p-adic dynamical systems of the function $a /(x-2 b)$

U.A. Rozikov and M. Sayitova

V.I.Romanovskiy Institute of Mathematics, 4, University str., 100174, Tashkent, Uzbekistan. AND Bukhara State University, The department of Mathematics, 11, M.Iqbol, Bukhara, Uzbekistan.
e-mail: rozikovu@yandex.ru, e-mail: sayitovamehinbonu@gmail.com
2000 Mathematics Subject Classification. 46S10

It is known that the completion of the set of rational numbers \mathcal{Q} with respect to p-adic norm $|\cdot|_{p}$ defines the p-adic field which is denoted by \mathcal{Q}_{p} (see [3]).

The algebraic completion of \mathcal{Q}_{p} is denoted by \mathcal{C}_{p} and it is called the set of complex p-adic numbers.

For any $a \in \mathcal{C}_{p}$ and $r>0$ denote

$$
\begin{gathered}
U_{r}(a)=\left\{x \in \mathcal{C}_{p}:|x-a|_{p}<r\right\}, \quad V_{r}(a)=\left\{x \in \mathcal{C}_{p}:|x-a|_{p} \leq r\right\}, \\
S_{r}(a)=\left\{x \in \mathcal{C}_{p}:|x-a|_{p}=r\right\} .
\end{gathered}
$$

Let x_{0} be a fixed point of a function $f(x)$, i.e. $f\left(x_{0}\right)=x_{0}$. A fixed point x_{0} is called an attractor if there exists a neighborhood $U\left(x_{0}\right)$ of x_{0} such that for all points $x \in U\left(x_{0}\right)$ it holds $\lim _{n \rightarrow \infty} f^{n}(x)=x_{0}$. If x_{0} is an attractor then its basin of attraction is

$$
\mathcal{A}\left(x_{0}\right)=\left\{x \in \text { mathcal }_{p}: f^{n}(x) \rightarrow x_{0}, n \rightarrow \infty\right\}
$$

Put $\lambda=f^{\prime}\left(x_{0}\right)$. The point x_{0} is attractive if $0<|\lambda|_{p}<1$, indifferent if $|\lambda|_{p}=1$, and repelling if $|\lambda|_{p}>1$.

The ball $U_{r}\left(x_{0}\right)$ is said to be a Siegel disk if each sphere $S_{\rho}\left(x_{0}\right), \rho<r$ is an invariant sphere of $f(x)$, i.e. if $x \in S_{\rho}\left(x_{0}\right)$ then all iterated points $f^{n}(x) \in S_{\rho}\left(x_{0}\right)$ for all $n=1,2 \ldots$. The union of all Siegel desks with the center at x_{0} is said to a maximum Siegel disk and is denoted by $S I\left(x_{0}\right)$.

Consider the dynamical system associated with function $f: \mathcal{C}_{p} \rightarrow \mathcal{C}_{p}$ defined by

$$
\begin{equation*}
f(x)=\frac{a}{x-2 b}, \quad a, b \in \mathcal{C}_{p} \tag{1}
\end{equation*}
$$

where $x \neq 2 b$.
Our goal here is to present the behavior of trajectories $\left\{f^{n}(x), x \in \mathcal{C}_{p}\right\}$ of (1) in the complex p-adic filed \mathcal{C}_{p}. For motivation of such investigations see [1], [2] and references therein.

The case $a=0$ is trivial and $a \neq 0, b=0$ is simple: in this case any point $x \in \mathcal{C}_{p} \backslash\{-b\}$ is two periodic.

Therefore we consider the case $a b \neq 0$. Since \mathcal{C}_{p} is algebraic closed, this function has two fixed points:

$$
f(x)=x \Rightarrow x^{2}-2 b x-a=0 \Rightarrow x_{1}=b-\sqrt{b^{2}+a}, \quad x_{2}=b+\sqrt{b^{2}+a}
$$

Denote:

$$
\mathcal{P}=\left\{x \in \mathcal{C}_{p}: \exists n \in \mathcal{N} \cup\{0\}, f^{n}(x)=2 b\right\} .
$$

For example, $x=\hat{x}=2 b+\frac{a}{2 b} \in \mathcal{P}$, because $f(\hat{x})=2 b$.
Note that $\mathcal{P}=\{2 b\} \cup\left\{\frac{b_{n}-2 b d_{n}}{2 b c_{n}-a_{n}}: n \geq 1\right\}$, where $a_{n}, b_{n}, c_{n}, d_{n}$ are coefficients of f^{n}.

For (1) we have

$$
\left|f^{\prime}\left(x_{1}\right)\right|_{p}=\frac{\left|x_{1}\right|_{p}}{\left|x_{2}\right|_{p}}, \quad\left|f^{\prime}\left(x_{2}\right)\right|_{p}=\frac{\left|x_{2}\right|_{p}}{\left|x_{1}\right|_{p}}
$$

i.e., if the point x_{1} (resp. x_{2}) is repeller then x_{2} (resp. x_{1}) is attractive. Moreover, x_{1} is indifferent iff x_{2} is indifferent. Thus we need to compare $\left|x_{1}\right|_{p}=\left|b-\sqrt{b^{2}+a}\right|_{p}$ and $\left|x_{2}\right|_{p}=\left|b+\sqrt{b^{2}+a}\right|_{p}$.

Case: $b^{2}+a=0$. In this case $x_{1}=x_{2}$, i.e. the function has unique fixed point $x_{1}=b$. Moreover, $\left|f^{\prime}\left(x_{1}\right)\right|_{p}=1$, i.e. the fixed point is an indifferent point. Denote $B=|b|_{p}$ and

$$
B^{*}(x)=\left|f(x)-x_{1}\right|_{p}, \quad \text { if } \quad x \in S_{B}\left(x_{1}\right) .
$$

We have the following
Theorem 1. The p-adic dynamical system is generated by the function (1), for $b^{2}+a=0$, has the following properties:

1. $S I\left(x_{1}\right)=U_{B}\left(x_{1}\right) . \quad$ 2. $\mathcal{P} \subset \mathcal{C}_{p} \backslash U_{B}\left(x_{1}\right)$.
2. If $r>B$ and $x \in S_{r}\left(x_{1}\right)$, then $f(x) \in S_{B}\left(x_{1}\right)$ and

$$
f^{n}(x) \in S_{B^{*}\left(f^{n-1}(x)\right)}\left(x_{1}\right), \quad n \geq 2
$$

where $B^{*}(x)=\left|f(x)-x_{1}\right|_{B} \geq B$.

Case: $b^{2}+a \neq 0$. In this case $x_{1} \neq x_{2}$. We denote

$$
\alpha=\left|x_{1}\right|_{p}=\left|b-\sqrt{b^{2}+a}\right|_{p}, \quad \beta=\left|x_{2}\right|_{p}=\left|b+\sqrt{b^{2}+a}\right|_{p} .
$$

We obtain the following theorem
Theorem 2. The p-adic dynamical system is generated by the function (1), for $b^{2}+a \neq 0$ and $\alpha<\beta$, then the p-adic dynamical system generated by the function (1) has the following properties:

1. $\mathcal{P} \subset S_{\beta}\left(x_{1}\right)$.
2. The set $\mathcal{C}_{p} \backslash S_{\beta}\left(x_{1}\right)$ is a subset to the basin of attraction for the attractive fixed point x_{1}, i.e.,

$$
\mathcal{C}_{p} \backslash S_{\beta}\left(x_{1}\right) \subseteq \mathcal{A}\left(x_{1}\right) .
$$

[1] Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2,1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553-566.
[2] Anashin V., Khrennikov A., Applied algebraic dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York), 2009.
[3] Koblitz N., p-adic numbers, p-adic analysis and zeta-function. Springer, Berlin, 1977.

