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Abstract—In this paper, for an integro-differential wave equation in a cylindrical domain it is
studied an inverse problem of searching the unknown kernel in the integral term. By the method of
separation of variables, the problem is reduced to determine the same kernel from ordinary differential
equations with respect to coefficients of Fourier-Bessel series of the solution of the direct problem.
Orthonormal Bessel functions of the first kind of zero order is used. An additional information
obtained in the form of Volterra integral equation of the second is used. It is proved the global unique
solvability of the inverse problem by the method of contraction mappings in the space of continuous
functions with weighted norms.
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1. INTRODUCTION
The theory and application of integro-differential equations with convolution integral play an impor-

tant role in the mathematical models of physical, biological, engineering systems and in other areas,
where it is necessary to take into account the prehistory of processes. Constitutive relations in the
linear- inhomogeneous diffusion and wave propagation processes with memory contain time- and
space-dependent memory kernel. Often in practice these kernels are unknown functions. Problems
of identification for memory kernels in parabolic and hyperbolic integro-differential equations have been
intensively studied since the end of the eighties of the last century [1–3].

Various formulations and methods of studying inverse problems for partial differential and integro-
differential equations can be founded in the works [4–12]. We note the works [13–21], which close
to considered problem in present work. In particular, in these works the one-dimensional problems of
finding a kernel in a hyperbolic integro-differential equation with a delta function [13–21]. In works [22–
24], the memory identification problems were solved for Maxwell and viscoelasticity integro-differential
equations. In [25, 26], for multidimensional inverse problems of finding the kernel in hyperbolic integro-
differential equations of the second order are proved a unique local solvability theorems in the class of
analytic functions. In the work [27], it is proved that a space- and time-dependent kernel occurring in
a hyperbolic integro-differential equation in three space dimensions can be uniquely reconstructed from
the restriction of the Dirichlet-to-Neumann operator of the equation.

Note that the interest on studying of integro-differential equations of the convolution type also
increased thanks to their discovered connection with fractional-order equations. In the works [28, 29], it
was noticed that if the kernel in the equations is taken as the Mittag-Leffler function type [30], then the
equations are equivalent to fractional differential equations.

In present paper, we study an inverse problem of determining kernel in the integral term for the
inhomogeneous integro-differential equations in a cylindrical domain. The method of separation of
variables is applied.
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2. STATEMENT OF PROBLEM AND PRELIMINARIES

Consider in a cylinder G := {(x, y, t) : 0 < r < 1, 0 < t < T} , r =
√

x2 + y2, the integro-differen-
tial equation

utt −Δu =

t∫

0

k(α)u(x, y, t − α) dα + f(r, t) (1)

with initial

u|t=0 = ϕ(r), ut|t=0 = 0, 0 ≤ x2 + y2 ≤ 1 (2)

and boundary conditions

((x, y),∇u) |r=0 = 0, u|r=1 = 0, 0 ≤ t ≤ T, (3)

where � is the Laplace operator in variables x and y, ((x, y),∇u) is scalar product of vectors (x, y) and
∇u, f(r, t), ϕ(r) are given sufficiently smooth functions.

The problem of finding the function u(x, y, t) from relations (1)–(3) with a known kernel k(t) will
be called a direct problem. The inverse problem is to determine the unknown kernel k(t), t > 0 in the
equation (1), according to an additional condition

u(x0, y0, t) = h(t), 0 < x20 + y20 < 1, 0 ≤ t ≤ T, (4)

where h(t) is given sufficiently smooth function.
Since the source function in equation (1) and the initial condition in (2) depend on the distance r,

then u(x, y, t) = u(r, t), i.e. we have an axisymmetric case. Then, the Laplace operator of the function
u(x, y, t) in polar coordinate system will not depend on the angle and has the form

�u(x, y, t) =
∂2u

∂r2
+

1

r

∂u

∂r
.

Therefore, the problem (1)–(3) in this coordinate system can be written as follows

∂2u

∂t2
− 1

r

∂u

∂r
− ∂2u

∂r2
=

t∫

0

k(α)u(r, t − α) dα + f(r, t), (r, t) ∈ G, (5)

u|t=0 = ϕ(r), ut|t=0 = 0, 0 ≤ r ≤ 1, (6)

lim
r→0

(rur) = 0, u|r=1 = 0, 0 ≤ t ≤ T. (7)

Condition (4) takes the following form

u(r0, t) = h(t), r0 =
√

x20 + y20, 0 < r0 < 1, 0 ≤ t ≤ T. (8)

Thus, the inverse problem (1)–(4) is reduced to the problem (5)–(8) of redefinition for the unknown
functions u(r, t), k(t) from equalities. We study the properties of Bessel function and find conditions for
the convergence of the Fourier–Bessel series. We recall that the linear Bessel differential equation (or
equation of cylindrical functions) with parameter λ of index ν ≥ 0 with respect to the function z of the
real variable x has the form [31]

z′′ +
1

x
z′ +

(
λ2 − ν2

x2

)
z = 0. (9)

Solution of the equation (9), except for very particular values ν, not expressed in terms of elementary
functions (in the final form) and leads to the so-called Bessel functions, which have large applications
in the natural sciences [31]. When, ν is an integer number, then equation (9) has the following solution:
z(x) = C1Jν(λx) + C2Yν(λx), where Jν and Yν are the Bessel functions of the first and second kind of
order ν, respectively. Bessel functions of the second kind are not bounded near the point x = 0. So, for
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a boundness of solution near zero it is necessary to be C2 = 0, i.e., solution (9) has the following form:
z(x) = CJν(λx).

Moreover, if the boundary condition z(1) = 0 is imposed, then the parameter λ must satisfy the
condition: Jν(λ) = 0, i.e., the values of λ are zeros of the Bessel function Jν(x), which has the following
asymptotic representation [31]:

Jν(x) =

√
2

πx
sin

(
x− νπ

2
+

π

4

)
+

rν(x)

x
√
x
,

where the function rν(x) is bounded as x → ∞. Therefore, for any large k, the zeros of Jν(x) are given

by the expression [31]: kπ +
νπ

2
− π

4 .

We define the Fourier–Bessel expansion of the given function g(x) as follows: for any function g(x),
absolutely integrable on [0, 1], one can compose a Fourier series in the system Jν(λkx), k = 1, 2, . . .

g(x) =
∞∑

k=1

ckJν(λkx), (10)

where ck = 2
J2
ν+1(λk)

1∫

0

xg(x)Jν(λkx)dx, k = 1, 2, . . . are Fourier–Bessel coefficients.

Let us give without proof the most important criteria for the convergence of the Fourier–Bessel series
to the desired function.

Theorem 1. ([31, p. 282]). If ν ≥ 0 and for all sufficiently large k there holds the estimate

|ck| ≤
M

λ1+ε
k

,

then series (10) converges absolutely and uniformly on [0, 1], where ε > 0 and M > 0 are
constants.

Theorem 2. ([31, pp. 289–291]). Let the function g(x) is defined and 2s times continuously
differentiable on the interval [0, 1] (s ≥ 1) and

1. g(0) = g′(0) = ... = g(2s−1)(0) = 0,

2. g(2s)(x) is bounded (this derivative may not exist at some points),

3. g(1) = g′(1) = ... = g(2s−2)(1) = 0.

Then, for the Fourier–Bessel coefficients of the function g(x), the inequality is true

|ck| ≤
M

λ
2s−(1/2)
k

(M = const). (11)

According to the Fourier method, we present function u(r, t) in form

u(r, t) = 
(r)T (t). (12)

Substituting (12) into the equation

∂2u

∂t2
− 1

r

∂u

∂r
− ∂2u

∂r2
= 0,

we get

T ′′(t)
(r) = 1

r
T (t)
′(r) + T (t)
′′(r).

Hence, separating the variables to find the function 
(r), we obtain the problem


′′(r) +
1

r

′(r) + λ2
(r) = 0, (13)

lim
r→0

(
r
′(r)

)
= 0, 
(r)|r=1 = 0, (14)
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which is a self-adjoint problem, where λ is an arbitrary real parameter. The solutions of equation (13)
are the following zero-order Bessel functions of the first kind Rk(r) = J0(λkr), k = 1, 2, 3, . . . They also
are eigenfunctions. We find the eigenvalues, using the second boundary condition (14) (the validity
of the first boundary condition in (14) is obvious). Positive roots of the equation J0(λk) = 0 look like
λk = (4k − 1)π4 .

3. INVESTIGATION OF DIRECT PROBLEM

When, we studied the direct problem, we assumed that the function k(t) is also known. Let
Cm,n(G) be the class of m times continuously differentiable with respect to r and n times continuously
differentiable in t functions in the domain G.

Theorem 3. Assume that k(t) ∈ C[0, T ], f(r, t) ∈ C4,0(G), ϕ(r) ∈ C4[0, 1] and the equalities

ϕ(m)(0) = 0, m = 0, 3, ϕ(m)(1) = 0, m = 0, 2,

∂mf

∂rm
(0, t) = 0, m = 0, 3,

∂mf

∂rm
(1, t) = 0, m = 0, 2, t ∈ [0, T ]

are satisfied. Then, there is a unique classical solution to direct problem (1)–(3).
Proof. We expand all functions in (5)–(7) in a Fourier–Bessel series with respect to eigenfunctions

J0(λkr) i.e.,

u(r, t) =

∞∑

n=1

un(t)J0(λnr), un(t) =
2

J2
1 (λn)

1∫

0

ru(r, t)J0(λnr)dr, (15)

f(r, t) =

∞∑

n=1

fn(t)J0(λnr), fn(t) =
2

J2
1 (λn)

1∫

0

rf(r, t)J0(λnr)dr, (16)

ϕ(r) =

∞∑

n=1

ϕnJ0(λnr), ϕn =
2

J2
1 (λn)

1∫

0

rϕ(r)J0(λnr)dr. (17)

Substituting expansions (15)–(17) into equations (5), (6), we obtain the initial problems for ordinary
integro-differential equations

u′′n(t) + λ2
nun(t) =

t∫

0

k(α)un(t− α) dα + fn(t), t ∈ (0, T ), (18)

un|t=0 = ϕn, u′n|t=0 = 0, n = 1, 2, . . . . (19)

From relations (18) and (19) we arrive at the following integral equation

un(t) =
1

λn

t∫

0

sinλn(t− α)

α∫

0

k(τ)un(α− τ)dτ dα+ Fn(t), (20)

where

Fn(t) := ϕn cos λnt+
1

λn

t∫

0

sinλn(t− α)fn(α)dα, n = 1, 2, . . .

For every fixed n, the equation (20) is a Volterra integral equation of the second kind with respect
to un. According to the general theory of integral equations, it has a unique solution. The solution
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can be founded, by the method of successive approximations. It is easy to see that un(t) ∈ C2[0, T ], if
fn(t) ∈ C[0, T ] and k(t) ∈ C[0, T ]. Moreover, from (20) one can obtain estimate for un(t):

|un(t)| =

∣∣
∣
∣∣
∣

1

λn

t∫

0

sinλn(t− α)

α∫

0

k(τ)un(α− τ)dτ dα+ Fn(t)

∣∣
∣
∣∣
∣

≤ 1

λn

∣
∣
∣∣
∣∣

t∫

0

sinλn(t− α)

α∫

0

k(τ)un(α− τ)dτ dα

∣
∣
∣∣
∣∣
+ |Fn(t)| ≤ ||Fn(t)||+

||k||
λn

t∫

0

(t− τ) |un(τ)| dτ.

Hence, by the Gronwall inequality and the relations λ1 < λ2 < . . ., we get the estimate

|un(t)| ≤
(
|ϕn|+

1

λn
||fn||T

)
e

||k||T2

2λ1 , t ∈ [0, T ], n = 1, 2, . . . , (21)

where ||fn|| = max
t∈[0,T ]

|fn(t)| , ||k|| = max
t∈[0,T ]

|k(t)| .

Calculating the derivative u′n(t) in (20), from the estimate (21) we easily obtain

|u′n(t)| ≤
(
|ϕn|+

1

λn
||fn||T

)(
λn + ||k||e

||k||T2

2λ1

)
, t ∈ [0, T ], n = 1, 2, . . . (22)

Equation (18) and inequality (21) also imply the estimate

|u′′n(t)| ≤
(
λ2
n + ||k||T

)
(
|ϕn|+

1

λn
||fn||T

)
e

||k||T2

2λ1 + ||fn||, t ∈ [0, T ], n = 1, 2, . . . (23)

To prove the existence of a solution to the direct problem (5)–(7), we need to show that the series
(15) and the series obtained by differentiating with respect to t and r twice converge uniformly in domain
G . To this end, we calculate utt, urr, performing differentiation formally under the signs of sums. Using
properties of Bessel functions (see [31]) J ′

0(r) = −J1(r), 2J ′
1(r) = J0(r)− J2(r), from the first formula

in (15) we obtain

utt(r, t) =

∞∑

n=1

u′′n(t)J0(λnr), (24)

urr(r, t) =
1

2

∞∑

n=1

λ2
nun(t) (J2(λnr)− J0(λnr)) . (25)

Let the functions ϕ(r) and f(r, t) in r satisfy conditions of Theorem 2 with some s ≥ 1 and s0 ≥ 1
(we define the numbers s and s0 later). Then, according to the estimate (11), for the Fourier–Bessel
coefficients of these functions are true the following estimates

|ϕn| ≤
M

λ
2s−(1/2)
n

, |fn(t)| ≤
M0

λ
2s0−(1/2)
n

, t ∈ [0, T ],

where M, M0 are positive constants.
Now we will evaluate the expressions at Bessel functions in the series (15), (24) and (25). From

(21)–(25) we have the following estimates

|un(t)| ≤
(

M

λ
2s−(1/2)
n

+
M0T

λ
2s0+(1/2)
n

)

e
||k||T2

2λ1 ,

∣∣u′′n(t)
∣∣ ≤

(
λ2
n + ||k||T

)
(

M

λ
2s−(1/2)
n

+
M0T

λ
2s0+(1/2)
n

)

e
||k||T2

2λ1 +
M0

λ
2s0−(1/2)
n

,
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λ2
n |un(t)| ≤

(
Mλ2

n

λ
2s−(1/2)
n

+
M0Tλ

2
n

λ
2s0+(1/2)
n

)

e
||k||T2

2λ1 . (26)

It follows from these estimates that if s = s0 = 2, then, according to Theorem 1, the series in (15), (24)
and (25) converge uniformly. Thus, Theorem 3 is proved. �

4. INVESTIGATION OF INVERSE PROBLEM

In view of (15), the condition (8) takes the form

u(r0, t) =

∞∑

n=1

un(t)sn = h(t), (27)

where sn := J0(λnr0). We will assume everywhere that x0, y0 are such that J0(λnr0) �= 0, n = 1, 2, · · · .
Multiplying equation (20) by sn and summing over n from 1 to ∞, we get

∞∑

n=1

un(t)sn =

∞∑

n=1

sn
1

λn

t∫

0

sinλn(t− α)

α∫

0

k(τ)un(α− τ)dτ dα+

∞∑

n=1

snFn(t).

Changing the order of integration on the right side of this equation and using condition (27), we obtain

h(t) =

t∫

0

P [k](t− τ)k(τ)dτ + F0(t), (28)

where

P [k](t) :=

t∫

0

∞∑

n=1

sn
1

λn
un(α) sin λn(t− α)dα,

F0(t) =

∞∑

n=1

snFn(t). (29)

From (28) it follows that

h(0) = F0(0) =
∞∑

i=1

snϕn = ϕ(r0).

To obtain an integral equation with respect to the function k(t), we differentiate equation (28)
successively three times

h′(t) =

t∫

0

P ′[k](t− τ)k(τ)dτ + F ′
0(t), (30)

where

P ′[k](t) =

t∫

0

∞∑

n=1

snun(α) cos λn(t− α)dα,

F ′
0(t) =

∞∑

n=1

snF
′
n(t) =

∞∑

n=1

sn

[

−λnϕn sinλnt+

t∫

0

cos λn(t− α)fn(α)dα

]

.

In particular, from (30) it follows h′(0) = 0.
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Further, differentiating again, we get

h′′(t) =

t∫

0

P ′′[k](t− τ)k(τ)dτ + F ′′
0 (t), (31)

where

P ′′[k](t) = h(t)−
t∫

0

∞∑

n=1

λnsnun(α− τ) sinλn(t− α)dα,

F ′′
0 (t) =

∞∑

n=1

sn

[

−λ2
nϕn cos λnt+ fn(t)− λn

t∫

0

sinλn(t− α)fn(α)dα

]

.

From (30), it follows that

h′′(0) =
∞∑

n=1

sn
(
fn(0) − λ2

nϕn

)
.

Differentiating (31) and resolving the resulting equality with respect to k(t), we have

k(t) =
1

h(0)

[

h′′′(t)− F ′′′
0 (t)−

t∫

0

P ′′′[k](t− τ)k(τ)dτ

]

, t ∈ [0, T ], (32)

where

F ′′′
0 (t) =

∞∑

n=1

sn

[

λ3
nϕn sinλnt+ f ′

n(t)− λ2
n

t∫

0

cos λn(t− α)fn(α)dα

]

,

P ′′′[k](t) = h′(t)−
t∫

0

∞∑

n=1

λ2
nsnun(α) cos λn(t− α)dα. (33)

Now we will prove the lemma that will be used in further.

Lemma 1. Let u1n(t), u
2
n(t) be two solutions of integral equation (20) with kernels k1(t), k2(t),

respectively, but with the same data ϕn, fn(t). Then, the following estimate holds

∣∣u1n(t)− u2n(t)
∣∣ ≤ T 2

2λn

(
|ϕn|+

1

λn
||fn||T

)
e

||k2||T2+2||k1||T
2λ1 ||k1 − k2||. (34)

Proof. By the condition of the lemma u1n(t), u
2
n(t) are two solutions of equation (20) corresponding

to the functions k1(t), k2(t). Estimate the modulus of the difference of these functions:

|u1n(t)− u2n(t)| ≤

∣
∣∣
∣∣
∣

1

λn

t∫

0

sinλn(t− α)

α∫

0

[
k1(τ)u1n(α− τ)− k2(τ)u2n(α− τ)

]
dτ dα

∣
∣∣
∣∣
∣

≤ 1

λn

t∫

0

∣
∣ sinλn(t− α)

∣
∣

α∫

0

[∣∣k1(τ)
∣
∣
∣
∣u1n(α− τ)− u2n(α− τ)

∣
∣+

∣
∣u2n(α− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣] dτ dα

≤ 1

λn

t∫

0

∣
∣ sinλn(t− α)

∣
∣

α∫

0

∣
∣u2n(α− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣ dτ dα
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+
1

λn

t∫

0

∣
∣ sinλn(t− α)

∣
∣

α∫

0

∣
∣k1(τ)

∣
∣
∣
∣u1n(α− τ)− u2n(α− τ)

∣
∣ dτ dα. (35)

We estimate each term separately. To evaluate the first term, we use formula (21)

1

λn

t∫

0

∣
∣ sinλn(t− α)

∣
∣

α∫

0

∣
∣u2n(α− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣ dτ dα

≤ 1

λn

T 2

2

(
|ϕn|+

1

λn
||fn||T

)
e

||k2||T2

2λ1 ||k1 − k2||, (36)

where ||k1 − k2|| = max
t∈[0,T ]

|k1(t)− k2(t)|.

To estimate the second term in (35), changing the order of integration, we have

1

λn

t∫

0

| sinλn(t− α)|
α∫

0

∣∣k1(τ)
∣∣ ∣∣u1n(α− τ)− u2n(α− τ)

∣∣ dτ dα

≤ 1

λn
||k1||T

t∫

0

∣
∣u1n(τ)− u2n(τ)

∣
∣ dτ. (37)

Substituting (36) and (37) into (34), we get

∣
∣u1n(t)− u2n(t)

∣
∣ ≤ 1

λn

⎡

⎣T 2

2

(
|ϕn|+

1

λn
||fn||T

)
e

||k2||T2

2λ1 ||k1 − k2||+ ||k1||T
t∫

0

∣
∣u1n(τ)− u2n(τ)

∣
∣ dτ

⎤

⎦ .

Now, applying the Gronwall lemma to this inequality, we obtain the estimate (34). �

Theorem 4. Assume that h(t) ∈ C3[0, T ], f(r, t) ∈ C4,1(G), ϕ(r) ∈ C6[0, 1], h(0) = ϕ(r0) �= 0,
h′(0) = 0,

h′′(0) =
∞∑

n=1

sn
(
fn(0) − λ2

nϕn

)

and the equalities

ϕ(m)(0) = 0, m = 0, 5, ϕ(m)(1) = 0, m = 0, 4, (38)

∂mf

∂rm
(0, t) = 0, m = 0, 3,

∂mf

∂rm
(1, t) = 0, m = 0, 2, t ∈ [0, T ] (39)

are satisfied. Then, there is a unique solution of the inverse problem (1)–(4).
Proof. Note that |sn| ≤ 1. If conditions (38) and (39) are satisfied, then all series of the form

∑∞
n=1 |sn|λ

j
n|ϕn|, j = 0, 1, 2, 3,

∑∞
n=1 |sn|λ

j
n||fn||, j = 0, 1, 2,

∞∑

n=1
λ2
n||f ′

n|| included in formula (32) and

used to obtain it will converge, where ||f ′
n|| = max

t∈[0,T ]
|f ′

n(t)|. We represent equation (32) as an operator

equation

k = Ak, (40)

where A has the form

Ak = k0 −
1

|h(0)|

t∫

0

P ′′′[k](t− τ)k(τ)dτ,
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k0(t) :=
1

|h(0)|
[
h′′′(t)− F ′′′

0 (t)
]
, P ′′′[k](t− τ) defines from the formula (33)).

Denote by Cσ the Banach space of continuous functions generated by the family of weight norms

||k||σ = max
{

max
t∈[0,T ]

∣
∣k(t)e−σt

∣
∣
}
, σ ≥ 0.

Obviously, for σ = 0 this space coincides with the space of continuous functions with the usual norm.
We will denote this rule by ||k||, because in the inequality

e−σT ||k|| ≤ ||k||σ ≤ ||k||,
the norms ||k||σ and ||k|| are equivalent for any fixed T ∈ (0,∞). We choose the number σ later. Let
Qσ(k0, ||k0||) :=

{
k : ||k − k0||σ ≤ ||k0||

}
be a ball of radius ||k0|| centered at point k0 of some weighted

space Qσ(σ ≥ 0).

||k0|| =
1

|h(0)| ||h
′′′||+ 1

|h(0)|

∞∑

n=1

|sn|
(
λ3
n|ϕn|+ ||f ′

n||+ λ2
n||fn)||T

)
,

where ||f ′
n|| = max

t∈[0,T ]
|f ′

n(t)| .

It is easy to see that ||k||σ ≤ ||k0||σ + ||k0|| ≤ 2||k0||. Let k(t) ∈ Qσ(k0, ||k0||). Let us show that for
σ > 0 the operator A transforms the ball Qσ(k0, ||k0||) into itself, i.e. A ∈ Qσ(k0, ||k0||). Recall that an
operator is said to be contractive on the set Qσ(k0, ||k0||), if the following two conditions are satisfied:

1) if g ∈ Qσ(k0, ||k0||), then Ag ∈ Qσ(k0, ||k0||),
2) if g1, g2 are arbitrary elements of Qσ(k0, ||k0||), then ||Ag1 −Ag2||σ ≤ ρ||g1 − g2||σ and 0 < ρ < 1.

Let us check the fulfillment of these conditions for A. For this, we have

||Ak − k0||σ = max
t∈[0,T ]

∣
∣(Ak − k0)e

−σt
∣
∣ = max

t∈[0,T ]

∣∣
∣∣
∣

1

|h(0)|

t∫

0

P ′′′[k](t− τ)k(τ)e−στ e−σ(t−τ)dτ

∣∣
∣∣
∣

≤ 2T

|h(0)|

[
||h′||+ T

∞∑

n=1

snλn

(
|ϕn|+

1

λ2
n

||fn||T
)
e

||k||T2

2λ1

]
||k0||
σ

=:
||k0||
σ

α0.

Choosing σ as σ ≥ α0, we obtain that A maps the ball Qσ(k0, ||k0||) into itself Qσ(k0, ||k0||).
Now let’s check the fulfillment of the second condition. For this purpose, we get

||(Ak1 −Ak2)||σ = max
t∈[0,T ]

∣∣(Ag1 −Ag2)e−σt
∣∣

max
t∈[0,T ]

∣∣
∣∣
∣∣

1

|h(0)|

t∫

0

[
P ′′′[k1](t− τ)k1(τ)− P ′′′[k2](t− τ)k2(τ)

]
e−στ e−σ(t−τ)dτ

∣∣
∣∣
∣∣

≤ max
t∈[0,T ]

1

|h(0)|

t∫

0

∣∣
∣∣
∣

[
h′(t− τ)−

t∫

0

∞∑

n=1

λ2
nsnu

1
n(α− τ) cos λn(t− α)dα

]
k1(τ)

−
[
h′(t− τ)−

t∫

0

∞∑

n=1

λ2
nsnu

2
n(α− τ) cos λn(t− α)dα

]
k2(τ)e−στ e−σ(t−τ)

∣
∣∣
∣∣
dτ

≤ max
t∈[0,T ]

1

|h(0)|

t∫

0

[
∣
∣h′(t− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣e−στ e−σ(t−τ)

+

t∫

0

∞∑

n=1

λ2
nsn

∣∣
∣ cos λn(t− α)

[
u1n(α− τ)k1(τ)− u2n(α− τ)k2(τ)

]∣∣
∣e−στ e−σ(t−τ)dα

]

dτ. (41)
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Here, the first term is estimated as follows

max
t∈[0,T ]

1

|h(0)|

t∫

0

[∣
∣h′(t− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣e−στ e−σ(t−τ)

]
dτ ≤ ||h′||T

|h(0)|
||k1 − k2||

σ
. (42)

To estimate the second term, we use the obvious inequality
∣
∣g1kg

1
s − g2kg

2
s

∣
∣ ≤

∣
∣g1k − g2k

∣
∣
∣
∣g1s

∣
∣+

∣
∣g2k

∣
∣
∣
∣g1s − g2s

∣
∣.

Then, we obtain

max
t∈[0,T ]

1

h(0)|

t∫

0

t∫

0

[ ∞∑

n=1

λ2
nsn

∣
∣∣ cos λn(t− α)

[
u1n(α− τ)k1(τ)− u2n(α− τ)k2(τ)

]∣∣∣e−στ e−σ(t−τ)dα

]
dτ

≤ max
t∈[0,T ]

1

|h(0)|

t∫

0

t∫

0

[ ∞∑

n=1

λ2
nsn

∣∣ cos λn(t− α)
∣∣
[∣∣u1n(α− τ)− u2n(α− τ)

∣∣ ∣∣k1(τ)
∣∣

+
∣
∣u2n(α− τ)

∣
∣
∣
∣k1(τ)− k2(τ)

∣
∣
]
e−στ e−σ(t−τ)dα

]
dτ

≤ T 2

|h(0)|

∞∑

n=1

λ2
nsn

[
T 2||k0||e

t∫

0

|k1(θ)|dθ
+ 1

](
||ϕn||+

1

λn
||fn||T

)
e

||k||T2

2λ1
||k1 − k2||

σ
. (43)

Substituting (42) and (43) into (41), we get

||(Ak1 −Ak2)||σ = max
t∈[0,T ]

∣
∣(Ag1 −Ag2)e−σt

∣
∣

≤ T

|h(0)|

[

||h′||+ T

∞∑

n=1

λ2
nsn

[
T 2||k0||e

t∫

0

|k1(θ)|dθ
+ 1

](
|ϕn|+

1

λn
||fn||T

)
e

||k||T2

2λ1

]
||k1 − k2||

σ

=:
α1

σ
||k1 − k2||.

As follows from the obtained estimates, if the number σ is chosen from the condition σ >
max(α0, α1), then the operator A is contracting on Qσ(k0, ||k0||). Then, according to Banach principle
[32], the equation (40) has the unique solution in Qσ(k0, ||k0||) for any fixed T > 0. Since equation (40)
is equivalent to the inverse problem (1)–(4). �
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