UZBEKISTAN ACADEMY OF SCIENCES V.I.ROMANOVSKIY INSTITUTE OF MATHEMATICS

UZBEK
 MATHEMATICAL JOURNAL

Journal was founded in 1957. Until 1991 it was named by "Izv. Akad. Nauk
UzSSR, Ser. Fiz.-Mat. Nauk". Since 1991 it is known as "Uzbek Mathematical Journal". It has 4 issues annually.

Volume 65 Issue 12021

Uzbek Mathematical Journal is abstracting and indexing by
MathSciNet
Zentralblatt
Math VINITI
Starting from 2018 all papers published in Uzbek Mathematical Journal you can find in EBSCO and CrossRef.

Editorial Board

Editor in Chief

Sh.A. Ayupov - (Functional Analysis, Algebra), V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences (Uzbekistan), sh_ayupov@mail.ru

Deputy Editor in Chief

U.A.Rozikov - (Functional analysis, mathematical physics), V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences (Uzbekistan), rozikovu@mail.ru

Managing editors

| K.K.Abdurasulov | $-\quad$ Managing editors of the Uzbek Mathematical |
| :--- | :--- | :--- |
| O.I.Egamberdiev \quad Journal (Uzbekistan), abdurasulov0505@mail.ru, | |

Editors

A.Azamov	-	(Dynamical Systems, Game Theory, Differential Equations) V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences (Uzbekistan)
Sh.A.Alimov	-	(Mathematical Analysis, Differential Equations,Mathematical Physics) National University of Uzbekistan (Uzbekistan)
R.R.Ashurov		(Mathematical Analysis, Differential Equations, Mathematical Physics) V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences (Uzbekistan)
Efim Zelmanov	-	(Agebra, Jordan Algebras, Infinite Discrete Groups, Profinite Groups), UC San Diego (USA)
Aernout van Enter	-	(Probability and mathematical physics) University of Groningen (The Netherlands)
Lorenzo Ramero	-	(algebraic and arithmetic geometry, commutative rings and algebras), University of Lille (France)
A.S.Sadullaev	-	(Mathematical analysis), National University of Uzbekistan (Uzbekistan)
F.A.Sukochev	-	(Functional analysis, Geometry), University of South Wales (Australia)
Sh.K.Formanov	-	(Probability Theory and Mathematical Statistics), V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences (Uzbekistan)
S.N.Lakaev	-	(Difference and functional equations, Dynamical systems and ergodic theory), Samarkand State University, Samarkand, (Uzbekistan)
R.N.Ganikhodjaev	-	(Functional analysis), National University of Uzbekistan (Uzbekistan)

Uzbek Mathematical Journal
2021, Volume 65, Issue 1, pp 150,159
DOI: 10.29229 /uzmj. 2021-1-15

On a non-linear p-adic dynamical system Rozikov U.A., Sayitova M.

Abstract

In this paper, we study p-adic dynamical system of the function $f(x)=$ $\frac{a}{x-2 b}$ on the set of complex p-adic numbers. For each trajectory of the dynamical system we construct the set of limit points and for each indifferent fixed point we give its Siegel disk.

Keywords: Rational dynamical systems; fixed point; invariant set; Siegel disk; complex p-adic field.

MSC (2010): 37P05, 46S10.

1 Introduction

It is known that the theory of p-adic numbers has numerous applications in many branches of mathematics, biology, physics and other sciences (see for example [4, 8, [13] and the references therein).

Let us recall the main definitions. Denote by (n, m) the greatest common divisor of the positive integers n and m and let \mathbb{Q} be the field of rational numbers.

For each fixed prime number p, every rational number $x \neq 0$ can be represented in the form $x=p^{r} \frac{n}{m}$, where $r, n \in \mathbb{Z}, m$ is a positive integer, $(p, n)=1,(p, m)=1$. The p-adic norm of this x is $|x|_{p}=p^{-r}$ and $|0|_{p}=0$.

This norm has the following properties:

1) $|x|_{p} \geq 0$ and $|x|_{p}=0$ if and only if $x=0$,
2) $|x y|_{p}=|x|_{p}|y|_{p}$,
3) the strong triangle inequality

$$
|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\},
$$

3.1) if $|x|_{p} \neq|y|_{p}$ then $|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}$,
3.2) if $|x|_{p}=|y|_{p}$ then for $p=2$ we have $|x+y|_{p} \leq \frac{1}{2}|x|_{p}$ (see [13).

The completion of \mathbb{Q} with respect to p-adic norm defines the p-adic field which is denoted by \mathbb{Q}_{p} (see [5]).

The algebraic completion of \mathbb{Q}_{p} is denoted by \mathbb{C}_{p} and it is called the set of complex p-adic numbers.

For any $a \in \mathbb{C}_{p}$ and $r>0$ denote

$$
\begin{gathered}
U_{r}(a)=\left\{x \in \mathbb{C}_{p}:|x-a|_{p}<r\right\}, \quad V_{r}(a)=\left\{x \in \mathbb{C}_{p}:|x-a|_{p} \leq r\right\}, \\
S_{r}(a)=\left\{x \in \mathbb{C}_{p}:|x-a|_{p}=r\right\}
\end{gathered}
$$

To define a dynamical system we consider a function $f: x \in U \rightarrow f(x) \in U$, (in our case $U=U_{r}(a)$ or \mathbb{C}_{p}) (see for example [7]).

For $x \in U$ denote by $f^{n}(x)$ the n-fold composition of f with itself (i.e. n time iteration of f to x):

$$
f^{n}(x)=\underbrace{f(f(f \ldots(f}_{n \text { times }}(x))) \ldots)
$$

For arbitrary given $x_{0} \in U$ and $f: U \rightarrow U$ the discrete-time dynamical system (also called the trajectory) of x_{0} is the sequence of points

$$
\begin{equation*}
x_{0}, x_{1}=f\left(x_{0}\right), x_{2}=f^{2}\left(x_{0}\right), x_{3}=f^{3}\left(x_{0}\right), \ldots \tag{1.1}
\end{equation*}
$$

The main problem: Given a function f and initial point x_{0} what ultimately happens with the sequence (1.1). Does the limit $\lim _{n \rightarrow \infty} x_{n}$ exist? If not what is the set of limit points of the sequence?

A point $x \in U$ is called a fixed point for f if $f(x)=x$. The set of all fixed points denoted by $\operatorname{Fix}(f)$. A point x is a periodic point of period m if $f^{m}(x)=x$. The least positive m for which $f^{m}(x)=x$ is called the prime period of x.

A fixed point x_{0} is called an attractor if there exists a neighborhood $U\left(x_{0}\right)$ of x_{0} such that for all points $x \in U\left(x_{0}\right)$ it holds $\lim _{n \rightarrow \infty} f^{n}(x)=x_{0}$. If x_{0} is an attractor then its basin of attraction is

$$
\mathcal{A}\left(x_{0}\right)=\left\{x \in \mathbb{C}_{p}: f^{n}(x) \rightarrow x_{0}, n \rightarrow \infty\right\} .
$$

A fixed point x_{0} is called repeller if there exists a neighborhood $U\left(x_{0}\right)$ of x_{0} such that $\left|f(x)-x_{0}\right|_{p}>\left|x-x_{0}\right|_{p}$ for $x \in U\left(x_{0}\right), x \neq x_{0}$.

The ball $U_{r}\left(x_{0}\right)$ is called a Siegel disk if each sphere $S_{\rho}\left(x_{0}\right), \rho<r$ is an invariant sphere of $f(x)$, i.e. if $x \in S_{\rho}\left(x_{0}\right)$ then all iterated points $f^{n}(x) \in S_{\rho}\left(x_{0}\right)$ for all $n=1,2 \ldots$. The union of all Siegel desks with the center at x_{0} is called a maximum Siegel disk and is denoted by $S I\left(x_{0}\right)$.

In this paper we continue our study of p-adic dynamical systems generated by rational functions (see [1]-[12] and references therein for motivations and history of p-adic dynamical systems). We consider the function $f(x)=\frac{a}{x-2 b}$ and study the dynamical systems generated by this function in \mathbb{C}_{p}. We give fixed points, periodic points, basin of attraction and Siegel disk of each fixed point.

2 Main results

Consider the dynamical system associated with the function $f: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$ defined by

$$
\begin{equation*}
f(x)=\frac{a}{x-2 b}, \quad a \neq 0, \quad a, b \in \mathbb{C}_{p} \tag{2.1}
\end{equation*}
$$

where $x \neq 2 b$.
Our goal here is to investigate the behavior of trajectories of 2.1 in the complex p-adic filed \mathbb{C}_{p}.

Remark 2.1. The case $b=0$ is simple: in this case any point $x \in \mathbb{C}_{p} \backslash\{-b\}$ is two periodic. That is $f(f(x))=x$. Indeed,

$$
f(f(x))=\frac{a}{\frac{a}{x}}=a \cdot \frac{x}{a}=x .
$$

Therefore, below we consider the case $b \neq 0$.
Since \mathbb{C}_{p} is algebraic closed, this function (for $a b \neq 0$) has two fixed points:

$$
\begin{equation*}
f(x)=x \Rightarrow x^{2}-2 b x-a=0 \Rightarrow x_{1}=b-\sqrt{b^{2}+a}, \quad x_{2}=b+\sqrt{b^{2}+a} . \tag{2.2}
\end{equation*}
$$

The following proposition says that f may have periodic (except fixed points) iff $b=0$.

Property 2.2. If $b\left(b^{2}+a\right) \neq 0$ then $f^{n}(x)=x, n \geq 2$ does not have any solution (except solutions of $f(x)=x$).

Proof. Using induction over $n \geq 1$ one can show that f^{n} has the following form

$$
f^{n}(x)=\frac{a_{n} x+b_{n}}{c_{n} x+d_{n}}, \text { for some } a_{n}, b_{n}, c_{n}, d_{n} \in \mathbb{C}_{p}
$$

Indeed, for $n=1$ the formula is true with

$$
\begin{equation*}
a_{1}=0, \quad b_{1}=a, \quad c_{1}=1, \quad d_{1}=-2 b . \tag{2.3}
\end{equation*}
$$

Assuming that the formula is true for n we get it for $n+1$ with

$$
\begin{align*}
a_{n+1} & =b_{n} \\
b_{n+1} & =a a_{n}-2 b b_{n} \tag{2.4}\\
c_{n+1} & =d_{n} \\
d_{n+1} & =a c_{n}-2 b d_{n} .
\end{align*}
$$

Thus we have reduced the dynamical system $\left\{f^{n}(x)\right\}_{n \geq 1}$ to the dynamical system (2.4) with initial point 2.3). Since in 2.4 the vectors $\left(a_{n}, b_{n}\right)$ and $\left(c_{n}, d_{n}\right)$ are independent, it suffices to study only one of them.

Denote

$$
M=\left(\begin{array}{cc}
0 & 1 \\
a & -2 b
\end{array}\right) .
$$

Let $\lambda_{1}=-x_{1}, \lambda_{2}=-x_{2}($ see 2.2$)$ be the distinct eigenvalues of M (because by condition of the proposition we have $b^{2}+a \neq 0$). By (2.2) we get

$$
\begin{equation*}
\lambda_{1}+2 b=x_{2}=-\lambda_{2}, \quad \lambda_{2}+2 b=x_{1}=-\lambda_{1} . \tag{2.5}
\end{equation*}
$$

From 2.4 we get $\left(a_{n+1}, b_{n+1}\right)=M\left(a_{n}, b_{n}\right)^{T}$ and $\left(c_{n+1}, d_{n+1}\right)=M\left(c_{n}, d_{n}\right)^{T}$. Thus

$$
\begin{equation*}
\left(a_{n+1}, b_{n+1}\right)=M^{n}\left(a_{1}, b_{1}\right)^{T}, \quad\left(c_{n+1}, d_{n+1}\right)=M^{n}\left(c_{1}, d_{1}\right)^{T} . \tag{2.6}
\end{equation*}
$$

Therefore we need to find M^{n}. To find it we use a little Cayley-Hamilton Theorem and 2.5 to obtain the following formula

$$
\begin{gather*}
M^{n}=\frac{\lambda_{2} \lambda_{1}^{n}-\lambda_{1} \lambda_{2}^{n}}{\lambda_{2}-\lambda_{1}} \cdot I_{2}+\frac{\lambda_{2}^{n}-\lambda_{1}^{n}}{\lambda_{2}-\lambda_{1}} \cdot M \\
=\frac{1}{\lambda_{2}-\lambda_{1}}\left(\begin{array}{cc}
\lambda_{2} \lambda_{1}^{n}-\lambda_{1} \lambda_{2}^{n} & \lambda_{2}^{n}-\lambda_{1}^{n} \\
a\left(\lambda_{2}^{n}-\lambda_{1}^{n}\right) & \lambda_{2}^{n+1}-\lambda_{1}^{n+1}
\end{array}\right) . \tag{2.7}
\end{gather*}
$$

By this formula and (2.3) from (2.6) we get

$$
\begin{align*}
& a_{n+1}=a \cdot\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\lambda_{2}^{n}-\lambda_{1}^{n}\right) \\
& b_{n+1}=a \cdot\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\lambda_{2}^{n+1}-\lambda_{1}^{n+1}\right) \\
& c_{n+1}=\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\lambda_{2}^{n+1}-\lambda_{1}^{n+1}\right) \tag{2.8}\\
& d_{n+1}=\left(\lambda_{2}-\lambda_{1}\right)^{-1}\left(\left(a-2 b \lambda_{2}\right) \lambda_{2}^{n}-\left(a-2 b \lambda_{1}\right) \lambda_{1}^{n}\right) .
\end{align*}
$$

Consequently,

$$
\begin{equation*}
f^{n}(x)=x \quad \Leftrightarrow \quad \hat{c}_{n} x^{2}+\left(\hat{d}_{n}-\hat{a}_{n}\right) x-\hat{b}_{n}=0, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{a}_{n+1}=a \cdot\left(\lambda_{2}^{n}-\lambda_{1}^{n}\right) \\
& \hat{b}_{n+1}=a \cdot\left(\lambda_{2}^{n+1}-\lambda_{1}^{n+1}\right) \\
& \hat{c}_{n+1}=\lambda_{2}^{n+1}-\lambda_{1}^{n+1} \tag{2.10}\\
& \hat{d}_{n+1}=\left(a-2 b \lambda_{2}\right) \lambda_{2}^{n}-\left(a-2 b \lambda_{1}\right) \lambda_{1}^{n} .
\end{align*}
$$

For each $n \geq 2$, from $\lambda_{1} \neq \lambda_{2}$ it follows that $\hat{a}_{n}, \hat{b}_{n}, \hat{c}_{n}, \hat{d}_{n}$ can not be simultaneously zero.

Since each solution of $f(x)=x$ is solution to the quadratic equation 2.9, we conclude that (2.9) does not have solutions different from the fixed points.
Denote:

$$
\begin{equation*}
\mathcal{P}=\left\{x \in \mathbb{C}_{p}: \exists n \in \mathbb{N} \cup\{0\}, f^{n}(x)=2 b\right\} . \tag{2.11}
\end{equation*}
$$

For example, $x=\hat{x}=2 b+\frac{a}{2 b} \in \mathcal{P}$, because $f(\hat{x})=2 b$.
The following proposition describes the set \mathcal{P}

[^0]Property 2.3. If $b\left(b^{2}+a\right) \neq 0$ then the set \mathcal{P} is the following

$$
\mathcal{P}=\{2 b\} \cup\left\{2 b-\frac{\hat{b}_{n}}{\hat{d}_{n}}: \hat{d}_{n} \neq 0, n \geq 1\right\}
$$

where \hat{b}_{n} and \hat{d}_{n} are defined in 2.10.
Proof. For each fixed $n \geq 1$ the corresponding element of \mathcal{P} is solution of the equation

$$
f^{n}(x)=\frac{\hat{a}_{n} x+\hat{b}_{n}}{\hat{c}_{n} x+\hat{d}_{n}}=2 b .
$$

That is

$$
\left(2 b \hat{c}_{n}-\hat{a}_{n}\right) x=\hat{b}_{n}-2 b \hat{d}_{n} .
$$

Note that $\hat{d}_{n}=-\left(2 b \hat{c}_{n}-\hat{a}_{n}\right)$. It is easy to see that if $\lambda_{1} \neq \lambda_{2}$ (i.e. $\left.b^{2}+a \neq 0\right)$ then \hat{b}_{n} and \hat{d}_{n} can not be zero simultaneously. This completes the proof.

Let x_{0} be a fixed point of a function $f(x)$. Put $\lambda=f^{\prime}\left(x_{0}\right)$. The point x_{0} is attractive if $0<|\lambda|_{p}<1$, indifferent if $|\lambda|_{p}=1$, and repelling if $|\lambda|_{p}>1$.

For (2.1) we have

$$
f^{\prime}(x)=-\frac{a}{(x-2 b)^{2}}=-\frac{1}{a}\left(\frac{a}{(x-2 b)}\right)^{2}=-\frac{1}{a}(f(x))^{2} .
$$

Using this formula and $x_{1} x_{2}=-a$ we get

$$
\left|f^{\prime}\left(x_{1}\right)\right|_{p}=\frac{\left|x_{1}\right|_{p}}{\left|x_{2}\right|_{p}}, \quad\left|f^{\prime}\left(x_{2}\right)\right|_{p}=\frac{\left|x_{2}\right|_{p}}{\left|x_{1}\right|_{p}}
$$

i.e., if the point x_{1} (resp. x_{2}) is repeller then x_{2} (resp. x_{1}) is attractive. Moreover, x_{1} is indifferent iff x_{2} is indifferent. Thus we need to compare $\left|x_{1}\right|_{p}=\left|b-\sqrt{b^{2}+a}\right|_{p}$ and $\left|x_{2}\right|_{p}=\left|b+\sqrt{b^{2}+a}\right|_{p}$.

Case: $b^{2}+a=0$. In this case $x_{1}=x_{2}$, i.e. the function has unique fixed point $x_{1}=b$. Moreover, $\left|f^{\prime}\left(x_{1}\right)\right|_{p}=1$, i.e. the fixed point is an indifferent point.

Denote

$$
B=|b|_{p}
$$

Take $x \in S_{r}\left(x_{1}\right)$, i.e. $r=\left|x-x_{1}\right|_{p}=|x-b|_{p}$, then it follows from (2.1) that

$$
\begin{align*}
\mid f(x)- & \left.x_{1}\right|_{p}=\left|\frac{-b^{2}}{x-2 b}-\frac{-b^{2}}{b-2 b}\right|_{p}=B \cdot \frac{|x-b|_{p}}{|x-b-b|_{p}} \\
& =\varphi(r) \equiv \varphi_{B^{*}}(r)=\left\{\begin{array}{l}
r, \text { if } r<B \\
B^{*}, \\
B, \quad \text { if } r=B \\
B,
\end{array} \quad \text { if }>B\right. \tag{2.12}
\end{align*} \$.
$$

where $B^{*} \geq B$ is a given number (parameter).

Remark 2.4. Note that the value $B^{*}=\varphi(B)$ is not concretely defined. We only have its estimation. But in our analysis the estimations given for undefined value will be sufficient.

Let the function $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ be defined by 2.12 .
The following simple lemma shows that the real dynamical system compiled from φ^{n} is directly related to the p-adic dynamical system $f^{n}(x), n \geq 1, x \in \mathbb{C}_{p} \backslash \mathcal{P}$.

Lemma 2.5. If $x \in S_{r}\left(x_{1}\right)$, then the following holds for the function 2.1):

$$
\left|f^{n}(x)-x_{1}\right|_{p}=\varphi^{n}(r)
$$

The following lemma gives properties of this real dynamical system.
Lemma 2.6. The function φ has the following properties

1. $\operatorname{Fix}(\varphi)=\{r: 0 \leq r<B\} \cup\left\{B:\right.$ if $\left.B^{*}=B\right\}$
2. If $r=B$ then $\varphi(B)=B^{*}, \varphi\left(B^{*}\right)=B$.
3. If $r>B$ then $\varphi(r)=B, \quad \varphi(B)=B^{*}, \quad \varphi\left(B^{*}\right)=B$.

Proof. It easily follows from the definition of φ.
From this lemma it follows that

$$
\lim _{n \rightarrow \infty} \varphi^{n}(r)=\left\{\begin{array}{l}
r, \text { if } 0 \leq r<B \tag{2.13}\\
B^{*}, \quad \text { if } r=B, \quad B=B^{*} \\
B^{*}, \quad \text { if } r \geq B, \quad n=2 k-1 \\
B, \quad \text { if } r \geq B, \quad n=2 k, \quad k=1,2, \ldots
\end{array}\right.
$$

Denote

$$
B^{*}(x)=\left|f(x)-x_{1}\right|_{p}, \quad \text { if } \quad x \in S_{B}\left(x_{1}\right)
$$

By the applying Lemma 2.5, and 2.6 and formula 2.13 we get the following properties of the p-adic dynamical system complied by the function 2.1.

Theorem 2.7. The p-adic dynamical system generated by the function 2.1, for $b^{2}+a=0$, has the following properties:

1. $S I\left(x_{1}\right)=U_{B}\left(x_{1}\right)$.
2. $\mathcal{P} \subset \mathbb{C}_{p} \backslash U_{B}\left(x_{1}\right)$.
3. If $r>B$ and $x \in S_{r}\left(x_{1}\right)$, then $f(x) \in S_{B}\left(x_{1}\right)$ and

$$
f^{n}(x) \in S_{B^{*}\left(f^{n-1}(x)\right)}\left(x_{1}\right), \quad n \geq 2
$$

where $B^{*}(x)=\left|f(x)-x_{1}\right|_{B} \geq B$.
Proof.

1. By lemma 2.5 and part 1 of Lemma 2.6, sphere $S_{r}\left(x_{1}\right)$ is invariant for f if and only if $r<B$.
2. Note that $\left|2 b-x_{1}\right|_{p}=|b|_{p}=B$, i.e., $2 b \in S_{B}\left(x_{1}\right)$. By part 1 of this theorem if $x \in S_{r}\left(x_{1}\right), r<B$, then $f(x) \notin S_{B}\left(x_{1}\right)$. By definition of set \mathcal{P} and Lemma 2.6 we can conclude that $\mathcal{P} \subset \mathbb{C}_{p} \backslash U_{B}\left(x_{1}\right)$.
3. The proof of part 3 easily follows from Lemmas 2.5 and Lemma 2.6

Case: $b^{2}+a \neq 0$. In this case $x_{1} \neq x_{2}$. We denote

$$
\alpha=\left|x_{1}\right|_{p}=\left|b-\sqrt{b^{2}+a}\right|_{p}, \quad \beta=\left|x_{2}\right|_{p}=\left|b+\sqrt{b^{2}+a}\right|_{p}
$$

For $x \in S_{r}\left(x_{1}\right)$, i.e. $r=\left|x-x_{1}\right|_{p}$, from using $x_{1} x_{2}=-a$ and $x_{1}+x_{2}=2 b$ we get

$$
\begin{aligned}
\left|f(x)-x_{1}\right|_{p}=\left|\frac{a}{x-2 b}-\frac{a}{x_{1}-2 b}\right|_{p}=\alpha \cdot \frac{\left|x-x_{1}\right|_{p}}{\left|x-x_{1}-x_{2}\right|_{p}} \\
=\eta(r) \equiv \eta_{A}(r)= \begin{cases}\frac{\alpha}{\beta} r, & \text { if } r<\beta \\
A, & \text { if } r=\beta \\
\alpha, & \text { if } r>\beta,\end{cases}
\end{aligned}
$$

where $A \geq \alpha$.
Similarly, for $x \in S_{r}\left(x_{2}\right)$ we get

$$
\begin{aligned}
& \left|f(x)-x_{2}\right|_{p}=\left|\frac{a}{x-2 b}-\frac{a}{x_{2}-2 b}\right|_{p}=\beta \cdot \frac{\left|x-x_{2}\right|_{p}}{\left|x-x_{2}-x_{1}\right|_{p}} \\
& \quad=\zeta(r) \equiv \zeta_{D}(r)= \begin{cases}\frac{\beta}{\alpha} r, & \text { if } r<\alpha \\
D, & \text { if } r=\alpha \\
\beta, & \text { if } r>\alpha,\end{cases}
\end{aligned}
$$

where $D \geq \beta$.
Subcase: $\alpha=\beta$. In this case we have $\left|x_{1}-x_{2}\right| \leq \alpha$ and since $\left|f^{\prime}\left(x_{i}\right)\right|_{p}=1$, $i=1,2$, both fixed points are indifferent. Moreover, the functions φ, η and ζ have similar graphs, therefore they generate similar dynamical systems. The limit points of which are as in 2.13 replaced parameters of φ by parameters of η.

Using these properties we prove the following theorem
Theorem 2.8. The p-adic dynamical system is generated by the function (2.1), for $b^{2}+a \neq 0$ and $\alpha=\beta$, has the following properties:
i. $S I\left(x_{i}\right)=U_{\alpha}\left(x_{i}\right)$, with

$$
\begin{gathered}
S I\left(x_{1}\right)=S I\left(x_{2}\right), \quad \text { if }\left|x_{1}-x_{2}\right|_{p}<\alpha \\
S I\left(x_{1}\right) \cap S I\left(x_{2}\right)=\emptyset, \quad \text { if }\left|x_{1}-x_{2}\right|_{p}=\alpha .
\end{gathered}
$$

Fig 1: The graph of the function η (left), and ζ (right).
ii. $\mathcal{P} \subset \mathbb{C}_{p} \backslash\left(S I\left(x_{1}\right) \cup S I\left(x_{2}\right)\right)$.
iii. If $r>\alpha$ and $x \in S_{r}\left(x_{1}\right)$, then $f(x) \in S_{\alpha}\left(x_{1}\right)$ and

$$
f^{n}(x) \in S_{A^{*}\left(f^{n-1}(x)\right)}\left(x_{1}\right), \quad n \geq 2,
$$

where $A^{*}(x)=\left|f(x)-x_{1}\right|_{\alpha} \geq \alpha$.
Proof. i. Follows from the properties of the function η and the fact that in p-adic field any point of a ball is its center. Moreover, two balls are either disjoint, or one is contained in the other.
ii. For $b^{2}+a \neq 0$, we have

$$
\left|2 b-x_{1}\right|_{p}=\left|x_{2}\right|_{p}=\left|2 b-x_{2}\right|_{p}=\left|x_{1}\right|_{p}=\alpha,
$$

i.e., $2 b \in S_{\alpha}\left(x_{i}\right), i=1,2$. By part i of this theorem if $x \in S_{r}\left(x_{i}\right), r<\alpha$, then $f(x) \notin S_{\alpha}\left(x_{i}\right)$. This completes the proof of part ii.
iii. By property of the function η (in case $\alpha=\beta$) we have $f(x) \in S_{\alpha}\left(x_{1}\right)$ or $f(x) \in S_{A^{*}(x)}\left(x_{1}\right)$. Therefore, iterating f we get iii.

Subcase: $\alpha<\beta$. (The case $\alpha>\beta$ is similar). In this case we have

$$
\left|x_{1}\right|_{p}=\alpha<\left|x_{2}\right|_{p}=\beta, \quad\left|x_{1}-x_{2}\right|_{p}=\beta .
$$

Moreover, $\left|f^{\prime}\left(x_{1}\right)\right|_{p}<1$, i.e., x_{1} is attractive and $\left|f^{\prime}\left(x_{2}\right)\right|_{p}>1$, i.e., x_{2} is repeller.
Following Fig 1. one can easily prove the following lemmas
Lemma 2.9. The function η has the following properties

1. $\operatorname{Fix}(\eta)=\{0\} \cup\{A:$ if $A=\beta\}$
2. If $\alpha \leq A \neq \beta$ then

$$
\lim _{n \rightarrow \infty} \eta^{n}(r)=0, \quad \text { for all } r \geq 0
$$

3. If $A=\beta$ then $\eta(\beta)=\beta$ and

$$
\lim _{n \rightarrow \infty} \eta^{n}(r)=0, \quad \text { for all } 0 \leq r \neq \beta
$$

Lemma 2.10. The function ζ has the following properties

1. $\operatorname{Fix}(\zeta)=\{0, \beta\}$
2.

$$
\lim _{n \rightarrow \infty} \zeta^{n}(r)=\beta, \quad \text { for all } r>0
$$

Then using Lemmas 2.9 and 2.10 we obtain the following
Theorem 2.11. If $\alpha<\beta$, then the p-adic dynamical system generated by the function (2.1) has the following properties:

1. $\mathcal{P} \subset S_{\beta}\left(x_{1}\right)$.
2. The set $\mathbb{C}_{p} \backslash S_{\beta}\left(x_{1}\right)$ is a subset to the basin of attraction for the attractive fixed point x_{1}, i.e.,

$$
\mathbb{C}_{p} \backslash S_{\beta}\left(x_{1}\right) \subseteq \mathcal{A}\left(x_{1}\right)
$$

Proof. 1. We have

$$
\begin{aligned}
& \left|x_{1}-2 b\right|_{p}=\left|-b-\sqrt{b^{2}+a}\right|_{p}=\left|x_{2}\right|_{p}=\beta \\
& \left|x_{2}-2 b\right|_{p}=\left|-b+\sqrt{b^{2}+a}\right|_{p}=\left|x_{1}\right|_{p}=\alpha .
\end{aligned}
$$

Thus $2 b \in S_{\beta}\left(x_{1}\right)$. From Lemma 2.9 we get that if $x \notin S_{\beta}\left(x_{1}\right)$ then $f(x) \notin S_{\beta}\left(x_{1}\right)$. Consequently, $f^{n}(x) \notin S_{\beta}\left(x_{1}\right)$. Hence $\mathcal{P} \subset S_{\beta}\left(x_{1}\right)$. We also know that $x_{2} \in S_{\beta}\left(x_{1}\right)$. This completes the proof of part 1.
2. Follows from the part 1 and Lemmas 2.9 and 2.10

References

1. Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553-566.
2. Albeverio S., Tirozzi B., Khrennikov A.Yu., S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276-287.
3. Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York), 2009.
4. Khrennikov A.Yu., Oleschko K., M. de Jesús Correa López, Applications of padic numbers: from physics to geology. Advances in non-Archimedean analysis, 121-131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.
5. Koblitz N., p-adic numbers, p-adic analysis and zeta-function Springer, Berlin, 1977.
6. Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping, Disc. Cont. Dyn. Syst. 38 (2018), 231-245.
7. Peitgen H.-O., Jungers H., Saupe D., Chaos Fractals, Springer, Heidelberg-New York, 1992.
8. Rozikov U.A., What are p-adic numbers? What are they used for? Asia Pac. Math. Newsl. 3(4) (2013), 1-6.
9. Rozikov U.A., Sattarov I.A., On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53-64.
10. Rozikov U.A., Sattarov I.A., p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260-270.
11. Rozikov U.A., Sattarov I.A., Yam S., p-adic dynamical systems of the function $\frac{a x}{x^{2}+a}$. p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77-87.
12. Rozikov U.A., Sattarov I.A., Dynamical systems of the p-adic (2,2)-rational functions with two fixed points. Results in Mathematics, $75(3)$ (2020), 37 pp .
13. Vladimirov V.S., Volovich I.V., Zelenov E.I., p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994).

Rozikov U.A.,
V.I.Romanovskiy Institute of Mathematics of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.
AKFA University, 1st Deadlock 10, Kukcha Darvoza, 100095, Tashkent, Uzbekistan;
Faculty of Mathematics, National University of Uzbekistan, 100170, Tashkent, Uzbekistan;
e-mail: rozikovu@yandex.ru
Sayitova M.,
Bukhara State University, The department of Mathematics, 11, M.Iqbol, Bukhara city, Bukhara, Uzbekistan.
e-mail: sayitovamehinbonu@gmail.com

Contents

Abdullaev O.Kh. On a problem for the degenerating parabolichyperbolic equation involves Caputo derivative fractional order and non-linear terms
Abdullayev J.Sh. Bergman-Bremermann's integral formula for the Cartesian product of classical domains
Adashev J.Q., Yusupov B.B. Local derivation of naturally graded quasi-filiform Leibniz algebras

Egamberdiev O.I., Ilyasova R.A. On subgroups of index four for a group representation of the Cayley tree
Eshkobilova D.T., Kholturaev Kh.F. The functor of idempotent probability measures and completeness index of uniform spaces
Formanov SH.K., Sirojitdinov A.A., Farmonov A.Sh. An Accuracy estimation of approximation in central limit theorem in the existence of fractional-order moments
Khatamov N.M. Holliday junctions for the HC (cycle) Blume-Capel model of DNA
Komilova N.J. Dirichlet problem for multidimensional elliptic equation with two singular coefficientss
Makhammadaliev M.T. Periodic Gibbs measures for the antiferromagnetic Potts model on a Cayley tree of order k
Mamanazarov A.O. A non-local problem for a parabolic-hyperbolic equation with singular coefficients
Narmanov A.Ya., Qosimov O.Yu. On the geometry of singular foliations generated by the family of vector fields
Rakhimov A.A, Ramazonova L. Description of the real $A W^{*}$ algebras with abelian self-adjoint part.
Rozikov U.A., Sayitova M. On a non-linear p-adic dynamical system
Takhirov J.O., Djumanazarova Z.K. The classical periodic solutions for nonlinear parabolic integro-differential equations

Mathematical life

Компьютерная верстка: K.K. Abdurasulov
Журнал зарегистрирован Агентством по печати и информации Республики Узбекистан 22 декабря 2006 г. Регистр. №0044.

Сдано в набор 18.02.2021 г. Подписано к печати 25.03.2021 г. Формат $60 \times 841 / 16$. Гарнитура литературная. Печать офсетная. Усл.-печ.л. 11,0. Тираж 120 Заказ №

Институт математики имени В.И.Романовского АНРУз,
Узбекистан, 100174,
Ташкент, ул. Университеты, 9.
Отпечатано в OOO "NISO POLIGRAF". Ташкентская область,Урта Чирчикский район, ССГ "Ок-Ота" улица Марказ-1

[^0]: ${ }^{\text {c }}$ https://www.freemathhelp.com/forum/threads/formula-for-matrix-raised-to-powern.55028/

