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EIGENVALUES AND VIRTUAL LEVELS OF A FAMILY OF 2× 2

OPERATOR MATRICES

TULKIN H. RASULOV AND ELYOR B. DILMURODOV

Abstract. In the present paper we consider a family of 2 × 2 operator matrices
Aµ(k), k ∈ T3 := (−π, π]3, µ > 0, associated with the Hamiltonian of a system

consisting of at most two particles on a three-dimensional lattice Z3, interacting

via creation and annihilation operators. We prove that there is a value µ0 of the
parameter µ such that only for µ = µ0 the operator Aµ(0) has a virtual level at

the point z = 0 = minσess(Aµ(0)) and the operator Aµ(π) has a virtual level at

the point z = 18 = maxσess(Aµ(π)), where 0 := (0, 0, 0), π := (π, π, π) ∈ T3. The

absence of the eigenvalues of Aµ(k) for all values of k under the assumption that
µ = µ0 is shown. The threshold energy expansions for the Fredholm determinant

associated to Aµ(k) are obtained.

1. Introduction

Block operator matrices are matrices where the entries are linear operators between
Banach or Hilbert spaces [12]. One special class of block operator matrices are Hamil-
tonians associated with systems of non-conserved number of quasi-particles on a lattice.
Their number can be unbounded as in the case of spin-boson models [4, 11] or bounded
as in the case of ”truncated” spin-boson models [6, 8, 9]. They arise, for example, in the
theory of solid-state physics [7], quantum field theory [3] and statistical physics [5, 6].

The eigenvalues and virtual levels of block operator matrices, in particular, Hamil-
tonians on a Fock space is one of the most actively studied objects in operator theory,
in many problems in mathematical physics and other related fields. In the present pa-
per we consider a family of 2 × 2 operator matrices Aµ(k), k ∈ T3 := (−π, π]3, µ > 0,
(so called generalized Friedrichs models) associated with the Hamiltonian of a system
consisting of at most two particles on a three-dimensional lattice Z3, interacting via cre-
ation and annihilation operators. They are acting in the direct sum of zero-particle and
one-particle subspaces of a Fock space. The main goal of the paper is to give a thor-
ough mathematical treatment of the spectral properties of this family in dimension three
with emphasis on threshold energy expansions for the associated Fredholm determinant.
More exactly, we prove that there is a value µ0 of the parameter µ such that only for
µ = µ0 the operator Aµ(0) has a virtual level at the point z = 0 = minσess(Aµ(0)) and
the operator Aµ(π) has a virtual level at the point z = 18 = maxσess(Aµ(π)), where
0 := (0, 0, 0), π := (π, π, π) ∈ T3. The absence of the eigenvalues of Aµ(k) for all values
of k under the assumption that µ = µ0 is shown. The number, location and existence of
the eigenvalues of Aµ(k) are studied. The threshold energy expansions for the Fredholm
determinant associated to Aµ(k) are obtained. We point out that a part of the results
is typical for lattice models; in fact, they do not have analogues in the continuous case
(because its essential spectrum is half-line [E; +∞), see for example [6]).
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We notice that threshold eigenvalue, virtual level (threshold energy resonance) and
threshold energy expansion for the associated Fredholm determinant of a generalized
Friedrichs model have been studied in [1, 2, 10]. These results have been applied to the
proof of the existence of Efimov’s effect and to obtain its discrete spectrum asymptotics.
We note that above mentioned results are discussed only for the bottom of the essential
spectrum.

The plan of this paper is as follows: Section 1 is an introduction to the whole work.
In Section 2, a family of 2 × 2 operator matrices are described as bounded self-adjoint
operators in the direct sum of two Hilbert spaces and its spectrum is described. In
Section 3, we discuss some results concerning threshold analysis of a family of 2 × 2
operator matrices.

2. Family of 2× 2 operator matrices and its spectrum

It is well known that if A is a bounded linear operator in a Hilbert space H and a
decomposition H = H0 ⊕ H1 is given, then A always admits a block operator matrix
representation

A =

(
A B
C D

)
with linear operators A, B, C, and D acting in or between the spaces H0 and H1. It
is easy to see that the operator A is a self-adjoint if and only if A = A∗, D = D∗ and
C = B∗.

The present paper is devoted to the following case: H0 := C is the field of complex
numbers (zero-particle subspace of a Fock space) and H1 := L2(T3) is the Hilbert space
of square-integrable (complex-valued) functions defined on the three-dimensional torus
T3 (one-particle subspace of a Fock space).

In the Hilbert space H := H0 ⊕H1 we consider the following family of 2× 2 operator
matrices

(2.1) Aµ(k) :=

(
A00(k) µA01

µA∗01 A11(k)

)
,

where Aii(k) : Hi → Hi, i = 0, 1, k ∈ T3 and A01 : H1 → H0 are defined by the rules

A00(k)f0 = w0(k)f0, A01f1 = (f1, 1), (A11(k)f1)(p) = w1(k, p)f1(p).

Here fi ∈ Hi, i = 0, 1, µ > 0 is a coupling constant, the functions w0(·) and w1(·, ·) have
the form

w0(k) := ε(k) + γ, w1(k, p) := ε(k) + ε(
1

2
(k + p)) + ε(p)

with γ ∈ R and the dispersion function ε(·) is defined by

(2.2) ε(k) :=

3∑
i=1

(1− cos ki), k = (k1, k2, k3) ∈ T3,

A∗01 denotes the adjoint operator to A01, that is,

(A∗01f0)(p) = f0, f0 ∈ H0.

Under these assumptions the operator matrix Aµ(k) is a bounded and self-adjoint in H.
We remark that the operators A01 and A∗01 are called annihilation and creation ope-

rators [3], respectively. In physics, an annihilation operator is an operator that lowers
the number of particles in a given state by one, a creation operator is an operator that
increases the number of particles in a given state by one, and it is the adjoint of the
annihilation operator.

For convenience of the reader, we recall the notion of the essential spectrum and the
discrete spectrum of a bounded self-adjoint operator. Let H be a Hilbert space and
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A : H → H be a bounded self-adjoint operator. The set of all isolated eigenvalues of
A with finite multiplicity is called the discrete spectrum of A and denoted by σdisc(A).
The set σ(A) \ σdisc(A) is called an essential spectrum of A and denoted by σess(A).

The perturbation Aµ(k) − A0(k) of the operator A0(k) is a self-adjoint operator of
rank 2. Therefore, in accordance with the invariance of the essential spectrum under the
finite rank perturbations, the essential spectrum σess(Aµ(k)) of Aµ(k) fills the following
interval on the real axis

σess(Aµ(k)) = [m(k),M(k)],

where the numbers m(k) and M(k) are defined by

(2.3) m(k) := min
p∈T3

w1(k, p), M(k) := max
p∈T3

w1(k, p).

For any k ∈ T3 we define an analytic function I(k ; ·) in C \ σess(Aµ(k)) by

I(k ; z) :=

∫
T3

dt

w1(k, t)− z
.

Then the Fredholm determinant associated to the operator Aµ(k) is defined by

∆µ(k ; z) := w0(k)− z − µ2I(k ; z), z ∈ C \ σess(Aµ(k)).

The following statement establishes connection between the eigenvalues of the operator
Aµ(k) and zeros of the function ∆µ(k ; ·), see [1, 2, 10].

Lemma 2.1. For any µ > 0 and k ∈ T3 the operator Aµ(k) has an eigenvalue zµ(k) ∈
C \ σess(Aµ(k)) if and only if ∆µ(k ; zµ(k)) = 0.

From Lemma 2.1 it follows that

σdisc(Aµ(k)) = {z ∈ C \ σess(Aµ(k)) : ∆µ(k ; z) = 0}.

It is easy to show that the function w1(·, ·) has an unique non-degenerate minimum
(resp. maximum) at the point (0, 0) ∈ (T3)2 (resp. (π, π) ∈ (T3)2) and

min
k,p∈T3

w1(k, p) = w1(0, 0) = 0, max
k,p∈T3

w1(k, p) = w2(π, π) = 18,

where 0 := (0, 0, 0), π := (π, π, π) ∈ T3. Note that the function w0(·) has also an unique
non-degenerate minimum (resp. maximum) at the point 0 ∈ T3 (resp. π ∈ T3). Simple
calculations show that

σess(Aµ(0)) = [0; 9
3

8
];

σess(Aµ(π̄)) = [8
5

8
; 18];

σdisc(Aµ(0)) = {z ∈ C \ [0; 9
3

8
] : ∆µ(0 ; z) = γ − z − µ2I(0 ; z) = 0};

σdisc(Aµ(π)) = {z ∈ C \ [8
5

8
; 18] : ∆µ(π ; z) = 6 + γ − z − µ2I(π ; z) = 0}.

Therefore,

min
k∈T3

σess(Aµ(k)) = 0, max
k∈T3

σess(Aµ(k)) = 18.
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3. Eigenvalues, virtual levels and Fredholm determinant’s expansions

In this Section we prove that there is a value µ0 of the parameter µ such that only
for µ = µ0 the operator Aµ(0) has a virtual level at the point z = 0 and the operator
Aµ(π) has a virtual level at the point z = 18. The absence of the eigenvalues of Aµ(k)
for all values of k under the assumption that µ = µ0 is shown. The number, location
and existence of the eigenvalues of Aµ(k) are studied. The threshold energy expansions
for the Fredholm determinant associated to Aµ(k) are obtained.

Using the extremal properties of the function w1(·, ·), and the Lebesgue dominated
convergence theorem we obtain that there exists the positive limit

lim
z→−0

∫
T3

dt

w1(0, t)− z
=

∫
T3

dt

w1(0, t)
.

For δ > 0 we set
Uδ(0) := {p ∈ T3 : |p| < δ}.

We show the finiteness of the integral∫
T3

dt

w1(0, t)
.

Since the function w1(0, ·) has an unique non-degenerate minimum at the point 0 ∈ T3,
there exist positive numbers δ, C1, C2 such that

(3.1) C1|t|2 ≤ w1(0, t) ≤ C2|t|2, t ∈ Uδ(0).

From the additivity of the integral it follows that

(3.2)

∫
T3

dt

w1(0, t)
=

∫
T3\Uδ(0)

dt

w1(0, t)
+

∫
Uδ(0)

dt

w1(0, t)
.

Since the integrand of the first summand on the r.h.s. of (3.2) is continuous function
on a compact set T3 \ Uδ(0), it is finite. Applying (3.1) we deduce that∫

Uδ(0)

dt

w1(0, t)
≤ 1

C1

∫
Uδ(0)

dt

|t|2
.

Now, passing to the spherical coordinate system

t1 = r sinψ cosϕ,

t2 = r sinψ sinϕ,

t3 = r cosψ, 0 ≤ r ≤ δ, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ π,
we can assert that ∫

Uδ(0)

dt

|t|2
= 4πδ <∞.

Set

µ0
l (γ) :=

√
γ

(∫
T3

dt

w1(0, t)

)−1/2
for γ > 0;

µ0
r(γ) :=

√
12− γ

(∫
T3

dt

w1(0, t)

)−1/2
for γ < 12.

Remark 3.1. By the definition of µ0
l (γ) and µ0

r(γ) one can conclude that
if γ ∈ (0; 6), then µ0

l (γ) < µ0
r(γ);

if γ = 6, then µ0
l (γ) = µ0

r(γ);
if γ ∈ (6; 12), then µ0

l (γ) > µ0
r(γ).

Denote by C(T3) and L1(T3) the Banach spaces of continuous and integrable functions
on T3, respectively.
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Definition 3.2. Let γ 6= 0. The operator Aµ(0) is said to have a virtual level at z = 0
(or zero-energy resonance), if the number 1 is an eigenvalue of the integral operator

(Gµψ)(q) =
µ2

γ

∫
T3

ψ(t)dt

ε(t/2) + ε(t)
, ψ ∈ C(T3)

and the associated eigenfunction ψ(·) (up to constant factor) satisfies the condition
ψ(0) 6= 0.

Definition 3.3. Let γ 6= 12. The operator Aµ(π) is said to have a virtual level at z = 18,
if the number 1 is an eigenvalue of the integral operator

(G′µϕ)(q) =
µ2

γ − 12

∫
T3

ϕ(t)dt

ε((π + t)/2) + ε(t)− 12
, ϕ ∈ C(T3)

and the associated eigenfunction ϕ(·) (up to constant factor) satisfies the condition
ϕ(π) 6= 0.

Remark 3.4. The number 1 is an eigenvalue of Gµ (resp. G′µ) if and only if µ = µ0
l (γ)

(resp. µ = µ0
r(γ)). Consequently, the operator Aµ(0) (resp. Aµ(π)) has a virtual level at

z = 0 (resp. z = 18) if and only if µ = µ0
l (γ) (resp. µ = µ0

r(γ)).

We notice that in the Definition 3.2, the requirement of the presence of an eigenvalue
1 of Gµ corresponds to the existence of a solution of the equation Aµ(0)f = 0 and
the condition ψ(0) 6= 0 implies that the solution f = (f0, f1) of this equation does not
belong to H. More exactly, if the operator Aµ(0) has a virtual level at z = 0, then the
vector-function f = (f0, f1), where

f0 = const 6= 0, f1(q) = − µf0
ε(q/2) + ε(q)

satisfies the equation Aµ(0)f = 0 and f1 ∈ L1(T3) \ L2(T3).
Indeed. The finiteness of the integral∫

T3

|f1(t)|dt = µ|f0|
∫
T3

dt

w1(0, t)

is shown above. It follows that f1 ∈ L1(T3). Using two-sided estimates (3.1) we conclude
that ∫

T3

|f1(t)|2dt ≥ µ2|f0|2

C2
2

∫
Uδ(0)

dt

|t|4
=∞,

and hence f1 6∈ L2(T3). It yields f1 ∈ L1(T3) \ L2(T3).
Analogously, if the operator Aµ(π) has a virtual level at z = 18, then the vector-

function f = (f0, f1), where

f0 = const 6= 0, f1(q) = − µf0
ε((π + q)/2) + ε(q)− 12

obeys the equation Aµ(π)f = 18f and f1 ∈ L1(T3) \ L2(T3).

Theorem 3.5. (i) If γ ≤ 0, then for any µ > 0 the operator Aµ(0) has an unique
negative eigenvalue.
(ii) Let γ > 0.
(ii1) For any µ ∈ (0;µ0

l (γ)) the operator Aµ(0) has no negative eigenvalues;
(ii2) If µ = µ0

l (γ), then the operator Aµ(0) has a virtual level at the point z = 0;
(ii3) For any µ > µ0

l (γ) the operator Aµ(0) has an unique negative eigenvalue.
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Proof. (i) Let γ ≤ 0. Then for any µ > 0 the inequality

∆µ(0, 0) = γ − µ2

∫
T3

dt

w1(0, t)
≤ −µ2

∫
T3

dt

w1(0, t)
< 0

holds, that is, ∆µ(0, 0) < 0.
It is easy to see that

lim
z→−∞

∆µ(0, z) = lim
z→−∞

(
γ − z − µ2

∫
T3

dt

w1(0, t)− z

)
= +∞.

Since the function ∆µ(0, ·) is continuous and monotonically decreasing function on
(−∞; 0), there exists a point z0(µ) ∈ (−∞; 0), such that, ∆µ(0, z0(µ)) = 0. By Lemma 2.1
the number z0(µ) is an eigenvalue of Aµ(0).

Let γ > 0. (ii1). We assume that µ ∈ (0;µ0
l (γ)). For any z ∈ (−∞; 0) we have

∆µ(0, z) > ∆µ(0, 0) and

∆µ(0, 0) = γ − µ2

∫
T3

dt

w1(0, t)
> γ − (µ0

l (γ))2
∫
T3

dt

w1(0, t)
= 0.

Therefore, ∆µ(0, z) > 0 for any z ∈ (−∞; 0), that is, by Lemma 2.1 the operator Aµ(0)
has no eigenvalues in (−∞; 0).

(ii2) Suppose that the operator Aµ(0) has a virtual level at z = 0. Then by Defini-
tion 3.2 the equation

ψ(q) =

∫
T3

ψ(t)dt

ε(t/2) + ε(t)
, ψ ∈ C(T3)

has a nontrivial solution ψ ∈ C(T3), which satisfies the condition ψ(0) 6= 0.
This solution is equal to the function ψ(q) ≡ 1 (up to a constant factor) and hence

∆µ(0, 0) = γ − µ2

∫
T3

dt

ε(t/2) + ε(t)
= 0,

that is, µ = µ0
l (γ).

(ii3) Let now µ > µ0
l (γ). Then

∆µ(0, 0) = γ − µ2

∫
T3

dt

w1(0, t)
< γ − (µ0

l (γ))2
∫
T3

dt

w1(0, t)
= 0,

that is, ∆µ(0, 0) < 0. From

lim
z→−∞

∆µ(0, z) = +∞

we obtain that there exists z0(µ) ∈ (−∞; 0) such that ∆µ(0, z0(µ)) = 0. Again by
Lemma 2.1 the number z0(µ) is an eigenvalue of Aµ(0). �

The following Theorem may be proved in much the same way as Theorem 3.5

Theorem 3.6. (i) If γ ≥ 12, then for any µ > 0 the operator Aµ(π) has no eigenvalues,
bigger than 18.
(ii) Let γ < 12.
(ii1) For any µ ∈ (0;µ0

r(γ)) the operator Aµ(π) has no eigenvalues, bigger than 18;
(ii2) If µ = µ0

r(γ), then the operator Aµ(π) has a virtual level at the point z = 18;
(ii3) For any µ > µ0

r(γ) the operator Aµ(π) has an unique eigenvalue in (18; +∞).

Since µ0
l (6) = µ0

r(6), setting µ0 := µ0
l (6) from Theorems 3.5 and 3.6 we obtain the

following
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Corollary 3.7. (i) If γ ∈ (0; 6), then for µ = µ0
l (γ) the operator Aµ(0) has a virtual

level at the point z = 0 and the operator Aµ(π) has no eigenvalues, bigger than 18;
(ii) If γ = 6, then for µ = µ0 the operators Aµ(0) and Aµ(π) have virtual levels at the
points z = 0 and z = 18, respectively;
(iii) If γ ∈ (6; 12), then for µ = µ0

r(γ) the operator Aµ(0) has an unique negative
eigenvalue and the operator Aµ(π) has a virtual level at the point 18.

Theorem 3.8. For any k ∈ T3 the operator Aµ0(k) has no eigenvalues in
(−∞; 0)

⋃
(18; +∞).

Proof. Direct calculations shows that ∆µ0
(0 ; 0) = ∆µ0

(π ; 18) = 0. The equality I(k ; 0) =
−I(k + π ; 18), k ∈ T3 implies that

∆µ(0 ; 0) = −∆µ0(π ; 18) = 6− µ2I(0 ; 0) = 0

and hence the last equality holds if and only if µ = µ0.
First, we show that I(k ; 0) < I(0 ; 0), k ∈ T3 \ {0}. Simple calculations shows that

w1(0, p)− w1(k, p) + w1(−k, p)
2

=

3∑
i=1

(cos ki − 1) +

3∑
i=1

cos
pi
2

(cos
ki
2
− 1).

Then the equality

I(k ; 0)− I(0 ; 0) = −1

4

∫
T3

(w1(k, t)− w1(−k, t))2

w1(k, t)w1(−k, t)w1(0, t)
dt

+

∫
T3

(
w1(0, t)− w1(k, t) + w1(−k, t)

2

)( 1

w1(k, t)w1(0, t)
+

1

w1(−k, t)w1(0, t)

)
dt

implies that I(k ; 0) < I(0 ; 0) for all nonzero k ∈ T3. The last inequality and the equality
I(k ; 0) = −I(k + π ; 18), k ∈ T3 yields that I(k ; 18) > I(π ; 18), k 6= π. Taking into
account these inequalities together with the fact that the function w0(·) has an unique
minimum at the point 0 ∈ T3 and maximum at the point π ∈ T3, we obtain that for any
µ > 0 the function ∆µ(· ; 0) resp. ∆µ(· ; 18) has an unique minimum (resp. maximum)
at the point 0 ∈ T3 (resp. π ∈ T3).

Since the function ∆µ(k ; ·) is an increasing function on (−∞; 0]∪[18; +∞) the relations

∆µ0
(k ; z) > ∆µ0

(k ; 0) ≥ ∆µ0
(0 ; 0) = 0, z ∈ (−∞, 0);

∆µ0
(k ; z) < ∆µ0

(k ; 18) ≤ ∆µ0
(π ; 18) = 0, z ∈ (18,∞)

hold. Hence, ∆µ0(k ; z) > 0 for z ∈ (−∞; 0) and ∆µ0(k ; z) < 0 for z ∈ (18; +∞). This
means that the function ∆µ0(k ; ·) has no zeros in z ∈ (−∞; 0)∪ (18; +∞). Therefore, by
Lemma 2.1 the operator Aµ0

(k), k ∈ T3, has no eigenvalues in (−∞; 0) ∪ (18; +∞). �

Now we formulate and prove a result (threshold energy expansions for the Fredholm
determinant) of the paper, which is an important in the spectral analysis for a 2 × 2
operator matrix acting in the direct sum of one-particle and two-particle subspaces of a
Fock space [1, 2, 10].

Theorem 3.9. The following decompositions hold:

(3.3) ∆µ0
(k ; z) =

32π2µ2
0

5
√

5

√
6

5
|k|2 − 2z +O(|k|2) +O(|z|), |k| → 0, z ↗ 0;

(3.4)
∆µ0(k ; z) = −32π2µ2

0

5
√

5

√
6

5
|k − π|2 + 2(18− z) +O(|k − π|2) +O(|z − 18|),

|k − π| → 0, z ↘ 18.
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Proof. We give a sketch of the proof. The definition of w0(·) implies that

(3.5) w0(k) = 12 +O(|k − π|2), |k − π| → 0.

Taking sufficiently small δ > 0 and using the additivity of the integral we rewrite
∆µ0(k ; z) as

(3.6) ∆µ0(k ; z) = w0(k)− z − µ2
0

∫
Uδ(π)

dt

w1(k, t)− z
− µ2

0

∫
T3\Uδ(π)

dt

w1(k, t)− z
.

Since the function w1(·, ·) has an unique non-degenerate maximum at (π, π) ∈ (T3)2, we
easily derive the following relations∫

Uδ(π)

dt

w1(k, t)− z
=

∫
Uδ(π)

dt

w1(π, t)− z
+

32π2µ2
0

5
√

5

√
6

5
|k − π|2 + 2(18− z)

+O(|k − π|2) +O(|z − 18|), |k − π| → 0, z ↘ 18

and ∫
T3\Uδ(π)

dt

w1(k, t)− z
=

∫
T3\Uδ(π)

dt

w1(π, t)− z
+O(|k − π|2) +O(|z − 18|),

|k − π| → 0, z ↘ 18.

Substituting the last two expressions and (3.5) into (3.6) and using the equality
∆µ0

(π ; 18) = 0 we obtain (3.4). In the same manner we can obtain the representa-
tion (3.3). �
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