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On a non-linear p-adic dynamical system
Rozikov U.A., Sayitova M.

Abstract. In this paper, we study p-adic dynamical system of the function f(x) =
a

x−2b
on the set of complex p-adic numbers. For each trajectory of the dynamical

system we construct the set of limit points and for each indifferent fixed point we give
its Siegel disk.

Keywords: Rational dynamical systems; fixed point; invariant set; Siegel disk;
complex p-adic field.
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1 Introduction
It is known that the theory of p-adic numbers has numerous applications in many
branches of mathematics, biology, physics and other sciences (see for example [4], [8],
[13] and the references therein).

Let us recall the main definitions. Denote by (n,m) the greatest common divisor
of the positive integers n and m and let Q be the field of rational numbers.

For each fixed prime number p, every rational number x 6= 0 can be represented
in the form x = pr n

m
, where r, n ∈ Z, m is a positive integer, (p, n) = 1, (p,m) = 1.

The p-adic norm of this x is |x|p = p−r and |0|p = 0.
This norm has the following properties:
1) |x|p ≥ 0 and |x|p = 0 if and only if x = 0,
2) |xy|p = |x|p|y|p,
3) the strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p},

3.1) if |x|p 6= |y|p then |x+ y|p = max{|x|p, |y|p},
3.2) if |x|p = |y|p then for p = 2 we have |x+ y|p ≤ 1

2
|x|p (see [13]).

The completion of Q with respect to p-adic norm defines the p-adic field which is
denoted by Qp (see [5]).

The algebraic completion of Qp is denoted by Cp and it is called the set of complex
p-adic numbers.

For any a ∈ Cp and r > 0 denote

Ur(a) = {x ∈ Cp : |x− a|p < r}, Vr(a) = {x ∈ Cp : |x− a|p ≤ r},

Sr(a) = {x ∈ Cp : |x− a|p = r}.
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To define a dynamical system we consider a function f : x ∈ U → f(x) ∈ U , (in
our case U = Ur(a) or Cp) (see for example [7]).

For x ∈ U denote by fn(x) the n-fold composition of f with itself (i.e. n time
iteration of f to x):

fn(x) = f(f(f . . . (f︸ ︷︷ ︸
n times

(x))) . . . ).

For arbitrary given x0 ∈ U and f : U → U the discrete-time dynamical system
(also called the trajectory) of x0 is the sequence of points

x0, x1 = f(x0), x2 = f2(x0), x3 = f3(x0), . . . (1.1)

The main problem: Given a function f and initial point x0 what ultimately happens
with the sequence (1.1). Does the limit limn→∞ xn exist? If not what is the set of
limit points of the sequence?

A point x ∈ U is called a fixed point for f if f(x) = x. The set of all fixed points
denoted by Fix(f). A point x is a periodic point of period m if fm(x) = x. The least
positive m for which fm(x) = x is called the prime period of x.

A fixed point x0 is called an attractor if there exists a neighborhood U(x0) of x0

such that for all points x ∈ U(x0) it holds lim
n→∞

fn(x) = x0. If x0 is an attractor then
its basin of attraction is

A(x0) = {x ∈ Cp : fn(x)→ x0, n→∞}.

A fixed point x0 is called repeller if there exists a neighborhood U(x0) of x0 such that
|f(x)− x0|p > |x− x0|p for x ∈ U(x0), x 6= x0.

The ball Ur(x0) is called a Siegel disk if each sphere Sρ(x0), ρ < r is an invariant
sphere of f(x), i.e. if x ∈ Sρ(x0) then all iterated points fn(x) ∈ Sρ(x0) for all
n = 1, 2 . . . . The union of all Siegel desks with the center at x0 is called a maximum
Siegel disk and is denoted by SI(x0).

In this paper we continue our study of p-adic dynamical systems generated by
rational functions (see [1]-[12] and references therein for motivations and history of
p-adic dynamical systems). We consider the function f(x) = a

x−2b
and study the

dynamical systems generated by this function in Cp. We give fixed points, periodic
points, basin of attraction and Siegel disk of each fixed point.

2 Main results
Consider the dynamical system associated with the function f : Cp → Cp defined by

f(x) =
a

x− 2b
, a 6= 0, a, b ∈ Cp, (2.1)

where x 6= 2b.
Our goal here is to investigate the behavior of trajectories of (2.1) in the complex

p-adic filed Cp.
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Remark 2.1. The case b = 0 is simple: in this case any point x ∈ Cp \ {−b} is two
periodic. That is f(f(x)) = x. Indeed,

f(f(x)) =
a
a
x

= a · x
a

= x.

Therefore, below we consider the case b 6= 0.

Since Cp is algebraic closed, this function (for ab 6= 0) has two fixed points:

f(x) = x ⇒ x2 − 2bx− a = 0 ⇒ x1 = b−
√
b2 + a, x2 = b+

√
b2 + a. (2.2)

The following proposition says that f may have periodic (except fixed points) iff
b = 0.

Property 2.2. If b(b2 + a) 6= 0 then fn(x) = x, n ≥ 2 does not have any solution
(except solutions of f(x) = x).

Proof. Using induction over n ≥ 1 one can show that fn has the following form

fn(x) =
anx+ bn
cnx+ dn

, for some an, bn, cn, dn ∈ Cp.

Indeed, for n = 1 the formula is true with

a1 = 0, b1 = a, c1 = 1, d1 = −2b. (2.3)

Assuming that the formula is true for n we get it for n+ 1 with

an+1 = bn

bn+1 = aan − 2bbn

cn+1 = dn

dn+1 = acn − 2bdn.

(2.4)

Thus we have reduced the dynamical system {fn(x)}n≥1 to the dynamical system
(2.4) with initial point (2.3). Since in (2.4) the vectors (an, bn) and (cn, dn) are
independent, it suffices to study only one of them.

Denote

M =

(
0 1
a −2b

)
.

Let λ1 = −x1, λ2 = −x2 (see (2.2)) be the distinct eigenvalues of M (because by
condition of the proposition we have b2 + a 6= 0). By (2.2) we get

λ1 + 2b = x2 = −λ2, λ2 + 2b = x1 = −λ1. (2.5)
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From (2.4) we get (an+1, bn+1) = M (an, bn)T and (cn+1, dn+1) = M (cn, dn)T .
Thus

(an+1, bn+1) = Mn (a1, b1)T , (cn+1, dn+1) = Mn (c1, d1)T . (2.6)

Therefore we need to find Mn. To find it we use a little Cayley-Hamilton Theoremc

and (2.5) to obtain the following formula

Mn =
λ2 λ

n
1 − λ1 λ

n
2

λ2 − λ1
· I2 +

λn2 − λn1
λ2 − λ1

·M

=
1

λ2 − λ1

(
λ2 λ

n
1 − λ1 λ

n
2 λn2 − λn1

a (λn2 − λn1 ) λn+1
2 − λn+1

1

)
. (2.7)

By this formula and (2.3) from (2.6) we get

an+1 = a · (λ2 − λ1)−1(λn2 − λn1 )

bn+1 = a · (λ2 − λ1)−1(λn+1
2 − λn+1

1 )

cn+1 = (λ2 − λ1)−1(λn+1
2 − λn+1

1 )

dn+1 = (λ2 − λ1)−1((a− 2bλ2)λn2 − (a− 2bλ1)λn1 ).

(2.8)

Consequently,
fn(x) = x ⇔ ĉnx

2 + (d̂n − ân)x− b̂n = 0, (2.9)

where
ân+1 = a · (λn2 − λn1 )

b̂n+1 = a · (λn+1
2 − λn+1

1 )

ĉn+1 = λn+1
2 − λn+1

1

d̂n+1 = (a− 2bλ2)λn2 − (a− 2bλ1)λn1 .

(2.10)

For each n ≥ 2, from λ1 6= λ2 it follows that ân, b̂n, ĉn, d̂n can not be simultaneously
zero.

Since each solution of f(x) = x is solution to the quadratic equation (2.9), we
conclude that (2.9) does not have solutions different from the fixed points. �
Denote:

P = {x ∈ Cp : ∃n ∈ N ∪ {0}, fn(x) = 2b}. (2.11)

For example, x = x̂ = 2b+ a
2b
∈ P, because f(x̂) = 2b.

The following proposition describes the set P

chttps://www.freemathhelp.com/forum/threads/formula-for-matrix-raised-to-power-
n.55028/
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Property 2.3. If b(b2 + a) 6= 0 then the set P is the following

P = {2b} ∪

{
2b− b̂n

d̂n
: d̂n 6= 0, n ≥ 1

}
,

where b̂n and d̂n are defined in (2.10).

Proof. For each fixed n ≥ 1 the corresponding element of P is solution of the equation

fn(x) =
ânx+ b̂n

ĉnx+ d̂n
= 2b.

That is
(2bĉn − ân)x = b̂n − 2bd̂n.

Note that d̂n = −(2bĉn − ân). It is easy to see that if λ1 6= λ2 (i.e. b2 + a 6= 0) then
b̂n and d̂n can not be zero simultaneously. This completes the proof. �

Let x0 be a fixed point of a function f(x). Put λ = f ′(x0). The point x0 is
attractive if 0 < |λ|p < 1, indifferent if |λ|p = 1, and repelling if |λ|p > 1.

For (2.1) we have

f ′(x) = − a

(x− 2b)2
= − 1

a

(
a

(x− 2b)

)2

= − 1

a
(f(x))2.

Using this formula and x1x2 = −a we get

|f ′(x1)|p =
|x1|p
|x2|p

, |f ′(x2)|p =
|x2|p
|x1|p

,

i.e., if the point x1 (resp. x2) is repeller then x2 (resp. x1) is attractive. Moreover, x1

is indifferent iff x2 is indifferent. Thus we need to compare |x1|p = |b−
√
b2 + a|p and

|x2|p = |b+
√
b2 + a|p.

Case: b2 + a = 0. In this case x1 = x2, i.e. the function has unique fixed point
x1 = b. Moreover, |f ′(x1)|p = 1, i.e. the fixed point is an indifferent point.

Denote
B = |b|p.

Take x ∈ Sr(x1), i.e. r = |x− x1|p = |x− b|p, then it follows from (2.1) that

|f(x)− x1|p =

∣∣∣∣ −b2x− 2b
− −b2

b− 2b

∣∣∣∣
p

= B · |x− b|p|x− b− b|p

= ϕ(r) ≡ ϕB∗(r) =


r, if r < B

B∗, if r = B

B, if r > B,

(2.12)

where B∗ ≥ B is a given number (parameter).
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Remark 2.4. Note that the value B∗ = ϕ(B) is not concretely defined. We only
have its estimation. But in our analysis the estimations given for undefined value will
be sufficient.

Let the function ϕ : [0,+∞)→ [0,+∞) be defined by (2.12).
The following simple lemma shows that the real dynamical system compiled from

ϕn is directly related to the p-adic dynamical system fn(x), n ≥ 1, x ∈ Cp \ P.

Lemma 2.5. If x ∈ Sr(x1), then the following holds for the function (2.1):

|fn(x)− x1|p = ϕn(r).

The following lemma gives properties of this real dynamical system.

Lemma 2.6. The function ϕ has the following properties

1. Fix(ϕ) = {r : 0 ≤ r < B} ∪ {B : if B∗ = B}
2. If r = B then ϕ(B) = B∗, ϕ(B∗) = B.

3. If r > B then ϕ(r) = B, ϕ(B) = B∗, ϕ(B∗) = B.

Proof. It easily follows from the definition of ϕ. �
From this lemma it follows that

lim
n→∞

ϕn (r) =



r, if 0 ≤ r < B

B∗, if r = B, B = B∗

B∗, if r ≥ B, n = 2k − 1

B, if r ≥ B, n = 2k, k = 1, 2, . . .

(2.13)

Denote
B∗(x) = |f(x)− x1|p, if x ∈ SB(x1).

By the applying Lemma 2.5, and 2.6, and formula (2.13) we get the following
properties of the p-adic dynamical system complied by the function (2.1).

Theorem 2.7. The p-adic dynamical system generated by the function (2.1), for
b2 + a = 0, has the following properties:

1. SI(x1) = UB(x1).

2. P ⊂ Cp \ UB(x1).

3. If r > B and x ∈ Sr(x1), then f(x) ∈ SB(x1) and

fn(x) ∈ SB∗(fn−1(x))(x1), n ≥ 2,

where B∗(x) = |f(x)− x1|B ≥ B.

Proof.
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1. By lemma 2.5 and part 1 of Lemma 2.6, sphere Sr(x1) is invariant for f if and
only if r < B.

2. Note that |2b− x1|p = |b|p = B, i.e., 2b ∈ SB(x1). By part 1 of this theorem if
x ∈ Sr(x1), r < B, then f(x) /∈ SB(x1). By definition of set P and Lemma 2.6,
we can conclude that P ⊂ Cp \ UB(x1).

3. The proof of part 3 easily follows from Lemmas 2.5 and Lemma 2.6.

�
Case: b2 + a 6= 0. In this case x1 6= x2. We denote

α = |x1|p = |b−
√
b2 + a|p, β = |x2|p = |b+

√
b2 + a|p.

For x ∈ Sr(x1), i.e. r = |x − x1|p, from (2.1) using x1x2 = −a and x1 + x2 = 2b we
get

|f(x)− x1|p =

∣∣∣∣ a

x− 2b
− a

x1 − 2b

∣∣∣∣
p

= α · |x− x1|p
|x− x1 − x2|p

= η(r) ≡ ηA(r) =


α
β
r, if r < β

A, if r = β

α, if r > β,

where A ≥ α.
Similarly, for x ∈ Sr(x2) we get

|f(x)− x2|p =

∣∣∣∣ a

x− 2b
− a

x2 − 2b

∣∣∣∣
p

= β · |x− x2|p
|x− x2 − x1|p

= ζ(r) ≡ ζD(r) =


β
α
r, if r < α

D, if r = α

β, if r > α,

where D ≥ β.
Subcase: α = β. In this case we have |x1 − x2| ≤ α and since |f ′(xi)|p = 1,

i = 1, 2, both fixed points are indifferent. Moreover, the functions ϕ, η and ζ have
similar graphs, therefore they generate similar dynamical systems. The limit points
of which are as in (2.13) replaced parameters of ϕ by parameters of η.

Using these properties we prove the following theorem

Theorem 2.8. The p-adic dynamical system is generated by the function (2.1), for
b2 + a 6= 0 and α = β, has the following properties:

i. SI(xi) = Uα(xi), with

SI(x1) = SI(x2), if |x1 − x2|p < α

SI(x1) ∩ SI(x2) = ∅, if |x1 − x2|p = α.
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Fig 1: The graph of the function η (left), and ζ (right).

ii. P ⊂ Cp \ (SI(x1) ∪ SI(x2)).

iii. If r > α and x ∈ Sr(x1), then f(x) ∈ Sα(x1) and

fn(x) ∈ SA∗(fn−1(x))(x1), n ≥ 2,

where A∗(x) = |f(x)− x1|α ≥ α.

Proof. i. Follows from the properties of the function η and the fact that in p-adic
field any point of a ball is its center. Moreover, two balls are either disjoint, or one is
contained in the other.

ii. For b2 + a 6= 0, we have

|2b− x1|p = |x2|p = |2b− x2|p = |x1|p = α,

i.e., 2b ∈ Sα(xi), i = 1, 2. By part i of this theorem if x ∈ Sr(xi), r < α, then
f(x) /∈ Sα(xi). This completes the proof of part ii.

iii. By property of the function η (in case α = β) we have f(x) ∈ Sα(x1) or
f(x) ∈ SA∗(x)(x1). Therefore, iterating f we get iii. �

Subcase: α < β. (The case α > β is similar). In this case we have

|x1|p = α < |x2|p = β, |x1 − x2|p = β.

Moreover, |f ′(x1)|p < 1, i.e., x1 is attractive and |f ′(x2)|p > 1, i.e., x2 is repeller.
Following Fig 1. one can easily prove the following lemmas

Lemma 2.9. The function η has the following properties

1. Fix(η) = {0} ∪ {A : if A = β}
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2. If α ≤ A 6= β then
lim
n→∞

ηn(r) = 0, for all r ≥ 0.

3. If A = β then η(β) = β and

lim
n→∞

ηn(r) = 0, for all 0 ≤ r 6= β.

Lemma 2.10. The function ζ has the following properties

1. Fix(ζ) = {0, β}

2.
lim
n→∞

ζn(r) = β, for all r > 0.

Then using Lemmas 2.9 and 2.10, we obtain the following

Theorem 2.11. If α < β, then the p-adic dynamical system generated by the function
(2.1) has the following properties:

1. P ⊂ Sβ(x1).

2. The set Cp \Sβ(x1) is a subset to the basin of attraction for the attractive fixed
point x1, i.e.,

Cp \ Sβ(x1) ⊆ A(x1).

Proof. 1. We have

|x1 − 2b|p = | − b−
√
b2 + a|p = |x2|p = β,

|x2 − 2b|p = | − b+
√
b2 + a|p = |x1|p = α.

Thus 2b ∈ Sβ(x1). From Lemma 2.9 we get that if x /∈ Sβ(x1) then f(x) /∈ Sβ(x1).
Consequently, fn(x) /∈ Sβ(x1). Hence P ⊂ Sβ(x1). We also know that x2 ∈ Sβ(x1).
This completes the proof of part 1.

2. Follows from the part 1 and Lemmas 2.9 and 2.10. �

References

1. Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical
systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

2. Albeverio S., Tirozzi B., Khrennikov A.Yu., S. de Shmedt, p-adic dynamical
systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.

3. Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter
Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York),
2009.



On a non-linear p-adic dynamical system 159

4. Khrennikov A.Yu., Oleschko K., M. de Jesús Correa López, Applications of p-
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