

FIZIKA, MATEMATIKA VA MEXANIKANING DOLZARB MUAMMOLARI XALQARO ILMIY-AMALIY ANJUMANI

Buxoro - 2023

O'ZBEKISTON RESPUBLIKASI OLIY TA'LIM, FAN VA INNOVATSIYALAR VAZIRLIGI BUXORO DAVLAT UNIVERSITETI

FIZIKA, MATEMATIKA VA MEXANIKANING DOLZARB MUAMMOLARI

xalqaro ilmiy-amaliy anjumani

MATERIALLARI

(I qism)

Buxoro, O'zbekiston, 24-25-may, 2023-yil

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ, НАУКИ И ИННОВАЦИЙ РЕСПУБЛИКИ УЗБЕКИСТАН БУХАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЗИСЫ ДОКЛАДОВ

(Часть I)

международной научно-практической конференции

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ, МАТЕМАТИКИ И МЕХАНИКИ

Бухара, Узбекистан, 24-25 мая, 2023 год

MINISTRY OF HIGHER EDUCATION, SCIENCE AND INNOVATIONS OF THE REPUBLIC OF UZBEKISTAN BUKHARA STATE UNIVERSITY

ABSTRACTS

(Part I)

of the international scientific and practical conference

ACTUAL PROBLEMS OF PHYSICS, MATHEMATICS AND MECHANICS

Bukhara, Uzbekistan, May 24-25, 2023

Remark. There is a difference between Theorem 1 and Theorem 1 of [2], i.e., for any $\sigma_b \in C_5$, there exists a configuration φ (generally not periodic) on the Cayley tree such that $\varphi_{b'} \in C_5$ for any $b' \in M$ and $\varphi_b = \sigma_b$.

REFERENCES

 U.A.Rozikov, *Gibbs Measures on the Cayley Trees*, World Sci., Singapore (2003).
 G.I.Botirov and U.A.Rozikov, "Potts model with competing interactions on the Cayley tree: The contour method", *Theoret. and Math. Phys.*, **153**, 1423-1433 (2007).
 G. I. Botirov and M. M. Rakhmatullaev, "Ground states for Potts model with a countable set of spin values on a Cayley tree," in: *Algebra, Complex Analysis, and Pluripotential Theory*, Springer Proceedings in Mathematical Statistics, Vol. 264, Springer, Cham (2018), pp. 59–71.

SOME PROPERTIES OF THE FIRST SCHUR COMPLEMENT CORRESPONDING TO A LATTICE SPIN-BOSON MODEL WITH AT MOST TWO PHOTONS

E.B. Dilmurodov

Bukhara State University, Bukhara, Uzbekistan Bukhara branch of the Institute of Mathematics named after V.I.Romanovskiy, Bukhara, Uzbekistan E-mail: e.b.dilmurodoy@buxdu.uz

The spin-boson model is a well-known quantum-mechanical model which describes the interaction between a two-level atom and a photon field. We refer to [1] and [2] for excellent reviews respectively from physical and mathematical perspectives.

Let us introduce a lattice spin-boson model with at most two photons. Let T^d be the d-dimensional torus, $L_2((T^d))$ be the Hilbert space of square integrable

(complex) functions defined on T^d , \mathbb{C}^2 be the state of the two-level atom and $\mathcal{F}_b(L_2(T^d))$ be the symmetric Fock space for bosons, that is,

$$\mathcal{F}_{\mathrm{b}}(L_2(T^{\mathrm{d}})) := \mathbb{C} \bigoplus L_2(T^{\mathrm{d}}) \bigoplus L_2^{sym}((T^{\mathrm{d}})^2) \bigoplus \dots$$

Here $L_2^{sym}((T^d)^n)$ is the Hilbert space of symmetric functions of $n \ge 2$ variables. For m = 1, 2 we denote $\mathcal{L}_m := \mathbb{C}^2 \otimes \mathcal{F}_b^{(m)}(L_2(T^d))$, where

$$\mathcal{F}_{b}^{(1)}(L_{2}(T^{d})):=\mathbb{C}\oplus L_{2}(T^{d}), \quad \mathcal{F}_{b}^{(2)}(L_{2}(T^{d})):=\mathbb{C}\oplus L_{2}(T^{d})\oplus L_{2}^{sym}((T^{d})^{2}).$$

We write elements F of the space L_2 in the form $F = \{f_0^{(s)}, f_1^{(s)}(k_1), f_2^{(s)}(k_1, k_2); s = \pm\}$. Then the norm in \mathcal{L}_2 is given by

$$\|F\|^{2} := \sum_{s=\pm} \left(|f_{0}^{(s)}|^{2} + \int_{T^{d}} |f_{1}^{(s)}(k_{1})|^{2} dk_{1} + \frac{1}{2} \int_{(T^{d})^{2}} |f_{2}^{(s)}(k_{1},k_{2})|^{2} dk_{1} dk_{2} \right).$$
(1)

We recall that the lattice spin-boson model with at most two photons A_2 is acting in \mathcal{L}_2 as the 3 × 3 tridiagonal block operator matrix

$$A_2 := \begin{pmatrix} A_{00} & A_{01} & 0 \\ A_{01}^* & A_{11} & A_{12} \\ 0 & A_{12}^* & A_{22} \end{pmatrix},$$

where matrix elements A_{ij} are defined by

$$\begin{aligned} A_{00}f_0^{(s)} &= s\varepsilon f_0^{(s)}, \quad A_{01}f_1^{(s)} = \alpha \int_{T^d} v(t)f_1^{(-s)}(t)dt, \\ (A_{11}f_1^{(s)})(k_1) &= (s\varepsilon + w(k_1))f_1^{(s)}(k_1), \quad (A_{12}f_2^{(s)})(k_1) = \alpha \int_{T^d} v(t)f_2^{(-s)}(k_1,t)dt, \\ (A_{22}f_2^{(s)})(k_1,k_2) &= (s\varepsilon + w(k_1) + w(k_2))f_2^{(s)}(k_1,k_2), \\ f &= \{f_0^{(s)}, f_1^{(s)}, f_2^{(s)}; s = \pm\} \in \mathcal{L}_2. \end{aligned}$$

Here A_{ij}^* denotes the adjoint operator to A_{ij} for i < j with i, j = 0, 1, 2; w(k) is the dispersion of the free field, $\alpha v(k)$ is the coupling between the atoms and the field modes, $\alpha > 0$ is a real number, so-called the coupling constant, real number. We assume that $v(\cdot)$ and $w(\cdot)$ are the real-valued continuous functions on T^d . Under

these assumptions the lattice spin-boson model with at most two photons A_2 is bounded and self-adjoint in the complex Hilbert space \mathcal{L}_2 .

To study the spectral properties of A_2 we introduce the following two bounded self-adjoint operators $A_2^{(s)}$, $s = \pm$, which acts in $\mathcal{F}_b^{(2)}(L_2(T^d))$ as

$$A_{2}^{(s)} := \begin{pmatrix} \hat{A}_{00}^{(s)} & \hat{A}_{01} & 0\\ \hat{A}_{01}^{*} & \hat{A}_{11}^{(s)} & \hat{A}_{12}\\ 0 & \hat{A}_{12}^{*} & \hat{A}_{22}^{(s)} \end{pmatrix}$$

with the entries

$$\hat{A}_{00}^{(s)}f_{0} = s\varepsilon f_{0}, \quad \hat{A}_{01}f_{1} = \alpha \int_{T^{d}} v(t)f_{1}(t)dt,$$
$$(\hat{A}_{11}^{(s)}f_{1})(k_{1}) = (-s\varepsilon + w(k_{1}))f_{1}(k_{1}), \quad (\hat{A}_{12}f_{2})(k_{1}) = \alpha \int_{T^{d}} v(t)f_{2}(k_{1},t)dt,$$
$$(\hat{A}_{22}^{(s)}f_{2})(k_{1},k_{2}) = (s\varepsilon + w(k_{1}) + w(k_{2}))f_{2}(k_{1},k_{2}), \quad (f_{0},f_{1},f_{2}) \in \mathcal{F}_{b}^{(2)}(L_{2}(T^{d})).$$

It is easy to check that

$$(\hat{A}_{01}^*f_0)(k_1) = \alpha v(k_1)f_0;$$

$$(\hat{A}_{12}^*f_1)(k_1, k_2) = \alpha (v(k_1)f_1(k_2) + v(k_2)f_1(k_1)), \quad (f_0, f_1) \in \mathcal{F}_b^{(1)}(L_2(T^d)).$$

In order to describe the essential spectrum of A_2 we define an analytic function $\Delta^{(s)}(\cdot)$ in $\mathbb{C} \setminus [s\varepsilon + m; s\varepsilon + M]$ by

$$\Delta^{(s)}(\lambda) := -s\varepsilon - \lambda - \alpha^2 \int_{T^d} \frac{v^2(t)dt}{s\varepsilon + w(t) - \lambda'}$$

where the numbers m and M are defined by

$$m:=\min_{p\in T^{d}}w(p), \quad M:=\max_{p\in T^{d}}w(p).$$

Let $\sigma^{(s)}$ be the set of all complex numbers $\lambda \in \mathbb{C}$ such that the equality $\Delta^{(s)}(\lambda - w(k_1)) = 0$ holds for some $k_1 \in T^d$. Then for the essential spectrum of $A_2^{(s)}$ we have

$$\sigma_{ess}(A_2^{(s)}) = \sigma^{(s)} \cup [s\varepsilon + 2m; s\varepsilon + 2M].$$

Next, we represent the space $\mathcal{F}_{b}^{(2)}(L_{2}(T^{d}))$ as a direct sum of two Hilbert spaces $\mathcal{F}_{b}^{(1)}(L_{2}(T^{d}))$ and $L_{2}^{sym}((T^{d})^{2})$, that is, $\mathcal{F}_{b}^{(2)}(L_{2}(T^{d})) = \mathcal{F}_{b}^{(1)}(L_{2}(T^{d})) \oplus$ $L_{2}^{sym}((T^{d})^{2})$. Then the first Schur complement of the operator $A_{2}^{(s)}$ with respect to this decomposition is defined as

$$S_{1}^{(s)}(\lambda): \mathcal{F}_{b}^{(1)}(L_{2}(T^{d})) \to \mathcal{F}_{b}^{(1)}(L_{2}(T^{d})), \quad \lambda \in \rho(\hat{A}_{22}^{(s)});$$
$$S_{1}^{(s)}(\lambda): = \begin{pmatrix} \hat{A}_{00}^{(s)} & \hat{A}_{01} \\ \hat{A}_{01}^{*} & \hat{A}_{11}^{(s)} \end{pmatrix} - \lambda - \begin{pmatrix} 0 \\ \hat{A}_{12} \end{pmatrix} (\hat{A}_{22}^{(s)} - \lambda)^{-1} (0 \quad \hat{A}_{12}^{*}).$$

Define

$$S_{00}^{(s)}(\lambda) := \hat{A}_{00}^{(s)} - \lambda, \quad S_{01}^{(s)}(\lambda) := \hat{A}_{01};$$

$$S_{10}^{(s)}(\lambda) := \hat{A}_{01}^{*}, \quad S_{11}^{(s)}(\lambda) := \hat{A}_{11}^{(s)} - \lambda - \hat{A}_{12}(\hat{A}_{22}^{(s)} - \lambda)^{-1}\hat{A}_{12}^{*}.$$

Then the operator $S_1^{(s)}(\lambda)$ has form

$$S_{1}^{(s)}(\lambda) = \begin{pmatrix} S_{00}^{(s)}(\lambda) & S_{01}^{(s)}(\lambda) \\ S_{10}^{(s)}(\lambda) & S_{11}^{(s)}(\lambda) \end{pmatrix}$$

We study some important properties of the first Schur complement

$$S_1(\lambda) := \operatorname{diag}\{S_1^{(+)}(\lambda), S_1^{(-)}(\lambda)\}$$

for the lattice spin-boson model with at most two photons A_2 .

Proposition 1. The number $\lambda \in \mathbb{C} \setminus \sigma_{ess}(A_2)$ is an eigenvalue of the operator A_2 if and only if the operator $S_1(\lambda)$ has an eigenvalue equal to zero. Moreover, the eigenvalues λ and 0 have the same multiplicities.

Proposition 2. $\lambda \in \sigma_{ess}(A_2) \setminus \sigma(A_{22})$ if and only if $0 \in \sigma_{ess}(S_1(\lambda))$.

From Propositions 1 and 2 we obtain the following two corollaries.

Corollary 1. Let $\lambda \in \mathbb{C} \setminus \sigma_{ess}(A_2)$. Then $\lambda \in \rho(A_2) \Leftrightarrow 0 \in \rho(S_1(\lambda))$.

Corollary 2. Let $\lambda_0 \in \mathbb{R} \setminus \sigma_{ess}(A_2)$. If $(\lambda_0; \lambda_0 + \gamma) \in \rho(A_2)$ (resp. $(\lambda_0 - \gamma)$)

 $\gamma; \lambda_0) \in \rho(A_2)$ for some $\gamma > 0$, then there exists a number $\delta = \delta(\gamma) > 0$ such that $(0; \delta) \in \rho(S_1(\lambda_0))$ (resp. $(-\delta; 0) \in \rho(S_1(\lambda_0))$).

We note that a lattice spin-boson model A_m with m = 1,2 is considered in [3, 4]. In particular, in [3] the location of the essential spectrum of A_2 is described; for any coupling constant the finiteness of the number of eigenvalues below the bottom of the essential spectrum of A_2 is established (with sketch of proof). The paper [4] is devoted to the study of the geometrical structure of the branches of the essential spectrum of A_2 .

References

1. A.J.Leggett, S.Chakravarty, A.T.Dorsey, M.P.A.Fisher, A.Garg, W.Zwerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59 (Jan 1987), 1–85.

2. M.Hübner, H.Spohn. Radiative decay: nonperturbative approaches. Rev. Math. Phys. **7**:3 (1995), 363–387.

3. M.Muminov, H.Neidhardt, T.Rasulov. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case. Journal of Mathematical Physics, **56** (2015), 053507.

4. T.Kh.Rasulov. Branches of the essential spectrum of the lattice spin-boson model with at most two photons. Theor. Math. Phys., **186**:2 (2016), 251–267.

THE TWO ORTHOGONAL PROJECTORS IN SEPARABLE GILBERT SPACE

M.S.Ergashova^(a), T.E.Azimova^(b), Kh.Kh.Boltaev^(a) ^(a)Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan.

^(b)Kokan state university, Kokan, Uzbekistan.

munisaergashova16199@gmail.com, azimovatoyibaxon@gmail.com, bkhabibzhan2020@mail.ru,

The theory of unitary representations of groups dates back to the 19-th century and is associated with the names of G. Frobenius, I. Schur, W. Burnside, F.E. Molina

MUNDARIJA СОДЕРЖАНИЕ CONTENTS

I SHO'BA: MATEMATIK ANALIZ СЕКЦИЯ №1: МАТЕМАТИЧЕСКИЙ АНАЛИЗ SECTION №1: MATHEMATICAL ANALYSIS

Abdullaev J.I., Ergashova Sh.H. Discrete spectrum of the Schrödinger	5
operator to a system of three fermions	5
Abduxakimov S.X., Muxammadiyev I.A., Vahobov M.A. Ikki zarrachali	7
diskret Shredinger operatorining spektral xossalari	7
Aktamov F.S. An open mapping theorem for order - preserving operators	9
Aralova K.A. Xoliqova F.Q. Regular dynamics of superposition of non-	13
Volterra quadratic stochastic operators on <i>S</i> ²	15
Botirov G'. I., Mustafoyeva Z. E. Ground states for the Potts model with	15
competing interactions on the Cayley tree	
Dilmurodov E.B. Some properties of the first schur complement corresponding	18
to a lattice spin-boson model with at most two photons	
Ergashova M.S., Azimova T.E., Boltaev Kh.Kh. The two orthogonal	22
projectors in separable gilbert space	
Gʻayratova M.H., Boboyarova N.A., Qutlimuratov D.S. $\mathbb{C}^nig[m imes mig]$	25
fazodagi matritsaviy shar uchun Loran qatorlari	
Haydarov F.H., Ilyasova R.A. Gradient Gibbs measures of sos model with	
alternating magnetism on Cayley tree: 3 – periodic, mirror symmetric	28
boundary law	
Ikromova D.I. On the estimates for Fourier transform of surface-carried	30
measure	50
Ismoilova D.E. Location of the essential spectrum of the channel operator	33
corresponding to the third-order operator matrix in the fermionic fock space	55