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Abstract. This paper uses the Ritz method to find approximate solutions to boundary-value problems for ordinary differential
equations. We present the approximate finite element solution by a linear combination of the basis functions. Here we get coef-

ficients of the optimal interpolation formula in W (1,0)
2 space as basis functions. The difference obtained in numerical results and

exact solutions illustrates graphically.

INTRODUCTION

Differential equations and variational problems growth conditions have significantly been studied in recent years. The
massive interest in this type of non-standard growth conditions is mainly motivated by their physical applications.
The actual cause lay in the fact that some physical phenomena can be modelled by such kinds of equations, such as
elastic mechanics [1], electrorheological fluids sometimes referred to as "smart fluids" [2], image restoration [3, 4],
flow in porous media [5].

Even if a differential equation can be solved analytically, considerable effort and sound mathematical theory are
often needed, and the closed form of the solution may even turn out to be too messy to be valid. Suppose the analytic
solution of the differential equation is unavailable or too difficult to obtain or takes some complicated form that could
be more helpful. In that case, we may find an approximate solution. Discrete numerical values represent the solution
to a sure accuracy. Nowadays, these numerical results and associated tables or plots are obtained using computers to
provide practical solutions to many problems that were impossible to obtain.

Numerical solutions to differential equations can be achieved using finite difference and finite element methods.
Other methods include finite volume, collocation, and spectral methods.

The finite element method was developed to solve complex problems in engineering involving elliptic partial dif-
ferential equations and complicated geometries, notably in elasticity and structural mechanics modelling. However,
its range of applications nowadays is extensive [6]. One of the essential parts of the finite element method is the

construction of basis functions. Therefore, in this work, we construct basis functions in W (1,0)
2 space for the finite

element methods, and we use them for numerical solutions of boundary-value problems.
The paper is structured as follows. In Section 2, the Ritz method is represented for the second-order boundary-

value problems; in Section 3, we present the optimal interpolation formula in W (1,0)
2 space; finally, in Section 4, we

solve several problems by the Ritz method taking coefficients of optimal interpolation formula in W (1,0)
2 space as basis

functions.

THE RITS METHOD FOR SECOND-ORDER BOUNDARY-VALUE PROBLEMS

Let us consider the following model problem

− d
dx

(
p(x)

dy
dx

)
+q(x)y = f (x), for 0 ≤ x ≤ 1, (1)

International Scientific and Practical Conference on “Modern Problems of Applied Mathematics and Information Technology (MPAMIT2022)”
AIP Conf. Proc. 3004, 060019-1–060019-8; https://doi.org/10.1063/5.0199590

Published by AIP Publishing. 978-0-7354-4876-6/$30.00

060019-1

 13 M
arch 2024 08:05:02



with two-point boundary conditions y(0) = y(1) = 0, where, p ∈C1[0,1],q, f ∈C[0,1], and

p(x)≥ δ > 0, q(x)≥ 0, for 0 ≤ x ≤ 1.

The function y ∈C2
0 [0,1] is an unique solution to the differential equation (1), in the case that y is the unique function

in C2
0 [0,1] that minimizes the integral (see, [7], pp.88-89)

I[u] =
∫ 1

0

(
p(x)[u′(x)]2 +q(x)[u(x)]2 −2 f (x)u(x)

)
dx. (2)

There are at least three different formulations to consider for this problem, i.e., the differential form, variational
or weak form (corresponding finite element method is often called the Galerkin method), and minimization form
(respective finite element method is usually called the Ritz method). From the aspect of mathematical modelling, both
the weak form and the minimization form are farther natural than the differential formulation.

Solving (1) by the Ritz method takes on three stages. Initially, it is shown that any solution y to (1) also satisfies the
equation

•
∫ 1

0
f (x)u(x)dx =

∫ 1

0

(
p(x)

dy
dx

(x)
du
dx

(x)+q(x)y(x)u(x)
)

dx, (3)

per all u ∈C2
0 [0,1].

• The subsequent stage demonstrates that y ∈ C2
0 [0,1] is a solution to (2) upon these terms (3) holds for all

u ∈C2
0 [0,1].

• The ending step illustrates that (3) has a unique solution. This unique solution will also be a solution to (2) and
to (1), so the solutions to (1) and (2) are same.

The Ritz method approximates the solution y by minimizing the integral, not upon all the functions in C2
0 [0,1], but

over a smaller subspace of functions consisting of linear combinations of certain basis functions φ1, φ2, . . . ,φn. The

basis functions are linearly independent and satisfy φi(0) = φi(1) = 0 and they satisfy this conditions φi(x j) = δ j
i ,

here δ j
i is the Kronecker symbol, for each i = 1,2, . . . ,n, j = 1,2, . . . ,n.

We present the approximate finite element solution by a linear combination of the basis functions

yh(x) =
n

∑
i=1

ciφi(x) (4)

where the coefficients ci are the unknowns to be determined.
On assuming the hat basis functions, yh(x) is also a piecewise linear function, although this is not usually the case

for the exact solution y(x) of (1). We then derive a linear system of equations for the coefficients by substituting the
approximate solution yh(x) for the exact solution y(x) to minimize the integral I[∑n

i=1 ciφi]. Then from (2), we get

I[yh] = I

[
n

∑
i=1

ciφi

]
=

∫ 1

0

(
p(x)

(
n

∑
i=1

ciφ ′
i (x)

)2

+q(x)

(
n

∑
i=1

ciφi(x)

)2

−2 f (x)
n

∑
i=1

ciφi(x)

)
dx (5)

and, for a minimum to occur, it is necessary, when considering I as a function of c1,c2, . . . ,cn, to have

∂ I
∂c j

= 0 for j = 1,2, . . . ,n. (6)

Differentiating (5) gives

∂ I
∂c j

=
∫ 1

0

(
2p(x)

n

∑
i=1

ciφ ′
i (x)φ

′
j(x)+2q(x)

n

∑
i=1

ciφi(x)φ j(x)−2 f (x)φ j(x)

)
dx,
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and substituting into (6) yields

n

∑
i=1

(∫ 1

0

(
p(x)φ ′

i (x)φ
′
j(x)+q(x)φi(x)φ j(x)

)
dx
)

ci =
∫ 1

0
f (x)φ j(x)dx, (7)

for each j = 1,2, . . . ,n.
The normal equations described in (7) produce an n×n linear system Ac= b in the variables c1,c2, . . . ,cn, where the symmetric

matrix A has the following elements

ai j =
∫ 1

0

(
p(x)φ ′

i (x)φ
′
j(x)+q(x)φi(x)φ j(x)

)
dx, i, j = 1,2, . . . ,n

and the vector b is defined by

bi =
∫ 1

0
f (x)φi(x)dx, i = 1,2, . . . ,n.

Now we need analytical forms of basis functions φi.

It should be noted that in [6] it was used the hat functions when finding an approximate solution in the Sobolev space H1
0 (0,1).

In the present work, we use piecewise continuous exponential functions in the space W (1,0)
2 instead of the hat functions. More-

over, in certain examples, we show convergence of approximate solution to exact solution of problem (1) graphically. To do this,

we use the coefficients of the optimal interpolation formula constructed in the W (1,0)
2 space as the basis functions.

THE OPTIMAL INTERPOLATION FORMULA IN W (1,0)
2 SPACE

In [8], the optimal interpolation formula in W (1,0)
2 space was constructed, and it was found the explicit form of the norm of the

error functional �. We note that the coefficients of the optimal interpolation formulas constructed in the works [9, 10, 11, 12, 13,
14, 15, 16, 17] and [18] can also be used as basis functions.

Assume we have the table of the values ϕ(xi), i = 0,1, . . . ,n of functions ϕ at points xi ∈ [0,1]. It is required approximate
functions ϕ by another more simple function Pϕ , i.e.

ϕ(x)∼= Pϕ (x) =
n

∑
i=0

φi(x) ·ϕ(xi), (8)

which satisfies the following equalities

ϕ(xi) = Pϕ (xi), i = 0,1, . . . ,n. (9)

Here φi(x) and xi (∈ [0,1]) are the coefficients and the nodes of the interpolation formula (8), respectively. The difference ϕ −Pϕ
is called the error of the interpolation formula (8). The following theorem was proved in [8].

Theorem 1. Coefficients of the optimal interpolation formula (8) with equal spaced nodes in the space W (1,0)
2 have the the

following form

φi(x) = 1
2(1−e2h)

[
sign(x−hi−h) · (ehi+2h−x − ex−hi)+ sign(x−hi+h) · (ehi−x − ex−hi+2h)

+(1+ e2h) · sign(x−hi) · (ex−hi − ehi−x)

]
, i = 0,1, . . . ,n.

(10)

Doing some simplification in equation (10)

φi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ x ≤ h(i−1),
ehi−x−ex−hi·e2h

1−e2h , h(i−1)< x ≤ hi,
ex−hi−ehi−x·e2h

1−e2h , hi < x ≤ h(i+1),

0, h(i+1)< x ≤ 1.

(11)
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OPTIMAL COEFFICIENTS AS BASIS FUNCTIONS

The primary purpose of this section is to solve several boundary value problems using the Ritz method and analyze the differences
between the exact solution and the approximate solution in graphics.

Now, we consider the boundary-value problem (1).

Here we use the optimal coefficients (11) as the basis functions. The first step is to form a partition of [0,1] by choosing points
x0,x1, . . . ,xn+1 with

0 = x0 < x1 < · · ·< xn < xn+1 = 1.

We define the basis functions φ1, φ2,. . . ,φn by

φi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ x ≤ h(i−1),
e−(x−hi)−e2h+(x−hi)

1−e2h , h(i−1)< x ≤ hi,
ex−hi−e2h−(x−hi)

1−e2h , hi < x ≤ h(i+1),

0 h(i+1)< x ≤ 1

(12)

for each i = 1,2, . . . ,n.
The function φi is a piecewise continuous exponential function, then the first derivative φ ′

i has the form

φ ′
i (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ x ≤ h(i−1),
−e−(x−hi)−e2h+(x−hi)

1−e2h , h(i−1)< x ≤ hi,
ex−hi+e2h−(x−hi)

1−e2h , hi < x ≤ h(i+1),

0, h(i+1)< x ≤ 1

(13)

for each i = 1,2, . . . ,n.
φi(x) and φ ′

i (x) are nonzero only on (h(i−1),h(i+1)), so φi(x)φ j(x)≡ 0 and φ ′
i (x)φ

′
j(x)≡ 0, except when j is i−1, i, or i+1.

As a consequence, the linear system given by (7) reduces to an n×n tridiagonal linear system. The nonzero entries in A are

aii =
∫ 1

0

(
p(x)[φ ′

i (x)]
2 +q(x)[φi(x)]2

)
dx,

for each i = 1,2, . . . ,n,

ai,i+1 =
∫ 1

0

(
p(x)φ ′

i (x)φ
′
i+1(x)+q(x)φi(x)φi+1(x)

)
dx

for each i = 1,2, . . . ,n−1, and

ai,i−1 =
∫ 1

0

(
p(x)φ ′

i (x)φ
′
i−1(x)+q(x)φi(x)φi−1(x)

)
dx,

for each i = 2,3, . . . ,n.

We calculate the above integrals using quadrature formulas (see, [4, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]). After
that, we can calculate coefficients ci of the approximate solution (4) from the system of equations (7).

NUMERICAL RESULTS

We solve several boundary value problems in this subsection using the Ritz method. We divide an interval into equal meshes with
n= 10 and n= 100. As mentioned above, we approximate the solution of the problem by the Ritz method using optimal coefficients
as the basis functions. Furthermore, by comparing the approximate solutions yh(x) with the corresponding exact solutions y(x), we
show the graphics of lg|yh(x)− y(x)|.

Example 1. ( [32], page 719). Examine the two-point boundary-value problem

−y′′+π2y = 2π2 sin(πx)

for 0 ≤ x ≤ 1, with y(0) = y(1) = 0.

We see that p(x) = 1, q(x) = π2, f (x) = 2π2sin(πx). The exact solution to the boundary-value problem is y(x) = sinπx. Now,
we show the following graphics demonstrating the ten-basis logarithm, the absolute value of the difference between the exact and
approximate solutions. The figures illustrates lg

∣∣∑n
i=1 ciφi(x)− y(x)

∣∣ with respective values of n.
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FIGURE 1. lg|yh(x)− y(x)|, for (Left) n = 10 and (Right) n = 100

Example 2.(Exercise 1, page 726 in [32]). Use the Ritz method to approximate the solution to the two-point boundary-value
problem

y′′+
π2

4
y =

π2

16
cos(

π
4

x)

for 0 ≤ x ≤ 1, with y(0) = y(1) = 0. Compare your outcomes to the true solution y(x) =− 1
3 cos( π

2 x)−
√

2
6 sin( π

2 x)+ 1
3 cos( π

4 x).
Here we have the following results

FIGURE 2. lg|yh(x)− y(x)|, for (Left) n = 10 and (Right) n = 100

Example 3.(Exercise 2, page 726 in [32]). Use the Ritz method to approximate the solution to the two-point boundary-value
problem

− d
dx

(xy′)+4y = 4x2 −8x+1,

for 0 ≤ x ≤ 1, with y(0) = y(1) = 0. Compare numerical results to the exact solution y(x) = x2 − x.
We get the following graphics
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FIGURE 3. lg|yh(x)− y(x)|, for (Left) n = 10 and (Right) n = 100

Example 4.(Exercise 3b, page 726 in [32]). Use the Ritz method to approximate the solution to the two-point boundary-value
problem

− d
dx

(exy′)+ exy = x+(2− x)ex,

for 0 ≤ x ≤ 1, with y(0) = y(1) = 0. Compare your results to the actual solution y(x) = (x−1)(e−x −1).

FIGURE 4. lg|yh(x)− y(x)|, for (Left) n = 10 and (Right) n = 100

So we have used a new basis function in the Ritz method. Moreover, we have applied the coefficients of our optimal interpolation

formula in W (1,0)
2 space as the basis functions. Finally, we have got new results to approximate solutions of boundary-value

problems.

CONCLUSION

Here, the Ritz method approximately solves the boundary-value problems for differential equations. The Ritz method uses a

piecewise-linear basis. In this work, we applied coefficients of optimal interpolation formulas in W (1,0)
2 space as the basis functions.
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Finally, we solved particular examples by this method and compared them with the exact solution numerically. Numerical results

show that the coefficients of optimal interpolation formulas in W (1,0)
2 space get the same results with a piecewise-linear basis [6].

In our subsequent works, we will construct optimal bases for the approximate solution of boundary value problems by the Ritz or
Galerkin method.
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