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Abstract. We have analyzed the model Hamiltonian operator Hy, 3, U, A > 0 related to the three particle system on a 1D lattice

interacting via non-local potentials. The two channel operators H,S]) and H/(lz), which correspond to H, ; are singled out, their

spectra are determined. For the eigenfunctions of H,, 3, we construct an analogue of the Faddeev equation. It is shown that

A) is consist of at most 3 segments.

Oess(H,, 3, is equal to the union of G(H/Etl)) and G(Hl(lz)). We establish that Gegs (H,,

INTRODUCTION

The most actively investigated objects in operator theory are the essential spectrum of the Hamiltonians connected
with the 3 particle system on lattices. One of the most challenging aspects of these operators’ spectral analysis is
describing the essential spectrum’s position. Many studies, for example, [1, 2] are devoted to the study of the essential
spectrum of discrete Schro dinger operators with local potentials. In particular, it was demonstrated in [1] that the
essential spectrum of a three-particle discrete Schrodinger operator is the union of at most finitely many segments,
even if the corresponding two-particle discrete Schrodinger operator has an unlimited number of eigenvalues. The
Weyl criteria and the Hunziker-van Winter-Zhislin theorem [3] are two well-known approaches for determining the
position of the essential spectra of such operators.

In the following article we have investigated the model operator (Hamiltonian) H), 3 related with 3 particle system
on a 1D lattice and interacting via non-local potentials. Such operators are commonly used in the Hubbard model [4,
5]. Although the Hubbard model is now one of the most frequently studied many-electron metal models, very few
exact results for the spectrum and wave functions of the crystal described by this model have been achieved. As a
result, obtaining exact findings, at least in certain instances, such as non-local potentials, is very appealing.

o

For learning the location of Gess (H), 2 ), first of all we should introduce two channel operators HA(LI) and H f related

to H, ;. When we use the theorem on the spectrum of decomposable operators, we depict the sets O'(Hfll)) and
G(H)(Lz) ) through the spectra of the families Friedrichs models. We then show that Ges(H, 1) = G(H,il) YU G(Hf)),
and that the set Gess(H) 5) is consist of at most 3 segments. In addition, we determine the new two-particle and
three-particle branches of Gess(Hy 7).

The research paper is consist of the following: Section 1 is an introduction to the whole work. In Section 2, the

model operator H,, ; is described as a bounded self-adjoint operator in the Hilbert space. In Section 3, we have

considered the channel operators H,(Ll) and H ;2) related to H, ; and the corresponding families of Friedrichs models,
as well as defined their spectrum. Section 4 is dedicated to the derivation an analogue of the Faddeev equation for the
eigenfunctions of H,, ;. Section 5 is devoted to Oess(Hy, 7 ), as well as its new branches are studied.

A LATTICE THREE-PARTICLE HAMILTONIAN (MODEL OPERATOR)

Let T! be 1D torus. The Hilbert space L;ym (T?) is defined as a space of square-integrable symmetric (in general
complex valued) functions with domain T?. We study the model Hamiltonian H,, ; defined by

Hyp =Hy—u(Vi+V2) —AV; (1)
in L™ (T?), where Hy is a non perturbed operator, i.e. the multiplication operator:

(Hof)(xvy) = u(x,y)f(x,y);
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the operators Vy,, & = 1,2,3 are partial integral operators of the form:
(V)(y) =v0) [ vOf oy,
(Vo)) = (@) [ v f @y
(Van)(wy) = [ fx+y =i,

so called non-local interaction operators.

Here f € L™ (T?), is the kernel function v(-) is a continuous function on T! with real values, and the multiplied
function u(-, ) is continuous symmetric on T? with real values.

The boundedness and self-adjointness of the model Hamiltonian H,, ; in L;ym (T?) defined by formula (1) can be
shown easily.

Note that the model Hamiltonian H, ; is related with the system of 3 quantum particles on 1D lattice Z'. Indeed.

Let us consider the operator energy Hofa3 arbitrary particle system on Z'. This Hamiltonian acts in /»(Z?) and
acting as

Hy(ny,na,n3) =Y [E1(s)W(ny +5,n2,n3) + &2(s) Y (n1,mp + 5,n3) +
seZ

&(s)w(n1,n2,n3+5)] — [l Onyny + M2 ny + U300,y | W (n1,12,13).

Here for a = 1,2,3 the function €4(+), @ = 1,2,3 is defined on Z' with real values, the number p is the real
(interaction energy of the particles 8 and ), and &, is the Kronecker delta.

We assume that €4 (s) depends only on |s|, s € Z', is positive only for s = 0, and moreover, satisfies the inequality
|€a(s)| < Cexp(—als|) for some a >0 and C > 0.

The boundedness and self-adjointness of the operator Hin 1, (Z?) is clear.
Along with the 3 particle Hamiltonian H in I,(Z?), we study 2 particle Hamiltonians A, @ = 1,2,3 in I,(Z?) as

haW(ng,ny) =Y. [E5(s)Y(ng +5,1y) + &) Y(ng,ny+5)] — aSugn, W(ng,ny),
s€Z

avﬁvY: 1,2,3, a#ﬁ7ﬁ 75')/,}/75 .

Applying the direct integral expansion and Fourier transform, one can reduce the problem of studying of the spec-

trum of H and hy, o = 1,2,3, to before analyzing families bounded self-adjoint operators H(K), K € T! (3 particle
Schrodinger operators on a lattice) and hq(k), k € T (2 particle Schrodinger operators on a lattice) in L (T?) and
Ly(T"), respectively (see [8, 9]), having the form

(HK)) () =ex(x)f ()= [ fea)de—pia [ fe.)ar=

T!
M3A1f(t>x+y_t)dta fELZ(TZ)a

where
ex(x,y) :==&1(x) +&(y) +&(K—x—y),
and
(o)1) = &) ()£ () ~ b [ f(0)d, £ € Lo(T")
with

el (x) 1= g5(x) + & (k—x), {a, B, 7} ={1,2,3}, B< 7.

By virtue of the assumptions imposed on the function €(-), its Fourier transform & is real analytic as well even
function and has a unique global min at the fixed point x =0 € T'.
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One can prove that if € (x) = & (x) and f1; = 1, then the subspace L™ (T?) is an invariant for H(K) Therefore,
the operator Hy, 3 is a more general model than this restricted Hamiltonian.
The lattice model operators (more general model than Hy, o) of the form

A=A0— K — K> : L((TY?) — Ly((T%)?) 2
with

(Aof)(x7y) = w(x,y)f(x,y), /e LQ((Td)z);

(KN = [ ensends. Kn)wy)= [ kaftods, e LT

are discussed by many authors, see for instance the papers [6, 7, 8, 9, 10, 11, 12]. Here w(-,-) and kq(-,), ¢ = 1,2
are function with real-values and continuous on (Td)z. In [13, 14, 15, 16] the spectrum of the matrices, where one of
the diagonal elements has form (2) and if this diagonal operator is a multiplication operator was discussed in [17, 18,
19].

The main objectives of this article are as follows:
(1) to study the subsets of spectrum of the family of Friedrichs models;

(ii) to determine the so called channel operators Hl(ll) and H )(Lz) corresponding to H, ; and establish their spectra;
(iii) to construct the Faddeev type integral equation for the eigenfunctions Hy, ; ;

(iv) to prove that Gess(Hy, 3 ) is equal to the union of G(H‘(LI)) and o (H /%2));

(V) to show that Gegs (H% 2 ) as a set consists of at most 3 segments with finite length;
(vi) to determine the subsets (branches) of Gess(Hy, 3,).-
In the following sections we discuss above mentioned objectives.

CHANNEL OPERATORS AND FAMILIES OF FRIEDRICHS MODELS.

To obtain an exact information about GCSS(HM ») in this section we determine two operators Hfll) and H 7@ (so-called
channel operators). They act in L, (T?) by

HY = Hy—puvi, HP =Hy—Avs.

The boundedness and self-adjointness of Hﬁl) and H f) in L, (T?) can be proven easily.
For the bounded function u; (-) on T! we determine the multiplication operator Uy :

(U18)(x,y) =1 (x)g(x,y), g€ Lx(T?).

Then the operator Hﬁl) commutes with Uj.

Analogously the operator H /{2) commutes with any multiplication operator U, defined as

(U2g)(x,y) = wa(x+)g(x,y), g€ La(T?),

where u;(+) is the bounded function on T'.
By this reason from

Ly(T?) = ®Ly (T dk 3)
keT!
we get the decompositions
m,/ (1) (@) _ @
H, = ®hy,’ (k)dk and H,” = Gh,” (k)dk. 4
K keT! K ( ) A keT! 2 ( ) @)
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In the decomposition (4) the fiber operators (families of bounded self-adjoint operators (Friedrichs models)) h,g) (k),
hslz) (k), k€ T, acton Ly(T') by
i () o= 1)) — vy, B (k) 2= B (k) = A,

where héa) (k), a = 1,2 are the multiplication operators on L, (T"'):

(h" (k) w) (x) = u(k, X)W (x), € Lo(T");
(h (k)W) (x) = ulx,k—x)y(x), v e Ly(T"),

the operators vy, @ = 1,2 are integral operators on Ly (T) :

(1)) =v) [ vOy@dr, (2= [ wodn ey,

T!
They are usually called the non-local interaction operators.
Using (vg)* = vq, rankvy = 1 and Weyl’s theorem, we conclude that

Gess (js (k) = 1 (k): M (k)]
and
Gess (37 (k) = [y (k): Ma (k).
where
i (k) = minu(k,x), M (k) == maxu(k,x),

my (k) ;= minu(x,k—x), M,(k):= maxu(x,k—x).
xeT x€T

In order to study Ogisc (h,(}) (k)) and Ogigc (hslz) (k)) we determine the analytic functions on C\ [mg(k); Mg (k)] by

2

Doy o1 ve(r)dr

A (ki) i=1—p 1 u(k,t)—7’
dt

(2)
A ;2)=1— _
a (k:2) A v ou(t,k—1t)—z

Simple calculations show that for any fixed k € T the quantity z4 (k) € C\ [mg(k); Mg (k)] is a discrete eigenvalue of
hﬂ)(k) (respectively h%z)(k)) iff Aﬁ)(k;zl (k)) = 0 (respectively A%z)(k;@ (k)) = 0). As conclusion for Gdisc(h,(}) (k))

and Gdisc(hglz) (k)) we receive

Gaise (Rt (k) = {€ € C\ [my (k): My (k)] : Ay (k3 &) = 0},
Gaise () (k) = {€ € C\ [ma(k); Mo (k)] : A (k3 &) = 0}.

Using the essential and discrete spectra of hﬁ) (k) and hf) (k), we may precisely describe the sets O'(H’(Ll)) and

c(H ;Lz)), respectively. It is established in the following assertion.
Lemma 1. We have

a(HY) = | o(hi (k) = | Guise (k) (k) U [m: M];

keT keT
o(H) = Ho(h&” ®=U Guise (W2 () U [ M],

where

m EEE%“( 1 X)), 2}2’%“( ,X)

Proof. Using the theorem about the spectra of the so called decomposable operators (see, for example, [3]) and

taking into account the structure obtained above (4) for H,(ll) and H )(? we get assertions of Lemma 1.
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THE FADDEEV EQUATION FOR THE EIGENFUNCTIONS OF H, ;.

We construct the Faddeev type operator equations for eigenfunctions corresponding to discrete eigenvalues of the
model Hamiltonian H,, 3 within this section.
We determine the sets:

Qs = | {Guse (1 (1) Uouise (BT (K)}, Zpai= Qua UlmsM]
keT

and the space

LT = {0 = (01, 02) : fu € La(T"), € =1,2}.

Let 4,A >0and z € C\X, ; be fixed. We determine the matrix 7, 3 (z) in L(22) (T!) as

2(2) :—( Ti1(u; 2) TlZ(.uJL;z)).

J Toi(u,Asz) 0

u

The elements of the 2 x 2 matrix 7, 3 (z) acting

(Th1 (15 2)@1) (x) = Ho(x) /rv(t)(Pl(f)dt

Aﬁ)()ﬁZ) Uou(x,t)—z
. B A v(t —x)@a(t)dt
(Tih 25 2)00)e) = 5 — s
2u v(x—1)@(r)dt

(Ta1 (1, 45 2) 1) (x) = Af)(x;z) T u(t,x—t)—z

Here ¢q € Ly(T!), v = 1,2.

Note that for any u,A > 0 and z € C\ X, ; integral operators 711 (U; z), Ti2(U, A; d) and To1 (4, A; z) belong to the
so called Hilbert-Schmidt class, so T, 3 (z) is a completely continuous operator.

We formulate one of the main results of the paper.

Theorem 1. The quantity z € C\ X, 5 is a discrete eigenvalue of H), ; iff the quantity y = 1 is the discrete eigenvalue
of the matrix 7}, 3 (z). In addition, the multiplicities of discrete eigenvalues z and 1 are equal.

Proof. Assume z € C\ L, is an discrete eigenvalue of H, ;. By f € L;ym(Tz) we denote the corresponding
eigenfunction. It satisfies the operator equation H, ; f = zf or

(u(x,) =2 (x3) =) |

T

V) S0 — o) [ V7= [ fexy—ndi=0. )
T T
For all x,y € T! the condition u(x,y) —z # 0 is true, because z ¢ [m; M]. In this case for f from (5) we obtain

() @1 (x) + uv(x) @1 (y) + Apa(x +y)

flxy) = R ; (©6)

in the last equality the functions ¢;(-) and ¢,(+) has form
oix) 1= [ o) f(xnds ™

T

and

0:(0) = [ flt.x—ryar ®)

T

Putting (6) for f to (7) and (8), we get that the system of equations
(1) _ ()i (1)d v(t =x) (1)

A ) (x) = o) [P [ TR ©)

v(x—1)@(¢)dt
ult,x—t)—z

A7 (w2)gal) =20 |

)
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has a non zero solution iff (6) has a non zero solution.

By construction of the set Q, ; we obtain Aﬂ) (x;z) #0and Af) (x;2) # 0 under the condition z ¢ Q,, ; and x € T.
Moreover, (9) has a non zero solution iff

L po) foed A [ pi-xe)
o1 (x) = ALI)(X;Z)/f u(x,t)—z +AL1>(x;z)/r”(x’t_x)_Z,
(1) = 2u v(x—1)@(t)dt

A;Z) (x;z) J1 ult,x—1)—

or

=T, ()0, @eL?(T) (10)

has a non zero solution.

Now let us show that, in addition, the multiplicities of the discrete eigenvalues z and 1 are equal. Assume that the
multiplicity of the discrete eigenvalue z € C\ X, 2 of H, ; is equal to n, and the multiplicity of the discrete eigenvalue
y=10f T, 5 (z) is equal to m. We show n = m.

Suppose n < m. Then by the assumption for the discrete eigenvalue y = 1 there are linearly independent eigenvectors
ol = ((pl(i)7(p2(i)), i=1,...,mof T, ; (z). Determine the functions f;,i=1,...,m according to (6). In this fori =1,...,m
the equality H), 3 f, = zf; is valid. From n < m we receive the existence of a non zero element (cy,...,c,) € C" with

Zc(p #£0, but):c,fl70 We obtain

Oz»ic"f"(x’” L@)Z ol () + -3 ) )

u(x,y) u(x,y) —z =

m
Z x+y #0.

This fact isn’t valid because of n < m.
If n > m, then there are linearly independent elements f;, i = 1,...,n corresponding to the discrete eigenvalue z
of Hy, ;. We know that corresponding eigenvector function to the discrete eigenvalue ¥ =1 of7',,, 3 (z) is equal to

ol = ((pfi), (pg)), i=1,...,n. From n > m we receive the existence of a non zero element (di,...,d,) € C" with

n i n
Yy d,-(p(’) = 0. The linearly independence of f;, i = 1,...,n imply ¥ d;f; # 0. In this case
=1 i=1

o#idmu,y) (“”y()y)z e WU

x—|—y =0.

M=

xy—z=

This isn’t valid because of n > m. So n = m. Theorem 1 is completely proved.

ESSENTIAL SPECTRUM OF H, ;.

This section is devoted to the study of Gess(Hj, 2)-

In the corresponding complex Hilbert spaces the norm and the inner product will be denoted by || - || and (,-),
respectively.

The set Oess(H,, 3 ) is described in the following theorem.

Theorem 2. The statement Gess(Hy, 2) = G(Hl(ll)) U O'(Hf)) is true. In addition, Ges(Hj, 1) consists no more than
3 segments.
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Proof. Firstly, we prove X, 3 C Gess(Hy 2)- Using £, 3 = Q3 U[m; M] in the beginning we establish [m; M] C
Oess (Hy, 2 )- Taking an arbitrary zo € [m; M] we prove zo € Oess(Hy 2 )- To establish the last statement it suffices to find
a sequence of orthonormal vector functions {F,} C L;ym(Tz) (Weyl’s criterion [3]) that satisfying

Tim |[(H, 1 —<E)F | = 0. an

The symmetric function u(-,-) is continuous on T? and hence we receive the existence of some point (xg,yo) € T?
with zo = u(xo,y0).
Put
W, = Vn(xO) Xvn(yO)a neN
with

e
n+ng+1 n—+ng

Va(xo) := {x eT:

here the quantity ng € N is selected from the condition V,,(xo) NV, (yo) = @ for any n € N (assumed xg # y).
We denote the Lebesgue measure of W by mes(W) and the characteristic function of the set W by yw (-). Determine

) - AW, (x,y) + Xw, (y,x) ]

F,(x,
(. 2mes(W,)

An orthonormality of {F,} follows from its construction.
We estimate [|(Hy 5 — 20E)F ||:

|Hy 3 —20E)F||* <2 sup [u(x,y) —z0|* + |8u* max [v(x)[* + 247 | mes(V,(xo)).
(x)EWn el

Taking into account the determination of V;,(x) and the fact that the function u(-,-) is a continuous at (xo,yo) € T?
we receive ||(Hy 3 —20E)Fy|| — 0 with n — oo, it means zo € Oess(Hy 2 ). Consequently [m; M] C Oess(H, 2.)-

To show the inclusion Q, ; C GCSS(H”_’,I) we take an arbitrary point z;, 5 € Q, 3 and we show that z;; 3 € Oess(Hy 3.)-
We differ the cases: z,, ; € [m;M] and z,, 3 ¢ [m;M]. For the case z, ; € [m;M], the fact z;, 3 € Gess(Hy 1) is proved
in the beginning of the proof.

Let

zua € U {Guise (h (k) 3\ [ms M].
keT

It follows from the determination of Uyt { Gdisc (hill) (k))} that the statement AE}) (k1 32y) = 0/is valid for some k; € T.
We determine

) 9) +v()9u(y)
P = = ) — 2 0)
with
_ )2 (a0) )
P = e

Here ¢, (-) € Ly(T) is chosen from

1 / / v(s)v(t)cn(s)em(t)
2+/mes(V,(x0)) /mes(Viu (v0)) /Valxo) JVn(ro)  (u(s,2) —24.2)*

(q)naq)m) = dsdt =0 (12)

with n # m, |®,] = 1.
For completeness we give the assertion about {c,(-)}:
Proposition 1. There is an ortho-normal system {c,(-)} C L»(T) satisfying suppc,(-) C V,,(x0) with (12).
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Similar Proposition is proven in [20].
Next we have to prove

i [[(H . — 21 E)Bu]| = 0.
For positive integer n we estimate ||(Hy 3 — 2z 2 E)®y|

1
(Hyp — 2y 2 B)®u[* < C) mes(Va(x0)) + € Esvu{))\A D z00) (13)
xeVn(Xo

forsomeC</%>O a=1,2.

We know mes(V,(x9)) — 0 and sup |A£L1)(x; zup)* = 0 with n — e From (13) we receive ||(H,; —
xEVa(x0)

7y 2 E)®y|| — 0 for n — oo and z, 5 € Oess(H), 3 ). From arbitrariness of z,, 5 we receive

U {dec k))} C Gess(Hu,l)-
keT
The statement
U {Gdlsc } C Ogss (H/J,l)
keT

can be proven similarly. Therefore, £, 3 C Gess(H 2 ) is valid.
We will show the statement Oess(H,3) C €y 2. For each u,4 >0 and z € C\ Q3 the operator T}, ; (z) is a
completely continuous operator-valued function on C\Q“’ 2~ The Hamiltonian H,, ; is a self-adjoint, and hence from

Theorem 1 we receive the existence of (I — T}, 3 (z)) ™", if z € R and 2| is a large. From Fredholm’s analytic theorem

[3] we receive the existence of a discrete set S, 3 C C\ €, ; as well existence and analyticity of (1 — T} ()71
on C\ (S, 42U 1) It is meromorphic on C\ Q, ; with finite rank residues. Then o(H), 3)\ €, 5 is consist of
isolated elements, and the boundary of Q, ; maybe the only possible accumulation points. The statement

0(Hy )\ Qua C 0disc(Hy ) = 0(Hy ) \ Oess(Hy 2)
valid. Consequently, Gess(H, 1) C 3 is true. As aresult, we receive Gess(Hy 2) = Q1 -
Using the monotonicity property of A(l)( ;) (resp. A(z)( ;+)) on (—oo ml( )) (resp. (—eo,my(k))) as well

ALI)(](;Z) > 1 and A; )(k z) > 1 for all z > M we receive that the operator h ( ) (resp. h( (k)) has no more than
1 simple discrete eigenvalue on (—eo;m) and hasn’t discrete eigenvalues on (M +00). Applymg well known theorem
on the spectrum of decomposable operators [3] and the determination of Q, ; we receive that Q,, ; is consist of the
union of at most 2 segments. From here we obtain that the max number of segments of X, 3 is 3. Theorem 2 is
proven.

CONCLUSION.

In the present paper the spectral properties of the model Hamiltonian H,, 3, u,A > 0 related to the three particle
system on a 1D lattice interacting via non-local potentials is investigated. The relation between this Hamiltonian and

the three-particle Schrodinger operator on a 1D lattice is established. The two channel operators H, ,Sl) and H }(Lz)’ which
correspond to Hy, ; are singled out, their spectra are determined by the spectrum of the family of Friedrichs model.
For the eigenfunctions of Hy, 3, an analogue of the Faddeev type equation is constructed. It is shown that Gess(H), 1)

is equal to the union of G(Hfll)) and o(H HP )) We establish that Gess(H, 2 ) is consist of at most 3 segments.
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