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the operators Vα , α = 1,2,3 are partial integral operators of the form:

(V1 f )(x,y) = v(y)
∫

T1
v(t) f (x, t)dt,

(V2 f )(x,y) = v(x)
∫

T1
v(t) f (t,y)dt,

(V3 f )(x,y) =
∫

T1
f (t,x+ y− t)dt,

so called non-local interaction operators.
Here f ∈ Lsym

2 (T2), is the kernel function v(·) is a continuous function on T1 with real values, and the multiplied
function u(·, ·) is continuous symmetric on T2 with real values.

The boundedness and self-adjointness of the model Hamiltonian Hµ,λ in Lsym
2 (T2) defined by formula (1) can be

shown easily.
Note that the model Hamiltonian Hµ,λ is related with the system of 3 quantum particles on 1D lattice Z1. Indeed.

Let us consider the operator energy Ĥ of a 3 arbitrary particle system on Z1. This Hamiltonian acts in l2(Z3) and
acting as

Ĥψ(n1,n2,n3) =∑
s∈Z

[ε̂1(s)ψ(n1 + s,n2,n3)+ ε̂2(s)ψ(n1,n2 + s,n3)+

ε̂3(s)ψ(n1,n2,n3 + s)]− [µ1δn2n3 +µ2δn1n3 +µ3δn1n2 ]ψ(n1,n2,n3).

Here for α = 1,2,3 the function ε̂α(·), α = 1,2,3 is defined on Z1 with real values, the number µα is the real
(interaction energy of the particles β and γ), and δnm is the Kronecker delta.

We assume that ε̂α(s) depends only on |s|, s ∈ Z1, is positive only for s = 0, and moreover, satisfies the inequality
|ε̂α(s)| ≤Cexp(−a|s|) for some a > 0 and C > 0.

The boundedness and self-adjointness of the operator Ĥ in l2(Z3) is clear.
Along with the 3 particle Hamiltonian Ĥ in l2(Z3), we study 2 particle Hamiltonians ĥα , α = 1,2,3 in l2(Z2) as

ĥα ψ(nβ ,nγ) =∑
s∈Z

[ε̂β (s)ψ(nβ + s,nγ)+ ε̂γ(s)ψ(nβ ,nγ + s)]−µα δnβ nγ
ψ(nβ ,nγ),

α,β ,γ = 1,2,3, α 6= β ,β 6= γ,γ 6= α.

Applying the direct integral expansion and Fourier transform, one can reduce the problem of studying of the spec-
trum of Ĥ and ĥα ,α = 1,2,3, to before analyzing families bounded self-adjoint operators H(K), K ∈ T1 (3 particle
Schrödinger operators on a lattice) and hα(k), k ∈ T (2 particle Schrödinger operators on a lattice) in L2(T2) and
L2(T1), respectively (see [8, 9]), having the form

(H(K) f )(x,y) =εK(x,y) f (x,y)−µ1

∫
T1

f (x, t)dt−µ2

∫
T1

f (t,y)dt−

µ3

∫
T1

f (t,x+ y− t)dt, f ∈ L2(T2),

where

εK(x,y) := ε1(x)+ ε2(y)+ ε3(K− x− y),

and

(hα(k)) f (x) = ε
(α)
k (x) f (x)−µα

∫
T1

f (t)dt, f ∈ L2(T1)

with

ε
(α)
k (x) := εβ (x)+ εγ(k− x), {α,β ,γ}= {1,2,3}, β < γ.

By virtue of the assumptions imposed on the function ε̂α(·), its Fourier transform εα is real analytic as well even
function and has a unique global min at the fixed point x = 0 ∈ T1.
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One can prove that if ε1(x) = ε2(x) and µ1 = µ2, then the subspace Lsym
2 (T2) is an invariant for H(K) Therefore,

the operator Hµ,λ is a more general model than this restricted Hamiltonian.
The lattice model operators (more general model than Hµ,0) of the form

A = A0−K1−K2 : L2((Td)2)→ L2((Td)2) (2)

with

(A0 f )(x,y) = w(x,y) f (x,y), f ∈ L2((Td)2);

(K1 f )(x,y) =
∫

Td
k1(x, t) f (t,y)ds, (K2 f )(x,y) =

∫
Td

k2(t,y) f (x, t)dt, f ∈ L2((Td)2)

are discussed by many authors, see for instance the papers [6, 7, 8, 9, 10, 11, 12]. Here w(·, ·) and kα(·, ·), α = 1,2
are function with real-values and continuous on (Td)2. In [13, 14, 15, 16] the spectrum of the matrices, where one of
the diagonal elements has form (2) and if this diagonal operator is a multiplication operator was discussed in [17, 18,
19].

The main objectives of this article are as follows:
(i) to study the subsets of spectrum of the family of Friedrichs models;
(ii) to determine the so called channel operators H(1)

µ and H(2)
λ

corresponding to Hµ,λ and establish their spectra;
(iii) to construct the Faddeev type integral equation for the eigenfunctions Hµ,λ ;

(iv) to prove that σess(Hµ,λ ) is equal to the union of σ(H(1)
µ ) and σ(H(2)

λ
);

(v) to show that σess(Hµ,λ ) as a set consists of at most 3 segments with finite length;
(vi) to determine the subsets (branches) of σess(Hµ,λ ).

In the following sections we discuss above mentioned objectives.

CHANNEL OPERATORS AND FAMILIES OF FRIEDRICHS MODELS.

To obtain an exact information about σess(Hµ,λ ) in this section we determine two operators H(1)
µ and H(2)

λ
(so-called

channel operators). They act in L2(T2) by

H(1)
µ = H0−µV1, H(2)

λ
= H0−λV3.

The boundedness and self-adjointness of H(1)
µ and H(2)

λ
in L2(T2) can be proven easily.

For the bounded function u1(·) on T1 we determine the multiplication operator U1:

(U1g)(x,y) = u1(x)g(x,y), g ∈ L2(T2).

Then the operator H(1)
µ commutes with U1.

Analogously the operator H(2)
λ

commutes with any multiplication operator U2 defined as

(U2g)(x,y) = u2(x+ y)g(x,y), g ∈ L2(T2),

where u2(·) is the bounded function on T1.
By this reason from

L2(T2) =
∫

k∈T1
⊕L2(T1)dk (3)

we get the decompositions

H(1)
µ =

∫
k∈T1
⊕h(1)µ (k)dk and H(2)

λ
=
∫

k∈T1
⊕h(2)

λ
(k)dk. (4)
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In the decomposition (4) the fiber operators (families of bounded self-adjoint operators (Friedrichs models)) h(1)µ (k),

h(2)
λ
(k), k ∈ T1, act on L2(T1) by

h(1)µ (k) := h(1)0 (k)−µv1, h(2)
λ
(k) := h(2)0 (k)−λv2,

where h(α)
0 (k), α = 1,2 are the multiplication operators on L2(T1):

(h(1)0 (k)ψ)(x) = u(k,x)ψ(x), ψ ∈ L2(T1);

(h(2)0 (k)ψ)(x) = u(x,k− x)ψ(x), ψ ∈ L2(T1),

the operators vα , α = 1,2 are integral operators on L2(T) :

(v1ψ)(x) = v(x)
∫

T1
v(t)ψ(t)dt, (v2ψ)(x) =

∫
T1

ψ(t)dt, ψ ∈ L2(T1).

They are usually called the non-local interaction operators.
Using (vα)

∗ = vα , rankvα = 1 and Weyl’s theorem, we conclude that

σess(h
(1)
µ (k)) = [m1(k);M1(k)]

and

σess(h
(2)
λ
(k)) = [m2(k);M2(k)].

where

m1(k) := min
x∈T

u(k,x), M1(k) := max
x∈T

u(k,x),

m2(k) := min
x∈T

u(x,k− x), M2(k) := max
x∈T

u(x,k− x).

In order to study σdisc(h
(1)
µ (k)) and σdisc(h

(2)
λ
(k)) we determine the analytic functions on C\ [mα(k);Mα(k)] by

∆
(1)
µ (k ;z) := 1−µ

∫
T1

v2(t)dt
u(k, t)− z

;

∆
(2)
λ
(k ;z) := 1−λ

∫
T1

dt
u(t,k− t)− z

.

Simple calculations show that for any fixed k ∈T the quantity zα(k)∈C\ [mα(k);Mα(k)] is a discrete eigenvalue of
h(1)µ (k) (respectively h(2)

λ
(k)) iff ∆

(1)
µ (k ;z1(k)) = 0 (respectively ∆

(2)
λ
(k ;z2(k)) = 0). As conclusion for σdisc(h

(1)
µ (k))

and σdisc(h
(2)
λ
(k)) we receive

σdisc(h
(1)
µ (k)) = {ξ ∈ C\ [m1(k);M1(k)] : ∆

(1)
µ (k ;ξ ) = 0},

σdisc(h
(2)
λ
(k)) = {ξ ∈ C\ [m2(k);M2(k)] : ∆

(2)
λ
(k ;ξ ) = 0}.

Using the essential and discrete spectra of h(1)µ (k) and h(2)
λ
(k), we may precisely describe the sets σ(H(1)

µ ) and

σ(H(2)
λ

), respectively. It is established in the following assertion.
Lemma 1. We have

σ(H(1)
µ ) =

⋃
k∈T

σ(h(1)µ (k)) =
⋃
k∈T

σdisc(h
(1)
µ (k))∪ [m;M];

σ(H(2)
λ

) =
⋃
k∈T

σ(h(2)
λ
(k)) =

⋃
k∈T

σdisc(h
(2)
λ
(k))∪ [m;M],

where

m := min
k,x∈T

u(k,x), M := max
k,x∈T

u(k,x).

Proof. Using the theorem about the spectra of the so called decomposable operators (see, for example, [3]) and
taking into account the structure obtained above (4) for H(1)

µ and H(2)
λ

we get assertions of Lemma 1.
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THE FADDEEV EQUATION FOR THE EIGENFUNCTIONS OF Hµ,λ .

We construct the Faddeev type operator equations for eigenfunctions corresponding to discrete eigenvalues of the
model Hamiltonian Hµ,λ within this section.

We determine the sets:

Ωµ,λ :=
⋃
k∈T
{σdisc(h

(1)
µ (k))∪σdisc(h

(2)
λ
(k))}, Σµ,λ := Ωµ,λ ∪ [m;M]

and the space

L(2)
2 (T1) := {ϕ = (ϕ1,ϕ2) : fα ∈ L2(T1), α = 1,2}.

Let µ,λ > 0 and z ∈ C\Σµ,λ be fixed. We determine the matrix Tµ,λ (z) in L(2)
2 (T1) as

Tµ,λ (z) :=
(

T11(µ; z) T12(µ,λ ; z)
T21(µ,λ ; z) 0

)
.

The elements of the 2×2 matrix Tµ,λ (z) acting

(T11(µ; z)ϕ1)(x) =
µυ(x)

∆
(1)
µ (x;z)

∫
T1

v(t)ϕ1(t)dt
u(x, t)− z

,

(T12(µ,λ ; z)ϕ2)(x) =
λ

∆
(1)
µ (x;z)

∫
T1

v(t− x)ϕ2(t)dt
u(x, t− x)− z

,

(T21(µ,λ ; z)ϕ1)(x) =
2µ

∆
(2)
λ
(x;z)

∫
T1

v(x− t)ϕ1(t)dt
u(t,x− t)− z

.

Here ϕα ∈ L2(T1), α = 1,2.
Note that for any µ,λ > 0 and z ∈ C\Σµ,λ integral operators T11(µ; z), T12(µ,λ ; d) and T21(µ,λ ; z) belong to the

so called Hilbert-Schmidt class, so Tµ,λ (z) is a completely continuous operator.
We formulate one of the main results of the paper.
Theorem 1. The quantity z∈C\Σµ,λ is a discrete eigenvalue of Hµ,λ iff the quantity γ = 1 is the discrete eigenvalue

of the matrix Tµ,λ (z). In addition, the multiplicities of discrete eigenvalues z and 1 are equal.
Proof. Assume z ∈ C \Σµ,λ is an discrete eigenvalue of Hµ,λ . By f ∈ Lsym

2 (T2) we denote the corresponding
eigenfunction. It satisfies the operator equation Hµ,λ f = z f or

(u(x,y)− z) f (x,y)−µv(y)
∫

T
v(t) f (x, t)dt−µv(x)

∫
T

v(t) f (t,y)dt−λ

∫
T

f (t,x+ y− t)dt = 0. (5)

For all x,y ∈ T1 the condition u(x,y)− z 6= 0 is true, because z 6∈ [m;M]. In this case for f from (5) we obtain

f (x,y) =
µv(y)ϕ1(x)+µv(x)ϕ1(y)+λϕ2(x+ y)

u(x,y)− z
, (6)

in the last equality the functions ϕ1(·) and ϕ2(·) has form

ϕ1(x) :=
∫

T
v(t) f (x, t)dt (7)

and

ϕ2(x) :=
∫

T
f (t,x− t)dt. (8)

Putting (6) for f to (7) and (8), we get that the system of equations

∆
(1)
µ (x ;z)ϕ1(x) = µv(x)

∫
T

v(t)ϕ1(t)dt
u(x, t)− z

+λ

∫
T

v(t− x)ϕ2(t)
u(x, t− x)− z

, (9)

∆
(2)
λ
(x ;z)ϕ2(x) = 2µ

∫
T

v(x− t)ϕ1(t)dt
u(t,x− t)− z

,
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has a non zero solution iff (6) has a non zero solution.
By construction of the set Ωµ,λ we obtain ∆

(1)
µ (x ;z) 6= 0 and ∆

(2)
λ
(x ;z) 6= 0 under the condition z 6∈Ωµ,λ and x ∈ T.

Moreover, (9) has a non zero solution iff

ϕ1(x) =
µυ(x)

∆
(1)
µ (x ;z)

∫
T

υ(t)ϕ1(t)dt
u(x, t)− z

+
λ

∆
(1)
µ (x ;z)

∫
T

υ(t− x)ϕ2(t)
u(x, t− x)− z

,

ϕ2(x) =
2µ

∆
(2)
λ
(x ;z)

∫
T

υ(x− t)ϕ1(t)dt
u(t,x− t)− z

or

ϕ = Tµ,λ (z)ϕ, ϕ ∈ L(2)
2 (T) (10)

has a non zero solution.
Now let us show that, in addition, the multiplicities of the discrete eigenvalues z and 1 are equal. Assume that the

multiplicity of the discrete eigenvalue z∈C\Σµ,λ of Hµ,λ is equal to n, and the multiplicity of the discrete eigenvalue
γ = 1 of Tµ,λ (z) is equal to m. We show n = m.

Suppose n<m. Then by the assumption for the discrete eigenvalue γ = 1 there are linearly independent eigenvectors
ϕ(i) = (ϕ

(i)
1 ,ϕ

(i)
2 ), i= 1, ...,m of Tµ,λ (z). Determine the functions fi, i= 1, ...,m according to (6). In this for i= 1, ...,m

the equality Hµ,λ fi = z fi is valid. From n < m we receive the existence of a non zero element (c1, . . . ,cm) ∈ Cm with
m
∑

i=1
ciϕ

(i) 6= 0, but
m
∑

i=1
ci fi = 0. We obtain

0 =
m

∑
i=1

ci fi(x,y) =
µv(y)

u(x,y)− z

m

∑
i=1

ciϕ
(i)
1 (x)+

µv(x)
u(x,y)− z

m

∑
i=1

ciϕ
(i)
1 (y)

+
λ

u(x,y)− z

m

∑
i=1

ciϕ
(i)
2 (x+ y) 6= 0.

This fact isn’t valid because of n < m.
If n > m, then there are linearly independent elements fi, i = 1, ...,n corresponding to the discrete eigenvalue z

of Hµ,λ . We know that corresponding eigenvector function to the discrete eigenvalue γ = 1 ofT mu,λ (z) is equal to

ϕ(i) = (ϕ
(i)
1 ,ϕ

(i)
2 ), i = 1, ...,n. From n > m we receive the existence of a non zero element (d1, . . . ,dn) ∈ Cn with

n
∑

i=1
diϕ

(i) = 0. The linearly independence of fi, i = 1, ...,n imply
n
∑

i=1
di fi 6= 0. In this case

0 6=
n

∑
i=1

di fi(x,y) =
µv(y)

u(x,y)− z

n

∑
i=1

diϕ
(i)
1 (x)+

µv(x)
u(x,y)− z

n

∑
i=1

diϕ
(i)
1 (y)

+
λ

u(x,y)− z

n

∑
i=1

diϕ
(i)
2 (x+ y) = 0.

This isn’t valid because of n > m. So n = m. Theorem 1 is completely proved.

ESSENTIAL SPECTRUM OF Hµ,λ .

This section is devoted to the study of σess(Hµ,λ ).
In the corresponding complex Hilbert spaces the norm and the inner product will be denoted by ‖ · ‖ and (·, ·),

respectively.
The set σess(Hµ,λ ) is described in the following theorem.

Theorem 2. The statement σess(Hµ,λ ) = σ(H(1)
µ )∪σ(H(2)

λ
) is true. In addition, σess(Hµ,λ ) consists no more than

3 segments.
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Proof. Firstly, we prove Σµ,λ ⊂ σess(Hµ,λ ). Using Σµ,λ = Ωµ,λ ∪ [m;M] in the beginning we establish [m;M] ⊂
σess(Hµ,λ ). Taking an arbitrary z0 ∈ [m;M] we prove z0 ∈ σess(Hµ,λ ). To establish the last statement it suffices to find
a sequence of orthonormal vector functions {Fn} ⊂ Lsym

2 (T2) (Weyl’s criterion [3]) that satisfying

lim
n→∞
‖(Hµ,λ − zE)Fn‖= 0. (11)

The symmetric function u(·, ·) is continuous on T2 and hence we receive the existence of some point (x0,y0) ∈ T2

with z0 = u(x0,y0).
Put

Wn :=Vn(x0)×Vn(y0), n ∈ N

with

Vn(x0) :=
{

x ∈ T :
1

n+n0 +1
< |x− x0|<

1
n+n0

}
,

here the quantity n0 ∈ N is selected from the condition Vn(x0)∩Vn(y0) = /0 for any n ∈ N (assumed x0 6= y0).
We denote the Lebesgue measure of W by mes(W ) and the characteristic function of the set W by χW (·). Determine

Fn(x,y) :=
χWn(x,y)+χWn(y,x)√

2mes(Wn)
.

An orthonormality of {Fn} follows from its construction.
We estimate ‖(Hµ,λ − z0E)Fn‖:

‖Hµ,λ − z0E)Fn‖2 ≤ 2 sup
(x,y)∈Wn

|u(x,y)− z0|2 +
[

8µ
2 max

x∈T
|v(x)|2 +2λ

2
]

mes(Vn(x0)).

Taking into account the determination of Vn(x0) and the fact that the function u(·, ·) is a continuous at (x0,y0) ∈ T2

we receive ‖(Hµ,λ − z0E)Fn‖→ 0 with n→ ∞, it means z0 ∈ σess(Hµ,λ ). Consequently [m;M]⊂ σess(Hµ,λ ).
To show the inclusion Ωµ,λ ⊂σess(Hµ,λ ) we take an arbitrary point zµ,λ ∈Ωµ,λ and we show that zµ,λ ∈σess(Hµ,λ ).

We differ the cases: zµ,λ ∈ [m;M] and zµ,λ 6∈ [m;M]. For the case zµ,λ ∈ [m;M], the fact zµ,λ ∈ σess(Hµ,λ ) is proved
in the beginning of the proof.

Let

zµ,λ ∈
⋃
k∈T
{σdisc(h

(1)
µ (k))}\ [m;M].

It follows from the determination of
⋃

k∈T{σdisc(h
(1)
µ (k))} that the statement ∆

(1)
µ (k1 ;zµ) = 0 is valid for some k1 ∈ T.

We determine

Φn(x,y) :=
v(y)ϕn(x)+ v(x)ϕn(y)

2(u(x,y)− zµ,λ )

with

ϕn(x) :=
cn(x)χVn(x0)(x)√

mes(Vn(x0))
.

Here cn(·) ∈ L2(T) is chosen from

(Φn,Φm) =
1

2
√

mes(Vn(x0))
√

mes(Vm(y0))

∫
Vn(x0)

∫
Vm(y0)

v(s)v(t)cn(s)cm(t)
(u(s, t)− zµ,λ )2 dsdt = 0 (12)

with n 6= m, ‖Φn‖= 1.
For completeness we give the assertion about {cn(·)}:
Proposition 1. There is an ortho-normal system {cn(·)} ⊂ L2(T) satisfying suppcn(·)⊂Vn(x0) with (12).

030005-7

 14 Septem
ber 2023 09:59:50



Similar Proposition is proven in [20].
Next we have to prove

lim
n→∞
‖(Hµ,λ − zµ,λ E)Φn‖= 0.

For positive integer n we estimate ‖(Hµ,λ − zµ,λ E)Φn‖

‖(Hµ,λ − zµ,λ E)Φn‖2 ≤C(1)
µ,λ mes(Vn(x0))+C(2)

µ,λ sup
x∈Vn(x0)

|∆(1)
µ (x; zµ,λ )|2 (13)

for some C(α)
µ,λ > 0, α = 1,2.

We know mes(Vn(x0)) → 0 and sup
x∈Vn(x0)

|∆(1)
µ (x; zµ,λ )|2 → 0 with n → ∞. From (13) we receive ‖(Hµ,λ −

zµ,λ E)Φn‖→ 0 for n→ ∞ and zµ,λ ∈ σess(Hµ,λ ). From arbitrariness of zµ,λ we receive⋃
k∈T
{σdisc(h

(1)
µ (k))} ⊂ σess(Hµ,λ ).

The statement ⋃
k∈T
{σdisc(h

(2)
λ
(k))} ⊂ σess(Hµ,λ )

can be proven similarly. Therefore, Σµ,λ ⊂ σess(Hµ,λ ) is valid.
We will show the statement σess(Hµ,λ ) ⊂ Ωµ,λ . For each µ,λ > 0 and z ∈ C \Ωµ,λ the operator Tµ,λ (z) is a

completely continuous operator-valued function on C\Ωµ,λ . The Hamiltonian Hµ,λ is a self-adjoint, and hence from
Theorem 1 we receive the existence of (I−Tµ,λ (z))−1, if z ∈ R and |z| is a large. From Fredholm’s analytic theorem
[3] we receive the existence of a discrete set Sµ,λ ⊂ C \Ωµ,λ as well existence and analyticity of (I− Tµ,λ (z))−1

on C \ (Sµ,λ ∪Ω mu,λ ). It is meromorphic on C \Ωµ,λ with finite rank residues. Then σ(Hµ,λ ) \Ωµ,λ is consist of
isolated elements, and the boundary of Ωµ,λ maybe the only possible accumulation points. The statement

σ(Hµ,λ )\Ωµ,λ ⊂ σdisc(Hµ,λ ) = σ(Hµ,λ )\σess(Hµ,λ )

valid. Consequently, σess(Hµ,λ )⊂Ωµ,λ is true. As a result, we receive σess(Hµ,λ ) = Ωµ,λ .

Using the monotonicity property of ∆
(1)
µ (k ; ·) (resp. ∆

(2)
λ
(k ; ·)) on (−∞,m1(k)) (resp. (−∞,m2(k))) as well

∆
(1)
µ (k ;z) > 1 and ∆

(2)
λ
(k ;z) > 1 for all z > M we receive that the operator h(1)µ (k) (resp. h(2)

λ
(k)) has no more than

1 simple discrete eigenvalue on (−∞;m) and hasn’t discrete eigenvalues on (M;+∞). Applying well known theorem
on the spectrum of decomposable operators [3] and the determination of Ωµ,λ we receive that Ωµ,λ is consist of the
union of at most 2 segments. From here we obtain that the max number of segments of Σµ,λ is 3. Theorem 2 is
proven.

CONCLUSION.

In the present paper the spectral properties of the model Hamiltonian Hµ,λ , µ,λ > 0 related to the three particle
system on a 1D lattice interacting via non-local potentials is investigated. The relation between this Hamiltonian and
the three-particle Schrödinger operator on a 1D lattice is established. The two channel operators H(1)

µ and H(2)
λ

, which
correspond to Hµ,λ are singled out, their spectra are determined by the spectrum of the family of Friedrichs model.
For the eigenfunctions of Hµ,λ , an analogue of the Faddeev type equation is constructed. It is shown that σess(Hµ,λ )

is equal to the union of σ(H(1)
µ ) and σ(H(2)

λ
). We establish that σess(Hµ,λ ) is consist of at most 3 segments.
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