The Role Of Pedagogical Technology In Teaching Students Using The Problem Situation Method

Kakhorov Siddiq Kakhorovich professor Bukhara State University. Sharipova Dilnora Burkhonovna – Student of PhD Bukhara State University. dilnora.sharipova91@mail.ru

Annotation: This article discusses the problematic approach of pedagogical technology in teaching physics in higher education, the introduction of an innovative approach in lectures, laboratory and practical classes, the brainstorming method in problematic lectures. The causes of the situation, as well as actions and solutions to overcome the problem are given in the table.

Key words: Pedagogical technologies, lectures, laboratory, practical training, problem situation, method of mental attack, electricity.

(Matthew 24:14; 28:19, 20) Jehovah's Witnesses would be pleased to answers with you. (Matthew 24:14; 28:19, 20) Therefore, the process of knowledge and financial supervision should also be characterly developed. Introduction of advanced pedagogical technologies in teaching is one of the tasks of the second phase of the National Literature Programme. It prohibits the educational process from developing the artistic abilities of young people, democratizing the relationship between teachers and educators in all schools, and introducing a new, or innovative, approach to the form, content and technology of education. Such a new approach requires first and foremost: a fundamental change in the relationship between a teacher and a student. It is no secret that today is dominated by a teacher, who holds himself primarily as a teacher, a transmitter of knowledge, information and an opinion on the behavior of young people, a counselor, a instructor. This can lead not to the development of creative, free thinking in teachers, but to passively absorb the reserves of ready-made knowledge and to obedient obedience. In the role of a teacher's knowledge transmitter, he should transition to a role that organizes the learning process, manages the motivations and activities of reading, and develops students' activities psychologically and pedogically wisely.

The purpose of the use of pedagogical technologies is to compare students' life and scientific concepts, comparing different views of scientists, and stimulating interest in scientific knowledge and events, in connection with their future mutation.

The use of pedagogical technologies enables the teacher to work on himself, to regulate the information provided to students, and to prepare for the delivery of them to students, as well as to explain to students the physical aspects of the evidence of the development of science and technology and to develop students' ability to work independently.

Physics is known to be conducted in the form of three types of exercises. These are lectures, laboratories and practical training. Each training has its own place and sequence. If a topic is given theoretical basis in lecture lessons, it will be strengthened by experimenting with this topic in a laboratory exercise and solving an issue in a practical workshop. Nevertheless, the degree to which students master the subject varies. One of the ways to improve the level of learning is the use of pedagogical technologies.

Currently, teaching methodologies are enriched and filled with the use of pedagogical technologies [1-3]. The use of pedagogical technologies in teaching methodology, the need for the teacher to work on himself, to regulate the information provided to students, and to prepare to deliver them to students.

In the use of pedagogical technologies, first of all, it is determined to prepare a technological model of the subject, prepare a technological map, and use what organizers. First of all, it will be determined how to teach the lecture.

The unique aspect of the problematic lecture in teaching physics is based on the problematic situations that arose during the lecture. Problem education is the most viable type of pedagogical influence by a teacher, a process that is aimed at improving students' ability to think and fill the need for knowledge in the process of learning their knowledge, relying on the laws of thought. The

problematic lecture creates a problematic situation under the direction of the teacher, focuses on deepening students' knowledge by applying their knowledge and skills in new situations as a result of their active independent activities. Students will be tracked in the process of solving problems and will find solutions to problems. Teaches students to think creatively and logically, leads to the development and development of scientific, logical thinking skills in them.

The outcome of problematic learning depends on:

- 1. Problematic educational material on the subject;
- 2. Activate students' knowledge activities by creating problematic situations;
- 3. Create a set of problematic questions on solving the problem and explain it to students in a logical sequence;
- 4. In problematic lecture mode, the teacher creates problematic situations, solving problems based on their answers in cooperation with students to find answers to problematic questions in the lecture process;
- 5. The problematic statement style also works well in practical lessons. To assist individuals desiring to benefit the worldwide work of Jehovah's Witnesses through some form of charitable giving, a brochure entitled Charitable Planning to Benefit Kingdom Service Worldwide has been prepared.

The problem situation is successfully used at all stages of the learning process in strengthening new theme bay, strengthening and strengthening knowledge. In problematic lectures, the teacher's activities include identifying academic problems based on the content of the preceding topic, creating a system of problematic situations, correctly organizing learning problems before students, and directing the lecture to solve this problem.

Problem situations should be structured in such a way that as a result, students' scientific knowledge and events will be carried out by comparing life and scientific concepts, comparing different views of scientists, and explaining the physical aspects of the development of science and technology in order to stimulate students' interest. Problem situations can also be conducted in laboratory solving, so the teacher divides the group into small groups and asks questions that create the problem, such as the study of semiconductor diode:

1) Why the conductivity of diode depends on temperature,

2) Similar questions will be asked about what charge carriers will be accounted for by p-n switching. In consultation with students on questions asked in the group, the heads of state summarize the opinions of the students. Students' activities will be aimed at understanding, analyzing, proving, investigating, and drawing conclusions about problematic situations.

Using a method of mental attack in a problematic lecture, students learn to use their knowledge in new situations and deepen their knowledge and acquire mental functioning methods. As a result, students organize their knowledge activities and create creative activities.

Type of problematic situation	Reasons for the occurrence of the situation	Actions and solutions to get out of a problem			
Lack of	Lack of knowledge that	To assist individuals desiring			
	electricity in different				
how electrical	environments, i.e. solid particles,	of Jehovah's Witnesses			
current in different	such as metals, vacuums, gases,	through some form of			
environments is	liquids, is caused by the	charitable giving, a brochure			
caused by the	movement of various charged	entitled Charitable Planning			
movement of	particles	to Benefit Kingdom Service			
charged particles		Worldwide has been			
		prepared.			

Below, I referred to the logical structure of a laboratory lesson conducted in the group on the theme "Obtaining voltamper characteristics of semiconductor diode." This laboratory exercise is chosen based on the modern pedagogical technologies (interactive) methods of education. The

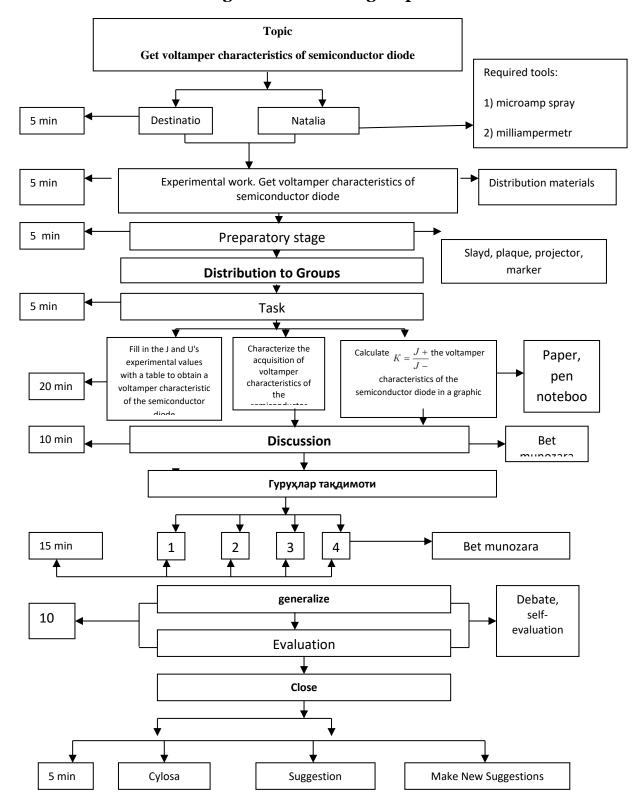
intended topic will be discussed in the form of a debate with every student in the group speaking and expressing themselves. The teacher usually acts as an observer, and his task is to direct the debate in the right direction.

Based on the logical structure of the following laboratory exercise, 3 groups of 80 minutes and 3 groups independently launch an opinion attack for 15 minutes and express their views. Group 1: Students responding to laboratory work in the nazarene section.

Group 2: Students who collect laboratory work devices, take the values of U and I in experience, and create charts.

Group 3: Students who draw the voltamper characteristics of the semiconductor diode based on the value in the table.

4: Expert chi.


Using the interactive method of modern pedagogical technology to laboratory training, the faculty of physics held the direction of Physics as an open lesson in Phase 1 and Group 1, with the following results achieved.

Experimen tal stages	Requests number	Level of adaptation in simple exercises				The level of integration of modern pedagogical technology in an interactive way							
		Top Medium		Low		Тор		Mediu m		Low			
Step 1 Group 1	23	2	8%	12	52%	9	40%	8	34%	15	66%	_	_

The results of the observations are shown in the table:

Observations of the outcome of the lesson showed that teaching in this way was achieved for students to think independently, to analyze, to increase their activity, and to bring even conclusions themselves. All students were evaluated simultaneously in the lesson

Logical structure of group work

N⁰	LITERATURE	REFERENCES
1	Sakovich S.M. Innovative Technologies	Sakovich S.M. Innovational technologies
	and Methods of Teaching in Professional	and methods of training in professional
	Education: Article-M., 2010	education: Statya-M., 2010
2	Zhukov G.N. Osnovy obshchei	Zhukov G.N. Osnovy obshchey
	professional'noy pedagogiki: Uchebnoe	professionalalnoy pedagogiki: Uchebnoe
	posobie [Fundamentals of general	posobie. –M. 2005.
	professional pedagogy: Textbook].	
	Moscow, 2005.	
3	B.Faberman "Advanced Pedagogical	B. Faberman "Advanced pedagogical
	Technologies" Tashkent, 2000	technologies" Tashkent, 2000
4	Savilev I.V. "General Physics Course",	Savilev I.V. "General Physics Course,"
	Volume I-II. Tashkent, Teacher, 1983.	Volumes I-II. Tashkent, "Teacher", 1983.
5	Ismail M.I., Habibullaev P.K., Khaliulin	Ismoilov M.I., Habibullaev P.K., Xaliulin
	M.G. Physics Course (Mechanics,	M.G. physics course (Mechanics,
	Electrical, Electromagnetism). Tashkent,	electricity, electromagnetism).
	Uzbekistan, 2000.	Tashkent, Uzbekistan, 2000.
6	Ahmedjanov O. Physics Course", Volume	Ahmadjanov O. Physics course ",
	I-II. Tashkent, Teacher, 1985.	Volumes I-II. Tashkent," Teacher ",
		1985.
7	Trofimova T. Course of Physics. Moscow.	Trofimova T. Physical course. Moscow.
0	"Higher School", 1990.	Vysshaya Shkola 1990.
8	Detlaf A.A., Yavorsky B.M. Physics	Detlaf A.A., Yavorskiy B.M. Physical
	course. Moscow. "Higher School", 1989	course. Moscow. Vysshaya Shkola, 1989
9	Калашников С.Г Электр. Тошкент,	Kalashnikov S.G Electr. Tashkent,
10	"Ўқитувчиі", 1979. Калімалы Караларанан Параларанан	"Teacher", 1979.
	Karimov Kh.Y. New Pedagogical	Karimov Kh.Ya. New pedagogical
	Technologies Toshkent, 2002. Iveronova V.I. Practice in Physics.	technologies Tashkent, 2002. Iveronova V.I. Practicum in physics.
11	Mechanics and molecular physics.	Mechanics and molecular physics.
	Tashkent, Teacher, 1973	Tashkent., "Teacher", 1973
12	Tajiev M. Alimov A.Ya. and b. taste of	Tajiev M. Alimov A.Ya. and b.
	the pedagogical technology-teaching	Pedagogical technology - application to
	process "Thinking", Tashkent- 2010.	the educational process "Tafakkur",
	P	Tashkent-2010.
13	Xidirova V. Theoretical and practical	Xidirova V. Theoretical and practical
Ŭ	principles for the use of pedagogical	bases of application of pedagogical
	technology in the teaching process.	technology in educational process.
	"Science and Technology", Tashkent-	"Science and technology", Tashkent-
	2009.	2009.
14	J.G., Advanced Pedagogical	Yuldashev J.G, Usmonov S. Advanced
	Technologies Tashkent, "Teacher",	pedagogical technologies Tashkent,
	2004.	"Teacher", 2004.
15	S. Boltaev, K. Qurbonov. The use of	S. Boltaev, K. Qurbonov. Use of
	innovative teaching, pedagogical and	innovative educational, pedagogical and
	information communication	information and communication
	technologies in distance learning. The	technologies in distance learning.
	teacher manual is published in	Teacher's guide Durdona Publishing
	Durdona. Bukhara-2020.	House. Bukhara 2020.

16	B.X.Islamov, A.M. Axmedov,	B.X.Islamov, A.M. Axmedov, B.Qodirov,
	B.Sarkisian, A.U. Intelligence, D.A.	A.U. Qodirov, D.A. Xakimov. Methodical
	Khakimov. Guidelines for performing	instructions on carrying out of
	laboratory work in the Optics	laboratory works on the Optics
	Department of the General Physics	department of the general physics course
	Course 2017.	2017.
17	B.X Islamov Z.F.Beknazarova	BH Islamov ZF Beknazarova UR
	U.R.Rustamov Methodological	Rustamov Methodical instructions on
	instructions for performing intermediate	intermediate control and independent
	supervision and independent work in	work in physics. Tashkent - 2017
	physics. Tashkent – 2017	
18	B.X.Islamov, A.M. Axmedov,	B.X.Islamov, A.M. Axmedov, B.Qodirov,
	B.Sarkisian, A.U. Intelligence, D.A.	A.U. Qodirov, D.A. Xakimov. Methodical
	Khakimov. Methodological guidelines for	instructions "On the introduction of new
	witching new pedogical technologies in	pedagogical technologies in the
	laboratory work from the Department of	laboratory work of the Department of
	Electrical and Magnetism of the General	Electricity and Magnetism of the General
	Physics Course. Tashkent – 2015	Physics Course". Tashkent - 2015
19	Karimov Z., Axmedjanov G., Toxtaeva N.,	Karimov Z., Akhmedjanov G., Tukhtaeva
	Beknazarova U. Metodicheskiy ukazaniy	N., Beknazarova U. Metodicheskiy
	predecessor physics laboratory rabbi	ukazaniy predecessor physics laboratory
	after razdelam "Electroichestvo i	rabbi after razlelam "Electroichestvo i
	magnetism" T.2013 g.TIIM 126-b.	magnetism" T.2013 g.TIIM 126-b.
20	Golish L.V., Fayzorova D., Fixing and	Golish L.V., Fayzullaeva D., Design of
	Planning Pedagogical Technologies,	pedagogical technologies and Planning,
	Educational and Methodological	Textbook, Tashkent, 2011.
	Manual, Tashkent, 2011	