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Abstract—Optimal design, sizing, and operation of building energy systems is challenging due to the variety
of generation and storage devices available and the high-resolution input data needed to account for seasonal
and diurnal fluctuations in thermal loads of buildings. A common measure to reduce the size and complexity
of a problem is to group requirements into representative periods. In this study, in order to simplify the prob-
lem of optimizing building envelopes and integrating various energy generators operating on renewable energy
sources on an annual scale, a clustering method of k-means of hourly thermal load of a building is proposed.
In this study, for the first time, the typical days of thermal loads for heating and cooling a building are deter-
mined with the optimal planning of one or another reconstruction measure. For further research, there is a
new opportunity to identify typical days of thermal demand in order to determine the thermal performance
of buildings and introduce new measures for energy planning reconstruction in them in 13 regions of Uzbeki-
stan with different levels of thermal insulation and integration of various energy generators operating on

renewable energy sources.
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INTRODUCTION

By 2050, the global energy demand is expected to
double [1]. The energy balance of the building sector
is a major consumer of energy, which is mainly due to
the large heat loads for cooling and heating in order to
achieve optimal thermal performance and an accept-
able level of thermal comfort in buildings. However,
the construction sector is considered one of the most
attractive sectors of the economy, where there is an
opportunity to reduce energy consumption due to
progress and the use of energy efficient technologies
and building materials [2]. Moreover, the sustainable
development strategy considers that the key trend is
not only to increase the share of renewable energy
sources (RESs) in this sector, but also to reconstruct
inefficient existing buildings [3] with the introduction
of passive solar systems in buildings [4].

At present, in Uzbekistan, the specific energy con-
sumption in buildings varies from 150 to 690 kWh/m?
[5, 6] depending on the level of thermal protection.
However, this indicator, in turn, is 2—3 times higher
than in the developed countries of the world [7]. It
should be noted that in Uzbekistan there is an oppor-
tunity to reduce heat loads for heating residential
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buildings using RESs (the technical potential is 179
million toe) [8]. In particular, the introduction of pas-
sive solar heating systems in buildings [9—14] and opti-
mal design can reduce the heat load for cooling by up to
54% and for heating by up to 87% in buildings [15, 16].

It should be noted that the optimal design of recon-
struction is a complex task, which includes thermal
loads in buildings and energy generated by various
generators. In addition, there is a relationship between
the energy supply systems of buildings and heat con-
sumption, which among other factors depends on pas-
sive building measures [3]. According to the analyses
of the authors [17], the optimal design of the energy
reconstruction of residential buildings was performed
with 40% of the studies being aimed at optimal designs
for building envelopes, while only 20% of them were
aimed at optimizing the geometric shape of buildings.

Most studies that optimize building energy systems
use precise optimization algorithms such as mixed
integer linear programming (MILP) [18]. For exam-
ple, in the studies of the authors [19, 20], the size and
operation of the energy supply system of buildings
were optimized based on MILP models, while in stud-
ies [21—24] the combined optimal design and opera-
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tion of the energy supply system were considered, and
this approach was applied on an urban scale [25—28].
In these studies, heat loads in buildings are considered
to be fixed time series, which are calculated before
optimization and are constant during optimization.

Several authors [29—35] carried out a simultaneous
multi-purpose optimization of building envelopes and
the energy supply system of buildings. Asadi et al. [30],
proposed an even more simplified static model based
on ISO 13790, which uses heating period degree days
(HPDDs). Based on this method, Fang and Xia [35]
optimized the building envelope and the areas of pho-
tovoltaic panels installed on the roofs of buildings. In
the previous study of the authors [36], a multi-purpose
optimization of typical four-room rural residential
buildings in all regions of Uzbekistan with different
levels of thermal insulation and integration of various
energy supply systems based on RESs (photovoltaic
panels and solar collectors) and installed on the roofs
of buildings was carried out for the first time. For this
purpose, a simplified static building model based on
HPDDs was used. However, Schiitz et al. [34], noted
the need to use a non-stationary thermal model of
buildings when conducting multi-criteria optimiza-
tion and proposed a more accurate model for optimiz-
ing building envelopes and building energy systems.

In this study, in order to simplify the problem of
optimizing building envelopes and integrating various
energy generators operating on RESs on an annual
scale, a clustering method of k-means of the hourly
heat load of a building is proposed. The k-means clus-
tering algorithm is quite simple to implement and also
very computationally efficient compared to other clus-
tering algorithms, which may explain its popularity.
The k-means algorithm belongs to the category of pro-
totype-based clustering. Prototype-based clustering
means that each cluster is represented by a prototype,
which can be either a centroid (mean) of similar points
with continuous features, or a medoid (most representa-
tive or most frequent point) in the case of categorical fea-
tures. As a result, we have determined the characteristic
(typical) days of the thermal loads of a building.

METHODS
Fundamentals of the k-means Method

The k-means algorithm is extremely easy to imple-
ment and also very computationally efficient com-
pared to other clustering algorithms, which may
explain its popularity. The k-means algorithm belongs
to the category of prototype-based clustering. Proto-
type-based clustering means that each cluster is repre-
sented by a prototype, which can be either a centroid
(mean) of similar points with continuous features, or a
medoid (most representative or most frequent point)
in the case of categorical features. Although the k-
means method is effective for identifying spherical
clusters, one disadvantage of this clustering algorithm
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is that number of clusters & must be specified in
advance. Choosing the wrong value for k can lead to
poor clustering performance.

Description of the Method

Given a set of observations (x;, x,, ..., X,), where
each observation is a d-dimensional real vector, k-
means clustering aims to divide # observations into &
(<n) sets S = {S;, S,, ..., S} to minimize the total
square deviation. The idea is to group the samples
based on the similarity of their features, which can be
achieved using the k-means algorithm that can be
summarized in the following four steps:

* k-centroids are randomly selected from the sam-
pling points as the initial centers of the clusters.

» Each sample is compared to the nearest centroid
u(),je {1, ..., k}.

* The centroids are moved to the center of the
samples that were assigned to the center.

« Steps 2 and 3 are repeated until the cluster
assignments change or a user-specified tolerance or
maximum number of iterations is reached.

Now the similarity between objects is measured.
For this purpose, the square of the Euclidean distance
between two points x and y in m-dimensional space is
determined:

m
d(xy) =Y (x=») =x—y. (1)

=
It should be noted that in this equation index j
refers to the j-th dimension (column of features) of the
sample points x and y. We will use superscripts / and j
to denote the sample index and cluster index, respec-
tively. Based on this Euclidean distance metric, one
can describe the k-means algorithm as a simple opti-
mization problem, an iterative approach to minimiz-
ing the sum squared error (SSE), which is sometimes

also called cluster inertia:

n k
SSE =Y Y —put”, (2)
1

i=l j=

where x) is the data set and pu"”) is the centroid of
the data set. It should be noted that when the k-means
method is applied to real data using the Euclidean dis-
tance metric, one must ensure that the datasets are
measured in the same units.

Application Example: ASHRAE 140, CASE 600

As is known, Case 600 of the ASHRAE 140 [38]
standard is a simple and well-established test case of a
building, which has been verified by several building
thermal efficiency modeling tools. Given this circum-
stance, we studied a modified version of Case 600. In
addition, a comprehensive Case 600 package of the
APPLIED SOLAR ENERGY  Vol. 58
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Fig. 1. Isometric south windows without shutters for Case
600 ASHRAE Standard 140.

ASHRAE 140 standard developed in Modelica is
available in [37, 38].

The basic test case is a light rectangular single-zone
building with dimensions of 8 X 6 X 2.7 m (Fig. 1).
The building has no internal partitions, has a total
window area of 12 m? on the south wall, an internal
load of 200 W (60% radiant load, 40% convective load)
and a highly insulated slab used to significantly elimi-
nate thermal coupling to the ground. The infiltration
was set to 0.5 air changes per hour. The building’s
mechanical system is an ideal system with a 100% con-
vective air subsystem and 100% efficiency with no duct
loss and no capacity limitation. The thermostat is set to
a dead zone, so heating occurs at temperatures below
20°C, and cooling occurs at temperatures above 27°C.

Calibrating the CASE 600 Model

ASHRAE Standard 140 provides eight benchmark
results from the building thermal efficiency modeling
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Fig. 2. Hourly heat load (heating and cooling load) of case
600 buildings on January 4 in Denver climate conditions
(39.8° N, 104.9° W), Colorado, United States.

tools such as DOE2, TRNSYS, and ESP-r in Denver
(39.8° N, 104.9° W) climates, Colorado, United
States. We calibrate the Case 600 base model against
reference datasets. To this end, we quantify the devia-
tion between the hourly heating and cooling loads
(Fig. 2) from the base tested Case 600 model and the
reference data for January 4 using coefficients of deter-
mination and standard deviations (RMS) (Table 1).

Here, the average value of the hourly heating and
cooling load from eight ASHRAE Standard 140 refer-
ence data is used as the observed values to calculate the
coefficient of determination and RMS. In Table 1, the
minimum and maximum ranges of the reference data
correspond to the lower and upper limits of the hourly
peak heating/cooling and annual loads of the refer-
ence data. The mean value indicates the mean value of

Table 1. Determination coefficient R? and standard deviation for hourly and annual heating and cooling loads

Reference
Calibration criteria Unit Model
minimum value | maximum value | average value
Test for January 4
Peak cooling capacity (—) kW 3.2445 2.76 3.58 3.17
Deviation* % — 17.55 9.37 2.35
Peak heating load (+) kW 4.1074 3.43 4.35 4
Deviation* % — 19.75 5.57 2.68
RMS kW 0.1873
R? - 0.9996
One full year testing

Annual cooling capacity (—) kWh 6.735 6.137 7.964 6.832
Deviation* % — 8.87 18.24 1.44
Annual heating load (+) kWh 4.971 4.296 5.709 5.09
Deviation* % — 13.57 14.84 2.39

*100% % |1 — Reference/model|
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Fig. 3. Dependence of the sum of square errors of thermal
loads of the Case 600 building in Tashkent for the entire
year on the number of clusters.
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Fig. 4. Hourly heat load (heating and cooling load) of case
600 buildings in Tashkent for the entire year.
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Fig. 5. Comparison of the results of monthly thermal loads
and thermal loads, which were obtained by k-means clus-
tering.

the corresponding values from the reference data (Fig. 2).
According to the accuracy assessment method we
used, the coefficient of determination and RMS for
the created Case 600 model are 0.9996 and 0.1873 kW,
respectively. Peak values for hourly heat loads and
annual energy loads are in the minimum and maxi-
mum ranges of the reference data, while they are com-
pletely close to the average value of the reference data.
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Now the model is calibrated and can be used for com-
parative testing by changing the climate data of a par-
ticular region.

Climate Data Modification

As noted above, the proposed building model is
carefully calibrated and can be used for comparative
analyzes by changing the climatic data of other
regions. However, it should be noted that climate data
must be presented in the typical meteorological year
(TMY) format with hourly time steps for the entire cli-
mate year. In this work, we studied the city of Tashkent
in Uzbekistan with a continental climate with hot
summers and Mediterranean influence—Dsa,
according to climatic conditions, based on the Kop-
pen—Geiger classification [18].

RESULTS AND DISCUSSION

Previously, it was pointed out that one of the disad-
vantages of the k-means clustering method was the
need to specify the number of clusters (characteristic
days) in advance, since the wrong choice of the num-
ber of clusters can lead to poor clustering perfor-
mance. In order to determine the number of clusters,
an attempt was made to find the dependence of the
sum of square errors on the number of clusters.

Figure 3 shows the dependence of the sum of
square errors on the number of clusters obtained by
iteration. The idea of setting the number of clusters
made it possible to determine the characteristic day that
corresponds to the characteristic heat load of a building
in each month. As can be seen from Fig. 3, it is enough to
have 12 characteristic days instead of 365 days to charac-
terize the annual heat load of a building in the climatic
conditions of Tashkent. The hourly heat load of a build-
ing, which was obtained without using the k-means clus-
tering method, is shown in Fig. 4.

Figure 5 shows that the annual heat load in case of
using the k-means clustering method differs from the
heat loads obtained taking into account 8760 points by
only 6%. It should be noted that only 288 points were
used for clustering.

Thus, the characteristic days of thermal loads in
buildings for the climatic conditions of Tashkent are
January 22, February 6, March 2, April 11, May 15,
June 20, July 22, August 14, September 22, October 31,
November 3, and December 4.

Figure 6 shows the dependence of global horizontal
solar radiation on ambient temperature, where only
288 characteristic points can be used instead of 8760
points thanks to the k-means clustering method.

CONCLUSIONS

In this study, in order to simplify the problem of
optimizing building envelopes and integrating various
APPLIED SOLAR ENERGY  Vol. 58

No. 2 2022



APPLICATION OF THE CLUSTERING METHOD

Observation 4 k-means

_E
CE
ER A
o A
O35
g 100 20 30 40 50

Temperature, °C

Fig. 6. Comparison of hourly characteristic days (k-
means) and all days of global solar radiation and ambient
temperature.

energy generators operating on RESs on an annual
scale, the method for k-means clustering of the hourly
heat load of a building is proposed. The k-means clus-
tering algorithm is quite simple to implement and also
very computationally efficient compared to other clus-
tering algorithms. Optimal design, sizing, and opera-
tion of building energy systems is challenging due to
the variety of devices available and high-resolution
input data required to account for seasonal and diurnal
fluctuations in building heat loads. As a rule, a mea-
sure to reduce the size and complexity of the problem
is the use of grouping requirements for representative
periods.

In this study, the typical days of thermal loads for
heating and cooling a building were for the first time
determined with the optimal planning of one or
another measure for its reconstruction. For further
research, a new opportunity opens to determine the
typical days of the year in order to determine the ther-
mal performance of buildings and introduce new mea-
sures for energy planning reconstruction in other
regions of Uzbekistan with different levels of thermal
insulation and integration of various energy generators
operating on RESs.
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