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Abstract. We consider 2 × 2 operator matrix Aµ, µ > 0 acting in the
direct sum of the one- and two-particle subspaces of the bosonic Fock space. We
describe the essential spectrum of spectrum of Aµ via the spectrum of a family of
generalized Friedrichs models and de�ne its new branches. For the special cases
the location of these branches are investigated.
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1 Introduction

The well-known methods for the investigation of the location of essential spectra
of Schr�odinger operators are Weyl criterion for the one particle problem and the
HWZ theorem for multiparticle problems, the modern proof of which is based on
the Ruelle-Simon partition of unity. The theorem on the location of the branches
of essential spectrum of multi-particle Hamiltonians was named the HWZ theorem
in [3, 14] to the honor of Hunziker [6], van Winter [15] and Zhislin [16]. A lattice
analogue of this theorem for the four-particle Schr�odinger operator is proved in
[1, 8].

The systems considered above have a �xed number of quasi-particles. In
statistical physics [9], solid-state physics [10] and the theory of quantum �elds
[5], one considers systems, where the number of quasi-particles is bounded, but
not �xed. Recall that the study of systems describing N particles in interaction,
without conservation of the number of particles is reduced to the investigation of
the spectral properties of self-adjoint operators, acting in the cut subspace H(N)

of Fock space, consisting of n ≤ N particles [9, 10, 5]. The modi�ed version of
HWZ theorem for the 4 × 4 operator matrix is proved in [11]. The bounds of a
2× 2 block-operator matrix are estimated in [4].

In the present paper we consider 2 × 2 operator matrix Aµ, related with
the Hamiltonian of a system describing three particles in interaction, without
conservation of the number of particles. For the study of location of the essential
spectrum of Aµ and de�ne its new branches we introduce the family of 2 × 2
operator matrices. We discuss the cases where the lower and upper bounds of
the two- and three-particle branches of Aµ are coincide. We remark that these
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results are important in the studying the �niteness or in�niteness of the number
of discrete eigenvalues of Aµ, see [2].

2 2× 2 operator matrices

Let T3 be the three-dimensional torus, the cube (−π, π]3 with appropriately
identi�ed sides equipped with its Haar measure. Let L2(T3) be the Hilbert space of
square integrable (complex) functions de�ned on T3 and Ls

2((T3)2) be the Hilbert
space of square integrable (complex) symmetric functions de�ned on (T3)2. Denote
by H the direct sum of spaces H1 := L2(T3) and H2 := Ls

2((T3)2), that is,
H := H1 ⊕H2. The spaces H1 and H2 are called one- and two-particle subspaces
of a bosonic Fock space Fs(L2(T3)) over L2(T3), respectively, where

Fs(L2(T3)) := C⊕ L2(T3)⊕ Ls
2((T3)2)⊕ . . .⊕ Ls

2((T3)n)⊕ . . . .

Let us consider the following 2 × 2 operator matrix Aµ acting in the Hilbert
space H as

Aµ :=

„
A11 µA12

µA∗12 A22

«
with the entries

(A11f1)(p) = w1(p)f1(p), (A12f2)(p) =

Z
T3
f2(p, t)dt,

(A22f2)(p, q) = w2(p, q)f2(p, q), fi ∈ Hi, i = 1, 2.

Here µ > 0 is a coupling constant, the functions w1(·) and w2(·, ·) have the form

w1(k) := ε(k) + γ, w2(k, p) := ε(k) + ε(
1

2
(k + p)) + ε(p)

with γ ∈ R and the dispersion function ε(·) is de�ned by

ε(k) :=

3X
i=1

(1− cos ki), k = (k1, k2, k3) ∈ T3. (2.1)

We denote by A∗12 the adjoint operator to A12. Then

(A∗12f1)(p, q) =
1

2
(f1(q) + f1(p)), f1 ∈ H1.

Under these assumptions the operator Aµ is bounded and self-adjoint in the
Hilbert space H.

We remark that the operators A12 and A
∗
12 are called annihilation and creation

operators [5], respectively. In physics, an annihilation operator is an operator that
lowers the number of particles in a given state by one, a creation operator is an
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operator that increases the number of particles in a given state by one, and it is
the adjoint of the annihilation operator.

Main aim of the present paper is
(i) to investigate the spectrum of the corresponding family of generalized

Friedrichs model;
(ii) to describe the essential spectrum of Aµ and to de�ne its new branches;
(iii) to study the cases where the essential spectrum of Aµ consists one, two

or three bounded closed intervals.
The next sections are devoted to the discussion of these problems.
Throughout the paper the spectrum, the essential spectrum, and the discrete

spectrum of a bounded self-adjoint operator will be denote by σ(·), σess(·) and
σdisc(·), respectively.

3 Family of generalized Friedrichs models and
its spectrum

To study the spectral properties of the operator Aµ we introduce a family
of bounded self-adjoint operators (generalized Friedrichs models) Aµ(k), k ∈ T3,
which acts in H0 ⊕H1 (H0 := C) as 2× 2 operator matrices

Aµ(k) :=

 
A00(k)

µ√
2
A01

µ√
2
A∗01 A11(k)

!
,

with matrix elements

A00(k)f0 = w1(k)f0, A01f1 = (f1, 1),

(A11(k)f2)(p) = w2(k, p)f1(p), fi ∈ Hi, i = 0, 1.

Let the operator A0(k), k ∈ T3 acts in H0 ⊕H1 as

A0(k) :=

„
0 0
0 A11(k)

«
.

The perturbationAµ(k)−A0(k) of the operatorA0(k) is a self-adjoint operator
of rank 2. Therefore in accordance with the invariance of the essential spectrum
under the �nite rank perturbations the essential spectrum σess(Aµ(k)) of Aµ(k)
�lls the following interval on the real axis

σess(Aµ(k)) = [m(k),M(k)],

where the numbers m(k) and M(k) are de�ned by

m(k) := min
p∈T3

w2(k, p), M(k) := max
p∈T3

w2(k, p). (3.1)
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For any k ∈ T3 we de�ne an analytic function I(k ; ·) in C \ σess(Aµ(k)) by

I(k ; z) :=

Z
T3

dt

w2(k, t)− z
.

The Fredholm determinant associated to the operator Aµ(k) is de�ned by

∆µ(k ; z) := w1(k)− z − µ2

2
I(k ; z), z ∈ C \ σess(Aµ(k)).

The following statement establishes connection between the eigenvalues of the
operator Aµ(k) and zeros of the function ∆µ(k ; ·) [7, 12].

Lemma 3.1. For any µ > 0 and k ∈ T3 the operator Aµ(k) has an eigenvalue
zµ(k) ∈ C \ σess(Aµ(k)) if and only if ∆µ(k ; zµ(k)) = 0.

From Lemma 3.1 it follows that

σdisc(Aµ(k)) = {z ∈ C \ σess(Aµ(k)) : ∆µ(k ; z) = 0}.

4 New branches of the essential spectrum

In this section we investigate the essential spectrum of Aµ.
It is easy to show that the function w2(·, ·) has a unique non-degenerate

minimum (resp. maximum) at the point (0, 0) ∈ (T3)2 (resp. (π, π) ∈ (T3)2)
and

min
k,p∈T3

w2(k, p) = w2(0, 0) = 0, max
k,p∈T3

w2(k, p) = w2(π, π) = 18,

where 0 := (0, 0, 0), π := (π, π, π) ∈ T3. Note that the function w1(·) has also
a unique non-degenerate minimum (resp. maximum) at the point 0 ∈ T3 (resp.
π ∈ T3).

The following lemma describes the essential spectrum of Aµ.

Lemma 4.1. For the essential spectrum of the Aµ the following equality holds

σess(Aµ) := σµ ∪ [0; 18], σµ :=
[
k∈T3

σdisc(Aµ(k)).

Lemma 4.1 can be proved in much same way as Theorem 1 in [7] and Theorem
6.1 in [12].

In the following we introduce the new subsets of σess(Aµ).

De�nition 4.2. The sets σµ and [0; 18] are called two- and three- particle
branches of the essential spectrum of Aµ, respectively.
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Using the extremal properties of the function w2(·, ·), and the Lebesgue
dominated convergence theorem one can show that the integral I(0; 0) is �nite,
see [13].

For the next investigations we introduce the following quantities

µ0
l (γ) :=

p
2γ
`
I(0, 0)

´−1/2
for γ > 0;

µ0
r(γ) :=

p
24− 2γ

`
I(0, 0)

´−1/2
for γ < 12.

Since T3 is compact, and the functions ∆µ(·; 0) and ∆µ(·; 18) are continuous
on T3, there exist points k0, k1 ∈ T3 such that the equalities

max
k∈T3

∆µ(k; 0) = ∆µ(k0; 0), min
k∈T3

∆µ(k; 18) = ∆µ(k1; 18)

hold.
Let us introduce the following notations:

γ0 :=

„
12
I(k0; 0)

I(0; 0)
− ε(k0)

«„
1 +

I(k0; 0)

I(0; 0)

«−1

;

γ1 := (18− ε(k1))

„
1− I(k1; 18)

I(0; 0)

«
.

Denote

E(1)
µ := min {σµ ∩ (−∞; 0]} ;E(2)

µ := max {σµ ∩ (−∞; 0]} ;

E(3)
µ := min {σµ ∩ [18;∞)} ;E(4)

µ := max {σµ ∩ [18;∞)} .

We formulate the �rst main result of the paper. It is precisely describe the
structure of the essential spectrum of Aµ. The structure of the essential spectrum
depends on the location of the parameters µ > 0 and γ ∈ R.

Theorem 4.3. Let µ = µ0
r(γ), with γ < 12. The following equality holds

σess(Aµ) =

8><>:
[E

(1)
µ ;E

(2)
µ ]
S

[0; 18], if γ < γ0;

[E
(1)
µ ; 18], if γ0 ≤ γ < 6;

[0; 18], if 6 ≤ γ < 12.

Proof. Suppose that µ = µ0
r(γ), with γ < 12. It is easy to see that

lim
z→+∞

∆µ(k; z) = −∞ and ∆µ(k; 18) ≤ 0, for any k ∈ T3. Then Lemma 3.1

implies that for any k ∈ T3 the operator Aµ(k) has no eigenvalues, bigger than
18.
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We recall the following properties of ∆µ(k; z): for any k ∈ T3, the
function ∆µ(k; ·) is strictly decreasing in the interval (−∞; 0) and the equality
lim

z→−∞
∆µ(k; z) = +∞ holds.

First we consider the case γ < γ0. Similar discussions shows that under this
assumption ∆µ(k; 0) < 0, for any k ∈ T3.

Then using the continuity of the function ∆µ(k; ·) in the interval (−∞; 0),
we easily obtain than, for any k ∈ T3 there exists a point zµ(k) ∈ (−∞; 0) such
that ∆µ(k; zµ(k)) = 0. Then by Lemma 3.1 the number zµ(k) is an eigenvalue
of operator Aµ(k). So, we de�ne the mapping zµ : k ∈ T3 → zµ(k). From the
analyticity of the function ε(·) we have that the function zµ(·) is continuous on
the compact set T3, and its range is a closed subset of (−∞; 0), i.e., Imzµ(k) =

[E
(1)
µ ;E

(2)
µ ], with E

(2)
µ < 0.

Summarizing above mentioned facts by Lemma 4.1 we conclude that the
equality σess(Aµ) = [E

(1)
µ ;E

(2)
µ ] ∪ [0; 18] holds.

We proceed the proof considering the case γ0 ≤ γ < 6. Simple calculations
show that ∆µ(0; 0) < 0 and ∆µ(k0; 0) > 0.

Introduce the notation Gµ :≡ {k ∈ T3 : ∆µ(k; 0) < 0}. By the construction
the set Gµ ⊂ T3 is an open. Since 0 ∈ Gµ, it is a non-empty. From the fact
∆µ(k0; 0) > 0, that is, k0 6∈ Gµ we obtain that Gµ 6= T3.

By Lemma 3.1 for any k ∈ Gµ operator Aµ(k) has an unique eigenvalue
zµ(k) < 0. Since the function ε(·) is an analytic on its domainone can see that
zµ : k ∈ Gµ → zµ(k) is a continuous mapping on Gµ.

Since for any k ∈ T3 the operator Aµ(k) is bounded and T3 is compact, there
exists a positive number C such that sup

k∈T3
||Aµ(k)|| ≤ C, and for any k ∈ T3 we

have
σ(Aµ(k)) ⊂ [−C;C]. (4.1)

For any p ∈ ∂Gµ = {k ∈ T3 : ∆µ(k; 0) = 0}, there exist a sequence {kn} ⊂ Gµ

such that kn → p as n→∞. Set z
(n)
µ := zµ(kn). Then zµ(kn) < 0 for any kn ∈ Gµ

and from (4.1), we see that {z(n)
µ } ⊂ [−C; 0]. Then there exist a subsequence

{z(nm)
µ } ⊂ {z(n)

µ } such that z
(nm)
µ → z

(0)
µ (z

(nm)
µ = zµ(knm), knm ∈ {kn}) as

m→∞ for some z
(0)
µ ∈ [−C; 0].

The continuity of the function ∆µ(·; ·) in T3×(−∞; 0] and the relations knm →
p and z

(nm)
µ → z

(0)
µ as m→∞ imply

0 = lim
m→∞

∆µ(knm ; z(nm)
µ ) = ∆µ(p; z

(0)
µ ).

Since for any k ∈ T3 the function ∆µ(k; ·) is monotonically decreasing in

(−∞; 0] and p ∈ ∂Gµ, it follows that ∆µ(p; z
(0)
µ ) = 0 if and only if z

(0)
µ = 0.

For any p ∈ ∂Gµ, we set

zµ(p) := lim
k→p,p∈∂Gµ

zµ(k) = 0.
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The function zµ(·) is a continuous on the compact set Gµ∪∂Gµ and zµ(p) = 0
for any p ∈ ∂Gµ; moreover, we have

Imzµ(·) = [E(1)
µ ; 0], E(1)

µ < 0.

Hence the set {λ ∈ σµ : λ ≤ 0} coincides with the set [E
(1)
µ ; 0].

Then by Lemma 4.1 we get σess(Aµ) := [E
(1)
µ ; 18].

Let 6 ≤ γ < 12. In this case we can see that for any k ∈ T3 the following
relations ∆µ(k; 0) ≥ 0 and ∆µ(k; 18) ≤ 0 hold. Then by Lemma 3.1 the operator
Aµ(k) has no eigenvalues in (−∞; 0)

S
(18;+∞), i.e. σµ\[0; 18] = ∅. So, by Lemma

4.1 we obtain σess(Aµ) = [0; 18]. �
The following Theorem is a second main result of the paper and it can be

proved in much the same way as Theorem 4.3.

Theorem 4.4. Let µ = µ0
l (γ), with γ > 0.

The following equality holds

σess(Aµ) =

8><>:
[0; 18], if 0 < γ ≤ 6;

[0;E
(4)
µ ], if 6 < γ ≤ γ1;

[0; 18]
S

[E
(3)
µ ;E

(4)
µ ], if γ > γ1.
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