Spectrum of a three-particle model Hamiltonian on a onedimensional lattice with non-local potentials ©
 Tulkin H. Rasulov \boldsymbol{D}; Elyor B. Dilmurodov; Khilola G. Khayitova

(W) Check for updates

AIP Conf. Proc. 2764, 030005 (2023)
https://doi.org/10.1063/5.0144164

Articles You May Be Interested In

A functional integral formalism for quantum spin systems
J. Math. Phys. (July 2008)

500 kHz or 8.5 GHz ?

And all the ranges in between.
Lock-in Amplifiers for your periodic signal measurements

Spectrum of a Three-Particle Model Hamiltonian on a One-Dimensional Lattice with Non-Local Potentials

Tulkin H. Rasulov, ${ }^{1,2, a)}$ Elyor B. Dilmurodov, ${ }^{1,2, b)}$ and Khilola G. Khayitova ${ }^{1}$
${ }^{1)}$ Bukhara State University, M.Iqbol street 11, Bukhara, Uzbekistan.
${ }^{2)}$ Bukhara branch of the Institute of Mathematics, Bukhara, Uzbekistan
${ }^{\text {a) }}$ Corresponding author: rth@mail.ru
${ }^{\text {b) }}$ Electronic mail: elyor.dilmurodov@mail.ru

Abstract

We have analyzed the model Hamiltonian operator $H_{\mu, \lambda}, \mu, \lambda>0$ related to the three particle system on a 1D lattice interacting via non-local potentials. The two channel operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$, which correspond to $H_{\mu, \lambda}$ are singled out, their spectra are determined. For the eigenfunctions of $H_{\mu, \lambda}$, we construct an analogue of the Faddeev equation. It is shown that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is equal to the union of $\sigma\left(H_{\mu}^{(1)}\right)$ and $\sigma\left(H_{\lambda}^{(2)}\right)$. We establish that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is consist of at most 3 segments.

INTRODUCTION

The most actively investigated objects in operator theory are the essential spectrum of the Hamiltonians connected with the 3 particle system on lattices. One of the most challenging aspects of these operators' spectral analysis is describing the essential spectrum's position. Many studies, for example, $[1,2]$ are devoted to the study of the essential spectrum of discrete Schrö dinger operators with local potentials. In particular, it was demonstrated in [1] that the essential spectrum of a three-particle discrete Schrödinger operator is the union of at most finitely many segments, even if the corresponding two-particle discrete Schrödinger operator has an unlimited number of eigenvalues. The Weyl criteria and the Hunziker-van Winter-Zhislin theorem [3] are two well-known approaches for determining the position of the essential spectra of such operators.

In the following article we have investigated the model operator (Hamiltonian) $H_{\mu, \lambda}$ related with 3 particle system on a 1D lattice and interacting via non-local potentials. Such operators are commonly used in the Hubbard model [4, 5]. Although the Hubbard model is now one of the most frequently studied many-electron metal models, very few exact results for the spectrum and wave functions of the crystal described by this model have been achieved. As a result, obtaining exact findings, at least in certain instances, such as non-local potentials, is very appealing.

For learning the location of $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$, first of all we should introduce two channel operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ related to $H_{\mu, \lambda}$. When we use the theorem on the spectrum of decomposable operators, we depict the sets $\sigma\left(H_{\mu}^{(1)}\right)$ and $\sigma\left(H_{\lambda}^{(2)}\right)$ through the spectra of the families Friedrichs models. We then show that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)=\sigma\left(H_{\mu}^{(1)}\right) \cup \sigma\left(H_{\lambda}^{(2)}\right)$, and that the set $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is consist of at most 3 segments. In addition, we determine the new two-particle and three-particle branches of $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$.

The research paper is consist of the following: Section 1 is an introduction to the whole work. In Section 2, the model operator $H_{\mu, \lambda}$ is described as a bounded self-adjoint operator in the Hilbert space. In Section 3, we have considered the channel operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ related to $H_{\mu, \lambda}$ and the corresponding families of Friedrichs models, as well as defined their spectrum. Section 4 is dedicated to the derivation an analogue of the Faddeev equation for the eigenfunctions of $H_{\mu, \lambda}$. Section 5 is devoted to $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$, as well as its new branches are studied.

A LATTICE THREE-PARTICLE HAMILTONIAN (MODEL OPERATOR)

Let \mathbf{T}^{1} be 1D torus. The Hilbert space $L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$ is defined as a space of square-integrable symmetric (in general complex valued) functions with domain \mathbf{T}^{2}. We study the model Hamiltonian $H_{\mu, \lambda}$ defined by

$$
\begin{equation*}
H_{\mu, \lambda}:=H_{0}-\mu\left(V_{1}+V_{2}\right)-\lambda V_{3} \tag{1}
\end{equation*}
$$

in $L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$, where H_{0} is a non perturbed operator, i.e. the multiplication operator:

$$
\left(H_{0} f\right)(x, y)=u(x, y) f(x, y) ;
$$

the operators $V_{\alpha}, \alpha=1,2,3$ are partial integral operators of the form:

$$
\begin{aligned}
& \left(V_{1} f\right)(x, y)=v(y) \int_{\mathbf{T}^{1}} v(t) f(x, t) d t \\
& \left(V_{2} f\right)(x, y)=v(x) \int_{\mathbf{T}^{1}} v(t) f(t, y) d t \\
& \left(V_{3} f\right)(x, y)=\int_{\mathbf{T}^{1}} f(t, x+y-t) d t
\end{aligned}
$$

so called non-local interaction operators.
Here $f \in L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$, is the kernel function $v(\cdot)$ is a continuous function on \mathbf{T}^{1} with real values, and the multiplied function $u(\cdot, \cdot)$ is continuous symmetric on \mathbf{T}^{2} with real values.

The boundedness and self-adjointness of the model Hamiltonian $H_{\mu, \lambda}$ in $L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$ defined by formula (1) can be shown easily.

Note that the model Hamiltonian $H_{\mu, \lambda}$ is related with the system of 3 quantum particles on 1D lattice \mathbf{Z}^{1}. Indeed. Let us consider the operator energy \widehat{H} of a 3 arbitrary particle system on \mathbf{Z}^{1}. This Hamiltonian acts in $l_{2}\left(\mathbf{Z}^{3}\right)$ and acting as

$$
\begin{aligned}
\widehat{H} \psi\left(n_{1}, n_{2}, n_{3}\right)= & \sum_{s \in \mathbf{Z}}\left[\widehat{\varepsilon}_{1}(s) \psi\left(n_{1}+s, n_{2}, n_{3}\right)+\widehat{\varepsilon}_{2}(s) \psi\left(n_{1}, n_{2}+s, n_{3}\right)+\right. \\
& \left.\widehat{\varepsilon}_{3}(s) \psi\left(n_{1}, n_{2}, n_{3}+s\right)\right]-\left[\mu_{1} \delta_{n_{2} n_{3}}+\mu_{2} \delta_{n_{1} n_{3}}+\mu_{3} \delta_{n_{1} n_{2}}\right] \psi\left(n_{1}, n_{2}, n_{3}\right) .
\end{aligned}
$$

Here for $\alpha=1,2,3$ the function $\widehat{\varepsilon}_{\alpha}(\cdot), \alpha=1,2,3$ is defined on \mathbf{Z}^{1} with real values, the number μ_{α} is the real (interaction energy of the particles β and γ), and $\delta_{n m}$ is the Kronecker delta.

We assume that $\widehat{\varepsilon}_{\alpha}(s)$ depends only on $|s|, s \in \mathbf{Z}^{1}$, is positive only for $s=0$, and moreover, satisfies the inequality $\left|\widehat{\varepsilon}_{\alpha}(s)\right| \leq C \exp (-a|s|)$ for some $a>0$ and $C>0$.

The boundedness and self-adjointness of the operator \widehat{H} in $l_{2}\left(\mathbf{Z}^{3}\right)$ is clear.
Along with the 3 particle Hamiltonian \widehat{H} in $l_{2}\left(\mathbf{Z}^{3}\right)$, we study 2 particle Hamiltonians $\widehat{h}_{\alpha}, \alpha=1,2,3$ in $l_{2}\left(\mathbf{Z}^{2}\right)$ as

$$
\begin{aligned}
\widehat{h}_{\alpha} \psi\left(n_{\beta}, n_{\gamma}\right)= & \sum_{s \in \mathbf{Z}}\left[\widehat{\varepsilon}_{\beta}(s) \psi\left(n_{\beta}+s, n_{\gamma}\right)+\widehat{\varepsilon}_{\gamma}(s) \psi\left(n_{\beta}, n_{\gamma}+s\right)\right]-\mu_{\alpha} \delta_{n_{\beta} n_{\gamma}} \psi\left(n_{\beta}, n_{\gamma}\right), \\
& \alpha, \beta, \gamma=1,2,3, \alpha \neq \beta, \beta \neq \gamma, \gamma \neq \alpha
\end{aligned}
$$

Applying the direct integral expansion and Fourier transform, one can reduce the problem of studying of the spectrum of \widehat{H} and $\widehat{h}_{\alpha}, \alpha=1,2,3$, to before analyzing families bounded self-adjoint operators $H(K), K \in \mathbf{T}^{1}$ (3 particle Schrödinger operators on a lattice) and $h_{\alpha}(k), k \in \mathbf{T}$ (2 particle Schrödinger operators on a lattice) in $L_{2}\left(\mathbf{T}^{2}\right)$ and $L_{2}\left(\mathbf{T}^{1}\right)$, respectively (see $[8,9]$), having the form

$$
\begin{aligned}
(H(K) f)(x, y)= & \varepsilon_{K}(x, y) f(x, y)-\mu_{1} \int_{\mathbf{T}^{1}} f(x, t) d t-\mu_{2} \int_{\mathbf{T}^{1}} f(t, y) d t- \\
& \mu_{3} \int_{\mathbf{T}^{1}} f(t, x+y-t) d t, f \in L_{2}\left(\mathbf{T}^{2}\right)
\end{aligned}
$$

where

$$
\varepsilon_{K}(x, y):=\varepsilon_{1}(x)+\varepsilon_{2}(y)+\varepsilon_{3}(K-x-y)
$$

and

$$
\left(h_{\alpha}(k)\right) f(x)=\varepsilon_{k}^{(\alpha)}(x) f(x)-\mu_{\alpha} \int_{\mathbf{T}^{1}} f(t) d t, f \in L_{2}\left(\mathbf{T}^{1}\right)
$$

with

$$
\varepsilon_{k}^{(\alpha)}(x):=\varepsilon_{\beta}(x)+\varepsilon_{\gamma}(k-x), \quad\{\alpha, \beta, \gamma\}=\{1,2,3\}, \beta<\gamma .
$$

By virtue of the assumptions imposed on the function $\widehat{\varepsilon}_{\alpha}(\cdot)$, its Fourier transform ε_{α} is real analytic as well even function and has a unique global min at the fixed point $x=0 \in \mathbf{T}^{1}$.

One can prove that if $\varepsilon_{1}(x)=\varepsilon_{2}(x)$ and $\mu_{1}=\mu_{2}$, then the subspace $L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$ is an invariant for $H(K)$ Therefore, the operator $H_{\mu, \lambda}$ is a more general model than this restricted Hamiltonian.

The lattice model operators (more general model than $H_{\mu, 0}$) of the form

$$
\begin{equation*}
A=A_{0}-K_{1}-K_{2}: L_{2}\left(\left(\mathbf{T}^{\mathrm{d}}\right)^{2}\right) \rightarrow L_{2}\left(\left(\mathbf{T}^{\mathrm{d}}\right)^{2}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{gathered}
\left(A_{0} f\right)(x, y)=w(x, y) f(x, y), \quad f \in L_{2}\left(\left(\mathbf{T}^{\mathrm{d}}\right)^{2}\right) \\
\left(K_{1} f\right)(x, y)=\int_{\mathbf{T}^{\mathrm{d}}} k_{1}(x, t) f(t, y) d s, \quad\left(K_{2} f\right)(x, y)=\int_{\mathbf{T}^{\mathrm{d}}} k_{2}(t, y) f(x, t) d t, \quad f \in L_{2}\left(\left(\mathbf{T}^{\mathrm{d}}\right)^{2}\right)
\end{gathered}
$$

are discussed by many authors, see for instance the papers $[6,7,8,9,10,11,12]$. Here $w(\cdot, \cdot)$ and $k_{\alpha}(\cdot, \cdot), \alpha=1,2$ are function with real-values and continuous on $\left(\mathbf{T}^{d}\right)^{2}$. In $[13,14,15,16]$ the spectrum of the matrices, where one of the diagonal elements has form (2) and if this diagonal operator is a multiplication operator was discussed in $[17,18$, 19].

The main objectives of this article are as follows:
(i) to study the subsets of spectrum of the family of Friedrichs models;
(ii) to determine the so called channel operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ corresponding to $H_{\mu, \lambda}$ and establish their spectra;
(iii) to construct the Faddeev type integral equation for the eigenfunctions $H_{\mu, \lambda}$;
(iv) to prove that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is equal to the union of $\sigma\left(H_{\mu}^{(1)}\right)$ and $\sigma\left(H_{\lambda}^{(2)}\right)$;
(v) to show that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ as a set consists of at most 3 segments with finite length;
(vi) to determine the subsets (branches) of $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$.

In the following sections we discuss above mentioned objectives.

CHANNEL OPERATORS AND FAMILIES OF FRIEDRICHS MODELS.

To obtain an exact information about $\sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)$ in this section we determine two operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ (so-called channel operators). They act in $L_{2}\left(\mathbf{T}^{2}\right)$ by

$$
H_{\mu}^{(1)}=H_{0}-\mu V_{1}, \quad H_{\lambda}^{(2)}=H_{0}-\lambda V_{3} .
$$

The boundedness and self-adjointness of $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ in $L_{2}\left(\mathbf{T}^{2}\right)$ can be proven easily.
For the bounded function $u_{1}(\cdot)$ on \mathbf{T}^{1} we determine the multiplication operator U_{1} :

$$
\left(U_{1} g\right)(x, y)=u_{1}(x) g(x, y), \quad g \in L_{2}\left(\mathbf{T}^{2}\right)
$$

Then the operator $H_{\mu}^{(1)}$ commutes with U_{1}.
Analogously the operator $H_{\lambda}^{(2)}$ commutes with any multiplication operator U_{2} defined as

$$
\left(U_{2} g\right)(x, y)=u_{2}(x+y) g(x, y), \quad g \in L_{2}\left(\mathbf{T}^{2}\right),
$$

where $u_{2}(\cdot)$ is the bounded function on \mathbf{T}^{1}.
By this reason from

$$
\begin{equation*}
L_{2}\left(\mathbf{T}^{2}\right)=\int_{k \in \mathbf{T}^{1}} \oplus L_{2}\left(\mathbf{T}^{1}\right) d k \tag{3}
\end{equation*}
$$

we get the decompositions

$$
\begin{equation*}
H_{\mu}^{(1)}=\int_{k \in \mathbf{T}^{1}} \oplus h_{\mu}^{(1)}(k) d k \text { and } H_{\lambda}^{(2)}=\int_{k \in \mathbf{T}^{1}} \oplus h_{\lambda}^{(2)}(k) d k \tag{4}
\end{equation*}
$$

In the decomposition (4) the fiber operators (families of bounded self-adjoint operators (Friedrichs models)) $h_{\mu}^{(1)}(k)$, $h_{\lambda}^{(2)}(k), k \in \mathbf{T}^{1}$, act on $L_{2}\left(\mathbf{T}^{1}\right)$ by

$$
h_{\mu}^{(1)}(k):=h_{0}^{(1)}(k)-\mu v_{1}, \quad h_{\lambda}^{(2)}(k):=h_{0}^{(2)}(k)-\lambda v_{2}
$$

where $h_{0}^{(\alpha)}(k), \alpha=1,2$ are the multiplication operators on $L_{2}\left(\mathbf{T}^{1}\right)$:

$$
\begin{aligned}
& \left(h_{0}^{(1)}(k) \psi\right)(x)=u(k, x) \psi(x), \quad \psi \in L_{2}\left(\mathbf{T}^{1}\right) \\
& \left(h_{0}^{(2)}(k) \psi\right)(x)=u(x, k-x) \psi(x), \quad \psi \in L_{2}\left(\mathbf{T}^{1}\right)
\end{aligned}
$$

the operators $v_{\alpha}, \alpha=1,2$ are integral operators on $L_{2}(\mathbf{T})$:

$$
\left(v_{1} \psi\right)(x)=v(x) \int_{\mathbf{T}^{1}} v(t) \psi(t) d t, \quad\left(v_{2} \psi\right)(x)=\int_{\mathbf{T}^{1}} \psi(t) d t, \quad \psi \in L_{2}\left(\mathbf{T}^{1}\right)
$$

They are usually called the non-local interaction operators.
Using $\left(v_{\alpha}\right)^{*}=v_{\alpha}, \operatorname{rankv} v_{\alpha}=1$ and Weyl's theorem, we conclude that

$$
\sigma_{\mathrm{ess}}\left(h_{\mu}^{(1)}(k)\right)=\left[m_{1}(k) ; M_{1}(k)\right]
$$

and

$$
\sigma_{\mathrm{ess}}\left(h_{\lambda}^{(2)}(k)\right)=\left[m_{2}(k) ; M_{2}(k)\right] .
$$

where

$$
\begin{aligned}
& m_{1}(k):=\min _{x \in \mathbf{T}} u(k, x), \quad M_{1}(k):=\max _{x \in \mathbf{T}} u(k, x), \\
& m_{2}(k):=\min _{x \in \mathbf{T}} u(x, k-x), \quad M_{2}(k):=\max _{x \in \mathbf{T}} u(x, k-x) .
\end{aligned}
$$

In order to study $\sigma_{\text {disc }}\left(h_{\mu}^{(1)}(k)\right)$ and $\sigma_{\text {disc }}\left(h_{\lambda}^{(2)}(k)\right)$ we determine the analytic functions on $\mathbf{C} \backslash\left[m_{\alpha}(k) ; M_{\alpha}(k)\right]$ by

$$
\begin{aligned}
\Delta_{\mu}^{(1)}(k ; z) & :=1-\mu \int_{\mathbf{T}^{1}} \frac{v^{2}(t) d t}{u(k, t)-z} \\
\Delta_{\lambda}^{(2)}(k ; z) & :=1-\lambda \int_{\mathbf{T}^{1}} \frac{d t}{u(t, k-t)-z} .
\end{aligned}
$$

Simple calculations show that for any fixed $k \in \mathbf{T}$ the quantity $z_{\alpha}(k) \in \mathbf{C} \backslash\left[m_{\alpha}(k) ; M_{\alpha}(k)\right]$ is a discrete eigenvalue of $h_{\mu}^{(1)}(k)$ (respectively $\left.h_{\lambda}^{(2)}(k)\right)$ iff $\Delta_{\mu}^{(1)}\left(k ; z_{1}(k)\right)=0$ (respectively $\left.\Delta_{\lambda}^{(2)}\left(k ; z_{2}(k)\right)=0\right)$. As conclusion for $\sigma_{\text {disc }}\left(h_{\mu}^{(1)}(k)\right)$ and $\sigma_{\text {disc }}\left(h_{\lambda}^{(2)}(k)\right)$ we receive

$$
\begin{aligned}
\sigma_{\mathrm{disc}}\left(h_{\mu}^{(1)}(k)\right) & =\left\{\xi \in \mathbf{C} \backslash\left[m_{1}(k) ; M_{1}(k)\right]: \Delta_{\mu}^{(1)}(k ; \xi)=0\right\}, \\
\sigma_{\mathrm{disc}}\left(h_{\lambda}^{(2)}(k)\right) & =\left\{\xi \in \mathbf{C} \backslash\left[m_{2}(k) ; M_{2}(k)\right]: \Delta_{\lambda}^{(2)}(k ; \xi)=0\right\} .
\end{aligned}
$$

Using the essential and discrete spectra of $h_{\mu}^{(1)}(k)$ and $h_{\lambda}^{(2)}(k)$, we may precisely describe the sets $\sigma\left(H_{\mu}^{(1)}\right)$ and $\sigma\left(H_{\lambda}^{(2)}\right)$, respectively. It is established in the following assertion.

Lemma 1. We have

$$
\begin{aligned}
& \sigma\left(H_{\mu}^{(1)}\right)=\bigcup_{k \in \mathbf{T}} \sigma\left(h_{\mu}^{(1)}(k)\right)=\bigcup_{k \in \mathbf{T}} \sigma_{\mathrm{disc}}\left(h_{\mu}^{(1)}(k)\right) \cup[m ; M] \\
& \sigma\left(H_{\lambda}^{(2)}\right)=\bigcup_{k \in \mathbf{T}} \sigma\left(h_{\lambda}^{(2)}(k)\right)=\bigcup_{k \in \mathbf{T}} \sigma_{\mathrm{disc}}\left(h_{\lambda}^{(2)}(k)\right) \cup[m ; M]
\end{aligned}
$$

where

$$
m:=\min _{k, x \in \mathbf{T}} u(k, x), \quad M:=\max _{k, x \in \mathbf{T}} u(k, x) .
$$

Proof. Using the theorem about the spectra of the so called decomposable operators (see, for example, [3]) and taking into account the structure obtained above (4) for $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$ we get assertions of Lemma 1.

THE FADDEEV EQUATION FOR THE EIGENFUNCTIONS OF $H_{\mu, \lambda}$.

We construct the Faddeev type operator equations for eigenfunctions corresponding to discrete eigenvalues of the model Hamiltonian $H_{\mu, \lambda}$ within this section.

We determine the sets:

$$
\Omega_{\mu, \lambda}:=\bigcup_{k \in \mathbf{T}}\left\{\sigma_{\text {disc }}\left(h_{\mu}^{(1)}(k)\right) \cup \sigma_{\text {disc }}\left(h_{\lambda}^{(2)}(k)\right)\right\}, \quad \Sigma_{\mu, \lambda}:=\Omega_{\mu, \lambda} \cup[m ; M]
$$

and the space

$$
L_{2}^{(2)}\left(\mathbf{T}^{1}\right):=\left\{\varphi=\left(\varphi_{1}, \varphi_{2}\right): f_{\alpha} \in L_{2}\left(\mathbf{T}^{1}\right), \alpha=1,2\right\}
$$

Let $\mu, \lambda>0$ and $z \in \mathbf{C} \backslash \Sigma_{\mu, \lambda}$ be fixed. We determine the matrix $T_{\mu, \lambda}(z)$ in $L_{2}^{(2)}\left(\mathbf{T}^{1}\right)$ as

$$
T_{\mu, \lambda}(z):=\left(\begin{array}{cc}
T_{11}(\mu ; z) & T_{12}(\mu, \lambda ; z) \\
T_{21}(\mu, \lambda ; z) & 0
\end{array}\right)
$$

The elements of the 2×2 matrix $T_{\mu, \lambda}(z)$ acting

$$
\begin{aligned}
& \left(T_{11}(\mu ; z) \varphi_{1}\right)(x)=\frac{\mu v(x)}{\Delta_{\mu}^{(1)}(x ; z)} \int_{\mathbf{T}^{1}} \frac{v(t) \varphi_{1}(t) d t}{u(x, t)-z} \\
& \left(T_{12}(\mu, \lambda ; z) \varphi_{2}\right)(x)=\frac{\lambda}{\Delta_{\mu}^{(1)}(x ; z)} \int_{\mathbf{T}^{1}} \frac{v(t-x) \varphi_{2}(t) d t}{u(x, t-x)-z} \\
& \left(T_{21}(\mu, \lambda ; z) \varphi_{1}\right)(x)=\frac{2 \mu}{\Delta_{\lambda}^{(2)}(x ; z)} \int_{\mathbf{T}^{1}} \frac{v(x-t) \varphi_{1}(t) d t}{u(t, x-t)-z}
\end{aligned}
$$

Here $\varphi_{\alpha} \in L_{2}\left(\mathbf{T}^{1}\right), \alpha=1,2$.
Note that for any $\mu, \lambda>0$ and $z \in \mathbf{C} \backslash \Sigma_{\mu, \lambda}$ integral operators $T_{11}(\mu ; z), T_{12}(\mu, \lambda ; d)$ and $T_{21}(\mu, \lambda ; z)$ belong to the so called Hilbert-Schmidt class, so $T_{\mu, \lambda}(z)$ is a completely continuous operator.

We formulate one of the main results of the paper.
Theorem 1. The quantity $z \in \mathbf{C} \backslash \Sigma_{\mu, \lambda}$ is a discrete eigenvalue of $H_{\mu, \lambda}$ iff the quantity $\gamma=1$ is the discrete eigenvalue of the matrix $T_{\mu, \lambda}(z)$. In addition, the multiplicities of discrete eigenvalues z and 1 are equal.

Proof. Assume $z \in \mathbf{C} \backslash \Sigma_{\mu, \lambda}$ is an discrete eigenvalue of $H_{\mu, \lambda}$. By $f \in L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$ we denote the corresponding eigenfunction. It satisfies the operator equation $H_{\mu, \lambda} f=z f$ or

$$
\begin{equation*}
(u(x, y)-z) f(x, y)-\mu v(y) \int_{\mathbf{T}} v(t) f(x, t) d t-\mu v(x) \int_{\mathbf{T}} v(t) f(t, y) d t-\lambda \int_{\mathbf{T}} f(t, x+y-t) d t=0 \tag{5}
\end{equation*}
$$

For all $x, y \in \mathbf{T}^{1}$ the condition $u(x, y)-z \neq 0$ is true, because $z \notin[m ; M]$. In this case for f from (5) we obtain

$$
\begin{equation*}
f(x, y)=\frac{\mu v(y) \varphi_{1}(x)+\mu v(x) \varphi_{1}(y)+\lambda \varphi_{2}(x+y)}{u(x, y)-z} \tag{6}
\end{equation*}
$$

in the last equality the functions $\varphi_{1}(\cdot)$ and $\varphi_{2}(\cdot)$ has form

$$
\begin{equation*}
\varphi_{1}(x):=\int_{\mathbf{T}} v(t) f(x, t) d t \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{2}(x):=\int_{\mathbf{T}} f(t, x-t) d t \tag{8}
\end{equation*}
$$

Putting (6) for f to (7) and (8), we get that the system of equations

$$
\begin{align*}
\Delta_{\mu}^{(1)}(x ; z) \varphi_{1}(x) & =\mu v(x) \int_{\mathbf{T}} \frac{v(t) \varphi_{1}(t) d t}{u(x, t)-z}+\lambda \int_{\mathbf{T}} \frac{v(t-x) \varphi_{2}(t)}{u(x, t-x)-z} \tag{9}\\
\Delta_{\lambda}^{(2)}(x ; z) \varphi_{2}(x) & =2 \mu \int_{\mathbf{T}} \frac{v(x-t) \varphi_{1}(t) d t}{u(t, x-t)-z}
\end{align*}
$$

has a non zero solution iff (6) has a non zero solution.
By construction of the set $\Omega_{\mu, \lambda}$ we obtain $\Delta_{\mu}^{(1)}(x ; z) \neq 0$ and $\Delta_{\lambda}^{(2)}(x ; z) \neq 0$ under the condition $z \notin \Omega_{\mu, \lambda}$ and $x \in \mathbf{T}$. Moreover, (9) has a non zero solution iff

$$
\begin{aligned}
& \varphi_{1}(x)=\frac{\mu v(x)}{\Delta_{\mu}^{(1)}(x ; z)} \int_{\mathbf{T}} \frac{v(t) \varphi_{1}(t) d t}{u(x, t)-z}+\frac{\lambda}{\Delta_{\mu}^{(1)}(x ; z)} \int_{\mathbf{T}} \frac{v(t-x) \varphi_{2}(t)}{u(x, t-x)-z} \\
& \varphi_{2}(x)=\frac{2 \mu}{\Delta_{\lambda}^{(2)}(x ; z)} \int_{\mathbf{T}} \frac{v(x-t) \varphi_{1}(t) d t}{u(t, x-t)-z}
\end{aligned}
$$

or

$$
\begin{equation*}
\varphi=T_{\mu, \lambda}(z) \varphi, \quad \varphi \in L_{2}^{(2)}(\mathbf{T}) \tag{10}
\end{equation*}
$$

has a non zero solution.
Now let us show that, in addition, the multiplicities of the discrete eigenvalues z and 1 are equal. Assume that the multiplicity of the discrete eigenvalue $z \in \mathbf{C} \backslash \Sigma_{\mu, \lambda}$ of $H_{\mu, \lambda}$ is equal to n, and the multiplicity of the discrete eigenvalue $\gamma=1$ of $T_{\mu, \lambda}(z)$ is equal to m. We show $n=m$.

Suppose $n<m$. Then by the assumption for the discrete eigenvalue $\gamma=1$ there are linearly independent eigenvectors $\varphi^{(i)}=\left(\varphi_{1}^{(i)}, \varphi_{2}^{(i)}\right), i=1, \ldots, m$ of $T_{\mu, \lambda}(z)$. Determine the functions $f_{i}, i=1, \ldots, m$ according to (6). In this for $i=1, \ldots, m$ the equality $H_{\mu, \lambda} f_{i}=z f_{i}$ is valid. From $n<m$ we receive the existence of a non zero element $\left(c_{1}, \ldots, c_{m}\right) \in \mathbf{C}^{m}$ with $\sum_{i=1}^{m} c_{i} \varphi^{(i)} \neq 0$, but $\sum_{i=1}^{m} c_{i} f_{i}=0$. We obtain

$$
\begin{aligned}
0= & \sum_{i=1}^{m} c_{i} f_{i}(x, y)=\frac{\mu v(y)}{u(x, y)-z} \sum_{i=1}^{m} c_{i} \varphi_{1}^{(i)}(x)+\frac{\mu v(x)}{u(x, y)-z} \sum_{i=1}^{m} c_{i} \varphi_{1}^{(i)}(y) \\
& +\frac{\lambda}{u(x, y)-z} \sum_{i=1}^{m} c_{i} \varphi_{2}^{(i)}(x+y) \neq 0
\end{aligned}
$$

This fact isn't valid because of $n<m$.
If $n>m$, then there are linearly independent elements $f_{i}, i=1, \ldots, n$ corresponding to the discrete eigenvalue z of $H_{\mu, \lambda}$. We know that corresponding eigenvector function to the discrete eigenvalue $\gamma=1$ of $T_{m u, \lambda}(z)$ is equal to $\varphi^{(i)}=\left(\varphi_{1}^{(i)}, \varphi_{2}^{(i)}\right), i=1, \ldots, n$. From $n>m$ we receive the existence of a non zero element $\left(d_{1}, \ldots, d_{n}\right) \in \mathbf{C}^{n}$ with $\sum_{i=1}^{n} d_{i} \varphi^{(i)}=0$. The linearly independence of $f_{i}, i=1, \ldots, n$ imply $\sum_{i=1}^{n} d_{i} f_{i} \neq 0$. In this case

$$
\begin{aligned}
0 \neq & \sum_{i=1}^{n} d_{i} f_{i}(x, y)=\frac{\mu v(y)}{u(x, y)-z} \sum_{i=1}^{n} d_{i} \varphi_{1}^{(i)}(x)+\frac{\mu v(x)}{u(x, y)-z} \sum_{i=1}^{n} d_{i} \varphi_{1}^{(i)}(y) \\
& +\frac{\lambda}{u(x, y)-z} \sum_{i=1}^{n} d_{i} \varphi_{2}^{(i)}(x+y)=0
\end{aligned}
$$

This isn't valid because of $n>m$. So $n=m$. Theorem 1 is completely proved.

ESSENTIAL SPECTRUM OF $H_{\mu, \lambda}$.

This section is devoted to the study of $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$.
In the corresponding complex Hilbert spaces the norm and the inner product will be denoted by $\|\cdot\|$ and (\cdot, \cdot), respectively.

The set $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is described in the following theorem.
Theorem 2. The statement $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)=\sigma\left(H_{\mu}^{(1)}\right) \cup \sigma\left(H_{\lambda}^{(2)}\right)$ is true. In addition, $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ consists no more than 3 segments.

Proof. Firstly, we prove $\Sigma_{\mu, \lambda} \subset \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$. Using $\Sigma_{\mu, \lambda}=\Omega_{\mu, \lambda} \cup[m ; M]$ in the beginning we establish $[m ; M] \subset$ $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$. Taking an arbitrary $z_{0} \in[m ; M]$ we prove $z_{0} \in \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$. To establish the last statement it suffices to find a sequence of orthonormal vector functions $\left\{F_{n}\right\} \subset L_{2}^{\text {sym }}\left(\mathbf{T}^{2}\right)$ (Weyl's criterion [3]) that satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(H_{\mu, \lambda}-z E\right) F_{n}\right\|=0 \tag{11}
\end{equation*}
$$

The symmetric function $u(\cdot, \cdot)$ is continuous on \mathbf{T}^{2} and hence we receive the existence of some point $\left(x_{0}, y_{0}\right) \in \mathbf{T}^{2}$ with $z_{0}=u\left(x_{0}, y_{0}\right)$.

Put

$$
W_{n}:=V_{n}\left(x_{0}\right) \times V_{n}\left(y_{0}\right), \quad n \in \mathbf{N}
$$

with

$$
V_{n}\left(x_{0}\right):=\left\{x \in \mathbf{T}: \frac{1}{n+n_{0}+1}<\left|x-x_{0}\right|<\frac{1}{n+n_{0}}\right\}
$$

here the quantity $n_{0} \in \mathbf{N}$ is selected from the condition $V_{n}\left(x_{0}\right) \cap V_{n}\left(y_{0}\right)=\emptyset$ for any $n \in \mathbf{N}$ (assumed $\left.x_{0} \neq y_{0}\right)$.
We denote the Lebesgue measure of W by $\operatorname{mes}(W)$ and the characteristic function of the set W by $\chi_{W}(\cdot)$. Determine

$$
F_{n}(x, y):=\frac{\chi_{W_{n}}(x, y)+\chi_{W_{n}}(y, x)}{\sqrt{2 \operatorname{mes}\left(W_{n}\right)}}
$$

An orthonormality of $\left\{F_{n}\right\}$ follows from its construction.
We estimate $\left\|\left(H_{\mu, \lambda}-z_{0} E\right) F_{n}\right\|$:

$$
\left.\| H_{\mu, \lambda}-z_{0} E\right) F_{n} \|^{2} \leq 2 \sup _{(x, y) \in W_{n}}\left|u(x, y)-z_{0}\right|^{2}+\left[8 \mu^{2} \max _{x \in \mathbf{T}}|v(x)|^{2}+2 \lambda^{2}\right] \operatorname{mes}\left(V_{n}\left(x_{0}\right)\right) .
$$

Taking into account the determination of $V_{n}\left(x_{0}\right)$ and the fact that the function $u(\cdot, \cdot)$ is a continuous at $\left(x_{0}, y_{0}\right) \in \mathbf{T}^{2}$ we receive $\left\|\left(H_{\mu, \lambda}-z_{0} E\right) F_{n}\right\| \rightarrow 0$ with $n \rightarrow \infty$, it means $z_{0} \in \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$. Consequently $[m ; M] \subset \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$.

To show the inclusion $\Omega_{\mu, \lambda} \subset \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ we take an arbitrary point $z_{\mu, \lambda} \in \Omega_{\mu, \lambda}$ and we show that $z_{\mu, \lambda} \in \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$. We differ the cases: $z_{\mu, \lambda} \in[m ; M]$ and $z_{\mu, \lambda} \notin[m ; M]$. For the case $z_{\mu, \lambda} \in[m ; M]$, the fact $z_{\mu, \lambda} \in \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is proved in the beginning of the proof.

Let

$$
z_{\mu, \lambda} \in \bigcup_{k \in \mathbf{T}}\left\{\sigma_{\mathrm{disc}}\left(h_{\mu}^{(1)}(k)\right)\right\} \backslash[m ; M] .
$$

It follows from the determination of $\bigcup_{k \in \mathbf{T}}\left\{\sigma_{\text {disc }}\left(h_{\mu}^{(1)}(k)\right)\right\}$ that the statement $\Delta_{\mu}^{(1)}\left(k_{1} ; z_{\mu}\right)=0$ is valid for some $k_{1} \in \mathbf{T}$. We determine

$$
\Phi_{n}(x, y):=\frac{v(y) \varphi_{n}(x)+v(x) \varphi_{n}(y)}{2\left(u(x, y)-z_{\mu, \lambda}\right)}
$$

with

$$
\varphi_{n}(x):=\frac{c_{n}(x) \chi_{V_{n}\left(x_{0}\right)}(x)}{\sqrt{\operatorname{mes}\left(V_{n}\left(x_{0}\right)\right)}}
$$

Here $c_{n}(\cdot) \in L_{2}(\mathbf{T})$ is chosen from

$$
\begin{equation*}
\left(\Phi_{n}, \Phi_{m}\right)=\frac{1}{2 \sqrt{\operatorname{mes}\left(V_{n}\left(x_{0}\right)\right)} \sqrt{\operatorname{mes}\left(V_{m}\left(y_{0}\right)\right)}} \int_{V_{n}\left(x_{0}\right)} \int_{V_{m}\left(y_{0}\right)} \frac{v(s) v(t) c_{n}(s) c_{m}(t)}{\left(u(s, t)-z_{\mu, \lambda}\right)^{2}} d s d t=0 \tag{12}
\end{equation*}
$$

with $n \neq m,\left\|\Phi_{n}\right\|=1$.
For completeness we give the assertion about $\left\{c_{n}(\cdot)\right\}$:
Proposition 1. There is an ortho-normal system $\left\{c_{n}(\cdot)\right\} \subset L_{2}(\mathbf{T})$ satisfying $\operatorname{supp} c_{n}(\cdot) \subset V_{n}\left(x_{0}\right)$ with (12).

Similar Proposition is proven in [20].
Next we have to prove

$$
\lim _{n \rightarrow \infty}\left\|\left(H_{\mu, \lambda}-z_{\mu, \lambda} E\right) \Phi_{n}\right\|=0
$$

For positive integer n we estimate $\left\|\left(H_{\mu, \lambda}-z_{\mu, \lambda} E\right) \Phi_{n}\right\|$

$$
\begin{equation*}
\left\|\left(H_{\mu, \lambda}-z_{\mu, \lambda} E\right) \Phi_{n}\right\|^{2} \leq C_{\mu, \lambda}^{(1)} \operatorname{mes}\left(V_{n}\left(x_{0}\right)\right)+C_{\mu, \lambda}^{(2)} \sup _{x \in V_{n}\left(x_{0}\right)}\left|\Delta_{\mu}^{(1)}\left(x ; z_{\mu, \lambda}\right)\right|^{2} \tag{13}
\end{equation*}
$$

for some $C_{\mu, \lambda}^{(\alpha)}>0, \alpha=1,2$.
We know $\operatorname{mes}\left(V_{n}\left(x_{0}\right)\right) \rightarrow 0$ and $\sup _{x \in V_{n}\left(x_{0}\right)}\left|\Delta_{\mu}^{(1)}\left(x ; z_{\mu, \lambda}\right)\right|^{2} \rightarrow 0$ with $n \rightarrow \infty$. From (13) we receive $\|\left(H_{\mu, \lambda}-\right.$ $\left.z_{\mu, \lambda} E\right) \Phi_{n} \| \rightarrow 0$ for $n \rightarrow \infty$ and $z_{\mu, \lambda} \in \sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)$. From arbitrariness of $z_{\mu, \lambda}$ we receive

$$
\bigcup_{k \in \mathbf{T}}\left\{\sigma_{\text {disc }}\left(h_{\mu}^{(1)}(k)\right)\right\} \subset \sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)
$$

The statement

$$
\bigcup_{k \in \mathbf{T}}\left\{\sigma_{\mathrm{disc}}\left(h_{\lambda}^{(2)}(k)\right)\right\} \subset \sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)
$$

can be proven similarly. Therefore, $\Sigma_{\mu, \lambda} \subset \sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)$ is valid.
We will show the statement $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right) \subset \Omega_{\mu, \lambda}$. For each $\mu, \lambda>0$ and $z \in \mathbf{C} \backslash \Omega_{\mu, \lambda}$ the operator $T_{\mu, \lambda}(z)$ is a completely continuous operator-valued function on $\mathbf{C} \backslash \Omega_{\mu, \lambda}$. The Hamiltonian $H_{\mu, \lambda}$ is a self-adjoint, and hence from Theorem 1 we receive the existence of $\left(I-T_{\mu, \lambda}(z)\right)^{-1}$, if $z \in \mathbf{R}$ and $|z|$ is a large. From Fredholm's analytic theorem [3] we receive the existence of a discrete set $S_{\mu, \lambda} \subset \mathbf{C} \backslash \Omega_{\mu, \lambda}$ as well existence and analyticity of $\left(I-T_{\mu, \lambda}(z)\right)^{-1}$ on $\mathbf{C} \backslash\left(S_{\mu, \lambda} \cup \Omega_{m u, \lambda}\right)$. It is meromorphic on $\mathbf{C} \backslash \Omega_{\mu, \lambda}$ with finite rank residues. Then $\sigma\left(H_{\mu, \lambda}\right) \backslash \Omega_{\mu, \lambda}$ is consist of isolated elements, and the boundary of $\Omega_{\mu, \lambda}$ maybe the only possible accumulation points. The statement

$$
\sigma\left(H_{\mu, \lambda}\right) \backslash \Omega_{\mu, \lambda} \subset \sigma_{\mathrm{disc}}\left(H_{\mu, \lambda}\right)=\sigma\left(H_{\mu, \lambda}\right) \backslash \sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)
$$

valid. Consequently, $\sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right) \subset \Omega_{\mu, \lambda}$ is true. As a result, we receive $\sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)=\Omega_{\mu, \lambda}$.
Using the monotonicity property of $\Delta_{\mu}^{(1)}(k ; \cdot)$ (resp. $\left.\Delta_{\lambda}^{(2)}(k ; \cdot)\right)$ on $\left(-\infty, m_{1}(k)\right)$ (resp. $\left(-\infty, m_{2}(k)\right)$) as well $\Delta_{\mu}^{(1)}(k ; z)>1$ and $\Delta_{\lambda}^{(2)}(k ; z)>1$ for all $z>M$ we receive that the operator $h_{\mu}^{(1)}(k)$ (resp. $h_{\lambda}^{(2)}(k)$) has no more than 1 simple discrete eigenvalue on $(-\infty ; m)$ and hasn't discrete eigenvalues on $(M ;+\infty)$. Applying well known theorem on the spectrum of decomposable operators [3] and the determination of $\Omega_{\mu, \lambda}$ we receive that $\Omega_{\mu, \lambda}$ is consist of the union of at most 2 segments. From here we obtain that the max number of segments of $\Sigma_{\mu, \lambda}$ is 3 . Theorem 2 is proven.

CONCLUSION.

In the present paper the spectral properties of the model Hamiltonian $H_{\mu, \lambda}, \mu, \lambda>0$ related to the three particle system on a 1D lattice interacting via non-local potentials is investigated. The relation between this Hamiltonian and the three-particle Schrödinger operator on a 1D lattice is established. The two channel operators $H_{\mu}^{(1)}$ and $H_{\lambda}^{(2)}$, which correspond to $H_{\mu, \lambda}$ are singled out, their spectra are determined by the spectrum of the family of Friedrichs model. For the eigenfunctions of $H_{\mu, \lambda}$, an analogue of the Faddeev type equation is constructed. It is shown that $\sigma_{\text {ess }}\left(H_{\mu, \lambda}\right)$ is equal to the union of $\sigma\left(H_{\mu}^{(1)}\right)$ and $\sigma\left(H_{\lambda}^{(2)}\right)$. We establish that $\sigma_{\mathrm{ess}}\left(H_{\mu, \lambda}\right)$ is consist of at most 3 segments.

REFERENCES

1. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, "On the structure of the essential spectrum for the three-particle schrödinger operators on lattices," Math. Nachr. 280:7, 699-716 (2007).
2. S. N. Lakaev and M. E. Muminov, "Essential and discrete spectra of the three-particle schrödinger operator on a lattices," Theor. Math. Phys. 135:3, 849-871 (2003).
3. M. Reed and B. Simon, Methods of modern mathematical physics. IV: Analysis of Operators (Academic Press, New York, 1979).
4. B. V.Karpenko, V. V. Dyakin, and G. A. Budrina, "Two electrons in hubbard model," Fiz., Met., Metalloved. 61:4, 702-706 (1986).
5. D. Mattis, "The few-body problem on a lattice," Rev. Modern Phys. 58:2, 361-379 (1986).
6. S. Albeverio, S. N. Lakaev, and R. K. Djumanova, "The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles," Rep. Math. Phys. 63:3, 359-380 (2009).
7. S. Albeverio, S. N. Lakaev, and Z. I. Muminov, "On the number of eigenvalues of a model operator associated to a system of three-particles on lattices," Russ. J. Math. Phys. 14:4, 377-387 (2007).
8. T. K. Rasulov, "Asymptotics of the discrete spectrum of a model operator associated with the system of three particles on a lattice," Theor. Math. Phys. 163:1, 429-437 (2010).
9. T. K. Rasulov, "Essential spectrum of a model operator associated with a three particle system on a lattice," Theor. Math. Phys. 166:1, 81-93 (2011).
10. T. K. Rasulov and R. T. Mukhitdinov, "The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice," Russian Math. 58:1, 52-59 (2014).
11. T. K. Rasulov and Z. D. Rasulova, "On the spectrum of a three-particle model operator on a lattice with non-local potentials," Siberian Electronic Mathematical Reports 12, 168-184 (2015).
12. T. K. Rasulov and Z. D. Rasulova, "Essential and discrete spectrum of a three-particle lattice hamiltonian with non-local potentials," Nanosystems: Physics, Chemistry, Mathematics 5:3, 327-342 (2014).
13. M. I. Muminov and T. H. Rasulov, "The faddeev equation and essential spectrum of a hamiltonian in fock space," Methods Funct. Anal. Topology 17:1, 47-57 (2011).
14. M. I. Muminov and T. H. Rasulov, "On the eigenvalues of a 2×2 block operator matrix," Opuscula Mathematica 35:3, 369-393 (2015).
15. M. I. Muminov and T. H. Rasulov, "Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix," Eurasian Mathematical Journal 5:2, 60-77 (2014).
16. T. K. Rasulov, "Investigation of the spectrum of a model operator in a fock space," Theoret. and Math. Phys. 161:2, 1460-1470 (2009).
17. T. H. Rasulov and E. B. Dilmurodov, "Eigenvalues and virtual levels of a family of 2×2 operator matrices," Methods of Functional Analysis and Topology 25:1, 273-281 (2019).
18. T. H. Rasulov and E. B. Dilmurodov, "Analysis of the spectrum of a 2×2 operator matrices. discrete spectrum asymptotics," Nanosystems: Physics, chemistry, mathematics 11:2, 138-144 (2020).
19. T. H. Rasulov and E. B. Dilmurodov, "Infinite number of eigenvalues of 2×2 operator matrices: Asymptotic discrete spectrum," Theoret. and Math. Phys. 205:3, 1564-1584 (2020).
20. S. N. Lakaev and T. K. Rasulov, "A model in the theory of perturbations of the essential spectrum of multi-particle operators," Math. Notes. 73:4, 521-528 (2003).
21. V. Heine, M. Cohen, and D. Weaire, The Pseudopotential Concept (Academic Press, New York-London, 1970).
22. A. I. Mogilner, "Hamiltonians in solid state physics as multiparticle discrete schrödinger operators: problems and results," Advances in Sov. Math. 5, 139-194 (1991).
23. R. G. Newton, Scattering Theory of Waves and Particles (Springer-Verlag, New York, 1982).
24. V. S. Rabinovich and S. Roch, "The essential spectrum of schrödinger operators on lattices," J. Phys. A: Math. Gen. 39, 8377-8394 (2006).
25. V. S. Rabinovich, "Essential spectrum of perturbed pseudodifferential operators. applications to schrödinger, klein-gordon, and dirac operators," Russ. J. Math. Phys. 12, 62-80 (2005).
26. Y. V. Zhukov, "The iorio-o'caroll theorem for an n-particle lattice hamiltonian," Theor. Math. Phys. 107:1, 478-486 (1996).
