operator (4.1) on M0 (using x = 1 − z ) can be written as 
the function z� = (2 + a)z(1 − z) . Similarly, on M1 one has the same function 
y� = (2 + a)y(1 − y).

For each � ∈ (0,+∞) , on the set M� the restriction of (4.1) can be written as

Multiply both side of (4.4) to 1 + � and denote � = (1 + �)z then we get 
� � = (2 + a)� (1 − �).

Therefore, the trajectories of the operator on the invariants M0 , M1 and M� are 
given by the same logistic function. For � = 2 + a using facts of Remark 3.1 one 
can give dynamics of these functions (i.e., the dynamics of operator (4.1) on the 
above mentioned invariants). In particular, under condition 1.56995 < a ≤ 2 each 
one-dimensional dynamical system is chaotic.

Remark 4.1 (1) As we have seen, the operator (4.1) is chaotic for 1.56995 < a ≤ 2 , 
but it is not chaos on the simplex in the sense of Devaney. Because, it is not topo-
logically transitive. It is splitted chaos meaning that the simplex is partitioned into 
uncountably many invariant subsets and the restriction of the operator (4.1) on each 
invariant set is chaos in the sense of Devaney.

(2) Let Δ = {(x, y) ∈ ℝ
2 ∶ x, y ≥ 0, x + y ≤ 4} . Consider the following quadratic 

operator F ∶ Δ → Δ

In [13] it is showed that this operator has interior periodic points of periods p ≥ 4 . 
Moreover, in [14] a lower estimate of the number of interior periodic orbits with 
period p ≤ 36 is given. Note that F generates a chaos on the boundary y = 0 of Δ.

2. Consider the following example:

Then taking some parameters equal to zero we get the following quadratic operator 
V:

where a ∈ (0, 3).

S2 = M0 ∪M1 ∪ (
⋃

�∈(0,+∞)

M�).

(4.4)z� = (2 + a)(1 − (� + 1)z)z.

F ∶ x� = x(4 − x − y), y� = xy.

Pii,1 = 1, Pii,k = 0, ∀i = 1, 2, 3; ∀k = 2, 3;

Pij,1 = −
1

2

√
Pii,1Pjj,1 = −

1

2
, ∀i ≠ j;

Pij,k ∈ [0,
3

2
],∀i ≠ j, k = 2, 3 with Pij,2 + Pij,3 =

3

2
.

(4.5)
x� = x2 + y2 + z2 − xy − xz − yz

y� = 3xy + ayz

z� = 3xz + (3 − a)yz,
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Remark 4.2 In the operator (4.5), one can also consider the cases a = 0 and a = 3 . 
These cases are more simple than the case a ∈ (0, 3) . Because, for example, if a = 0 
then z� = 3z(x + y) = 3z(1 − z) , i.e., the variable z has dynamics independent from 
other variables. Therefore, below we consider the case a ≠ 0 , a ≠ 3.

2.1. Fixed points. It is easy to see that the fixed points of the operator (4.5) are

Definition 4.3 [4]. A fixed point x∗ of the operator V is called hyperbolic if its Jaco-
bian J at x∗ has no eigenvalues on the unit circle.

Definition 4.4 [4]. A hyperbolic fixed point x∗ is called: 

 (i) attracting if all the eigenvalues of the Jacobian J(x∗) are less than 1 in absolute 
value;

 (ii) repelling if all the eigenvalues of the Jacobian J(x∗) are greater than 1 in abso-
lute value;

 (iii) a saddle otherwise.

To study the type of each fixed point rewrite operator (4.5) (using 
x = 1 − y − z ) as

Note that W maps the set T = {(y, z) ∈ [0, 1]2 ∶ y + z ≤ 1} to itself.
The Jacobian of W at point (y, z) is

For eigenvalues of the Jacobian at fixed points we have 

Case s1:  

Case s2:  

Case s3:  

(4.6)
s1 = (1, 0, 0), s2 =

(
1

3
, 0,

2

3

)
, s3 =

(
1

3
,
2

3
, 0

)
,

s4 =

(
a2 − 3a + 3

a2 − 3a + 9
,

2a

a2 − 3a + 9
,

2(3 − a)

a2 − 3a + 9

)
.

(4.7)W ∶
y� = 3xy + ayz = y(3 − 3y + (a − 3)z)

z� = 3xz + (3 − a)yz = z(3 − ay − 3z).

JW (y, z) =

(
3 − 6y + (a − 3)z (a − 3)y

−az 3 − ay − 6z

)
.

�1 = �2 = 3

�1 = 1 +
2a

3
∈ [1, 3], �2 = −1

�1 = −1, �2 = 3 −
2a

3
∈ [1, 3]
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Case s4:  In this case �1 has a bulky form. But using Maple one can plot its graph 
(see Fig. 1). Therefore, 0 < 𝜆1 < 1 for any a ∈ (0, 3) . Moreover, one can 
see that �2 = −1.

 
Thus we have proved the following

Proposition 4.5 Fixed point s1 is repeller. Points s2 and s3 are non hyperbolic (but 
semi-repeller5). The fixed point s4 is non-hyperbolic (but semi-attracting6).

2.2. Invariant sets. Let a ∈ (0, 3) . Introduce the following sets:

Lemma 4.6 The sets Mi , i = 1,… , 5 are invariant with respect to the operator W, 
i.e. (4.7).

Proof It is easy to see that W(Mi) ⊂ Mi , i = 1, 2 . For the case i = 3, 4, 5 assume 
(y, z) ∈ Mi , we shall show that (y�, z�) = W(y, z) ∈ Mi . From the first and second 
equalities of (4.7) we find

M1 = {(y, z) ∈ T ∶ y = 0}, M2 = {(y, z) ∈ T ∶ z = 0},

M3 = {(y, z) ∈ T ∶ z =
3 − a

a
y}.

M4 = {(y, z) ∈ T ∶ z <
3 − a

a
y}, M5 = {(y, z) ∈ T ∶ z >

3 − a

a
y}.

Fig. 1  The graph of the 
eigenvalue �1(s4) as function of 
parameter a ∈ [0, 3]

5 Meaning that the second eigenvalue is greater than 1 in absolute value.
6 Meaning that the second eigenvalue is less than 1 in absolute value.
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Consequently

From the last equality it follows that

Thus M3 is an invariant. Moreover, from (4.8) it follows that if x = 0 then 
(3 − a)y� − az� = 0 , this means that any point (y, z) with y + z = 1 (i.e. x = 0 ) after 
first iteration goes inside of the invariant set M3 . Therefore, consider x > 0 , then 
from (4.8) we get

Thus M4 and M5 are invariant sets.   ◻

Note that

2.3. Trajectories. In this subsection for any initial point (y(0), z(0)) ∈ T  we investigate 
behavior of the trajectories (y(n), z(n)) = Wn(y(0), z(0)), n ≥ 1.

By (4.9) it suffices to study the trajectories on each invariant set. 

CaseM1:  Reducing (4.7) on M1 we get one-dimensional dynamical system gen-
erated by z� = 3z(1 − z) which is a logistic map with parameter � = 3 . 
For this function it is known (see Remark 3.1 and [33, page 10]) that it 
has repeller fixed point z = 0 and attracting fixed point z = 2∕3 . Conse-
quently, for trajectory of the operator (4.7) on the invariant set M1 we 
have 

CaseM2:  is similar to the case M1.
CaseM3:  Restricting W on M3 we get y� = 3y(1 −

9−3a+a2

3a
y) . Denoting t = 9−3a+a2

3a
y 

and t� = 9−3a+a2

3a
y� the last mapping can be written as t� = 3t(1 − t) . There-

fore, this case also conjugate to the above cases and the following holds 

yz =
1

a
(y� − 3xy), yz =

1

3 − a
(z� − 3xz).

(4.8)
1

a
(y� − 3xy) =

1

3 − a
(z� − 3xz) ⇔ (3 − a)y� − az� = 3x((3 − a)y − az).

(3 − a)y − az = 0 ⇔ (3 − a)y� − az� = 0.

(3 − a)y − az > 0 ⇔ (3 − a)y� − az� > 0.

(3 − a)y − az < 0 ⇔ (3 − a)y� − az� < 0.

(4.9)T =

5⋃
i=1

Mi.

lim
n→∞

(y(n), z(n)) = lim
n→∞

Wn(y(0), z(0))

=

{
(0, 0), if (y(0), z(0)) = (0, 0)

(0, 2∕3), if (y(0), z(0)) = (0, z(0)), z(0) > 0.
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CaseM4:  In this case for y > 0 we have z
y
<

3−a

a
 and z

�

y�
<

3−a

a
 . Iterating the inequali-

ties we get 

 By (4.7) we have 

 because: 

 Hence Pn is strictly increasing and with the upper bound 3−a
a

 . Consequently, its limit 
exists and equal to 3−a

a
 as the supremum of Pn in M3 ∪M4.

CaseM5:  This case is similar to the case M4 , now Pn >
3−a

a
 and Pn is strictly 

decreasing with limit 3−a
a

 too.

 Thus for any initial point from M4 ∪M5 the set of limit points of its trajectory is 
subset of M3.

Now we give limit points of the operator (4.5). To do this, we introduce:

Then

Summarizing above-mentioned results about trajectories of W, we obtain the 
following

Theorem  4.7 If (x(0), y(0), z(0)) ∈ M̂i for some i = 1, 2, 3, 4, 5 then for the operator 
(4.5) the following holds

lim
n→∞

(y(n), z(n))

=

{
(0, 0), if (y(0), z(0)) = (0, 0)(

2a

a2−3a+9
,

2(3−a)

a2−3a+9

)
, if (y(0), z(0)) = (y(0),

3−a

a
y(0)), y(0) > 0.

(4.10)Pn ∶=
z(n)

y(n)
<

3 − a

a
, n ≥ 1.

Pn+1 = Pn ⋅
3 − ay(n) − 3z(n)

3 − 3y(n) + (a − 3)z(n)
> Pn,

3 − ay(n) − 3z(n)

3 − 3y(n) + (a − 3)z(n)
> 1 ⇔ −ay(n) − 3z(n) > −3y(n) + (a − 3)z(n)

⇔ Pn <
3 − a

a
.

M̂i = {(x, y, z) ∈ S2 ∶ (y, z) ∈ Mi}, i = 1, 2, 3, 4, 5.

S2 =

5⋃
i=1

M̂i.
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where si , i = 1, 2, 3, 4 are defined in (4.6).

Based on numerical analysis, we make the following

Conjecture If (x(0), y(0), z(0)) ∈ M̂4 ∪ M̂5 then for the operator (4.5) the following 
holds

Thus the operator (4.5) does not generate a chaotic dynamical system.
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