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Abstract—In a domain bounded with respect to the variable z and having a weakly horizontal
inhomogeneity, we consider the problem of determining the convolution kernel k(t, x), t ∈ [0, T ],
x ∈ R, occurring in the viscoelasticity equation. It is assumed that this kernel weakly depends on
the variable x and has a power series expansion in a small parameter ε. A method is constructed
for finding the first two coefficients k0(t) and k1(t) of this expansion. Theorems on the global
unique solvability of the problem are obtained.
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1. STATEMENT OF THE PROBLEM

Consider the two-dimensional hyperbolic integro-differential equation

utt = ∆u+

t∫
0

k(τ, x)∆u(t− τ, x, z) dτ (1)

in the domain D := {(t, x, z) | (t, x) ∈ R2, 0 < z < l} bounded with respect to the variable z with
the initial and boundary conditions

u|t<0 ≡ 0, (2)∂u
∂z

+

t∫
0

k(τ, x)
∂u

∂z
(t− τ, x, z) dτ

∣∣∣∣∣∣
z=0

= δ(x)δ′(t), (3)

∂u
∂z

+

t∫
0

k(τ, x)
∂u

∂z
(t− τ, x, z)dτ

∣∣∣∣∣∣
z=l

= 0, (4)

where ∆ =
∂2

∂x2
+

∂2

∂z2
is the Laplace operator, δ(·) is the Dirac delta function, and l > 0 is some

number.
Equation (1) arises in the theory of viscoelastic bodies with constant density and Lamé coeffi-

cients. Here the function u(t, x, z) has the physical meaning of the y-component of the body particle
displacement vector. The integral operator in this equation describes the influence of prehistory on
the process of propagation of elastic waves caused by the lumped force (3) applied at the boundary
of the domain D. The boundary condition at the left end of the domain in question means that one
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of the stress tensor components has an instantaneous directional force. At the same time, there is
no such force at the right end.

We state the inverse problem as follows: find the kernel k(t, x), t > 0, x ∈ R, of the integral term
in (1) given the values of the solution of problem (1)–(4) for z = 0, i.e., the function

u(t, x, 0) = g(t, x), t > 0, x ∈ R. (5)

Nowadays, the study of one- and multidimensional inverse problems of determining the kernel
of the integral term in integro–differential equations of hyperbolic type has become the object of
research by many scientists. The papers [1, 2] considered one-dimensional problems of finding
the kernel of hyperbolic integro–differential equations with distributed perturbation sources, and
the papers [3–12] deal with problems of finding the kernel of an integro-differential equation with
a delta function on the right-hand side or in the boundary condition. For the problems posed in
these papers, existence and uniqueness theorems are proved, and stability estimates are obtained
based on the contraction mapping principle.

The papers [13–17] studied the problems of determining multidimensional memory from
Maxwell’s and viscoelasticity integro-differential equations. Estimates of the conditional stability
of the solution of the considered inverse problems were obtained. In the papers [18–21], for mul-
tidimensional inverse problems of finding the kernel in second-order hyperbolic integro-differential
equations, theorems on the unique local solvability in the class of functions analytic in the space
variables and continuous in time were proved.

The papers [22–24] deal with the numerical solution of direct problems for a system of vis-
coelasticity equations, and [25–35], with the numerical solution of direct and inverse problems for
hyperbolic integro–differential equations and systems. In particular, they construct a numerical
method for determining the parameters of the memory function for a horizontally layered medium.

Problem (1)–(5) belongs to multidimensional inverse problems for differential equations. In this
paper, developing the methods for solving inverse problems used in [37], we study the problem
of reconstructing the convolution kernel of the integral term of Eq. (1). It is assumed that the
kernel k(t, x) weakly depends on the horizontal variable x,

k(t, x) = k0(t) + εxk1(t) + · · · , (6)

where ε is a small parameter.
The main result of this paper is that it proposes a method for finding one-dimensional func-

tions k0(t) and k1(t) up to a quantity of the order O(ε2). To this end, as we will see below, it
suffices to specify the Fourier transform of the function g(t, x) with respect to x for one fixed value
of the parameter.

2. REDUCTION OF THE PROBLEM TO A SERIES OF ONE-DIMENSIONAL
INVERSE PROBLEMS

We seek a solution of the direct problem (1)–(4) in the form of a series in powers of ε; i.e.,

u(t, z, x) = u0(t, z, x) + εu1(t, z, x) + · · · . (7)

Substituting (7) into Eq. (1) and matching the coefficients of like powers of ε, as a result, we obtain
a recursive system of direct problems from which we can find u0, u1, and so on. Then, obviously,
according to formula (7), the function g(t, x) will have the same structure

g(t, x) = g0(t, x) + εg1(t, x) + · · · . (8)

It can readily be verified that the functions un(t, z, x) (and hence also gn(x, t)) are even in x
for even n and odd for odd n. This can be seen from the direct problems given below: un with
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even n (odd n) is a solution of the problem with data even (odd) in x. Thereby, given a known
function g(t, x) we can find g0(t, x) and g1(t, x) with accuracy O(ε2),

g0(t, x) =
(
g(t, x) + g(t,−x)

)
/2,

g1(t, x) =
(
g(t, x)− g(t,−x)

)
/2.

Let us proceed to solving the problem. Using the expansions (7) of u and (6) of k and matching
the coefficients of like powers of ε, we conclude that the inverse problem (1)–(5) splits into the
following problem of successively determining k0, k1, . . .:

u0tt = ∆u0 +

t∫
0

k0(t− τ)∆u0(τ, x, z) dτ, (t, x, z) ∈ D, (9)

u0|t<0 ≡ 0, (10)

∂

∂z

u0 +

t∫
0

k0(t− τ)u0(τ, x, z) dτ

∣∣∣∣∣∣
z=0

= δ(x)δ′(t), (11)

∂

∂z

u0 +

t∫
0

k0(t− τ)u0(τ, x, z) dτ

∣∣∣∣∣∣
z=l

= 0, (12)

u0|z=0 = g0(t, x), (t, x) ∈ R2, (13)

untt = ∆un +

t∫
0

n∑
j=0

xjkj(t− τ)∆un−j(τ, x, z) dτ, (t, x, z) ∈ D, (14)

un|t<0 ≡ 0, (15)

∂

∂z

un +

t∫
0

n∑
j=0

xjkj(t− τ)un−j(τ, x, z) dτ

∣∣∣∣∣∣
z=0

= 0, (16)

∂

∂z

un +

t∫
0

n∑
j=0

xjkj(t− τ)un−j(τ, x, z) dτ

∣∣∣∣∣∣
z=l

= 0, (17)

un|z=0 = gn(t, x), (t, x) ∈ R2, n = 1, 2, . . . . (18)

In what follows, we will be interested in the problems for the functions k0(t) and k1(t). To this
end, it suffices to consider problems (9)–(13) and (14)–(18) for n = 1.

Let us proceed from the functions uj(t, x, z), j = 1, 2, . . ., to their exponential Fourier transforms
in the variable x,

ũi(t, λ, z) =

∫
R

ui(t, x, z)e
−iλx dx, λ ∈ R.

The Fourier transform of the functions uj(t, x, z), j = 1, 2, . . ., exists for any finite t, since each uj

is the sum of some singular generalized function of finite order and a regular function, the supports
of the functions uj being bounded.
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In terms of the functions ũj, the inverse problems (9)–(13) and (14)–(18) look like problems of
finding k0(t) and k1(t) from the following problems:

ũ0tt =

[
∂2

∂z2
− λ2

]ũ0 +

t∫
0

k0(t− τ)ũ0(τ, λ, z) dτ

 , (t, λ) ∈ R2, z ∈ (0, l), (19)

ũ0|t<0 ≡ 0, (20)

∂

∂z

ũ0 +

t∫
0

k0(t− τ)ũ0(τ, λ, z) dτ

∣∣∣∣∣∣
z=0

= δ′(t), (21)

∂

∂z

ũ0 +

t∫
0

k0(t− τ)ũ0(τ, λ, z) dτ

∣∣∣∣∣∣
z=l

= 0, (22)

ũ0|z=0 = g̃0(λ, t), (λ, t) ∈ R2, (23)

ũ1tt =

[
∂2

∂z2
− λ2

](
ũ1 +

t∫
0

k0(t− τ)ũ1(τ, λ, z) dτ

)

− i

t∫
0

k1(t− τ)

[
2λũ0(τ, λ, z) + λ2ũ0λ(τ, λ, z)−

∂2ũ0λ

∂z2

]
dτ, (t, λ) ∈ R2, z ∈ (0, l),

(24)

ũ1|t<0 ≡ 0, (25)

∂

∂z

ũ1 +

t∫
0

(
k0(t− τ)ũ1(τ, λ, z)dτ − ik1(t− τ)

∂ũ0

∂λ
(t− τ, λ, z)

)
dτ

∣∣∣∣∣∣
z=0

= 0, (26)

∂

∂z

ũ1 +

t∫
0

(
k0(t− τ)ũ1(τ, λ, z)dτ − ik1(t− τ)

∂ũ0

∂λ
(t− τ, λ, z)

)
dτ

∣∣∣∣∣∣
z=l

= 0, (27)

ũ1|z=0 = g̃1(t, λ), (t, λ)∈ R2, (28)

respectively, where g̃m(t, λ) =
∫
R gm(t, x)e

−iλx dx, m = 0, 1, . . . .
In the sections to follow, we study the inverse problems (19)–(23) and (24)–(28).

3. PROBLEM OF DETERMINING THE FUNCTIONS k0 AND ũ0

The inverse problem (19)–(23) is overdetermined, because a function of two variables is specified
(condition (23)) to determine one function k0(t). Below we will see that for the unique solvability of
the inverse problem, it suffices to specify the Fourier transform of the function g0(t, x) for one fixed
value of the transform parameter. In what follows, without stipulating each time, we will assume
that the parameter λ in equalities (19)–(28) is fixed and λ ̸= 0 everywhere.

We introduce a new function v(t, λ, z) defining it by the relation

v(t, λ, z) := ũ0(t, λ, z) +

t∫
0

k0(t− τ)ũ0(τ, λ, z) dτ.
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It can readily be verified that the function ũ0(t, λ, z) is expressed via v(t, λ, z) by the formula

ũ0(t, λ, z) = v(t, λ, z) +

t∫
0

r(t− τ)v(τ, λ, z) dτ, (29)

where

r(t) = −k0(t)−
t∫

0

k0(t− τ)r(τ) dτ. (30)

For simplicity, we assume that k0(0) = k′0(0) = 0. Consequently, as follows from (30),
r(0) = r′(0) = 0. It can readily be seen in the sequel that this can be achieved by appropriately
choosing f(t) for t = 0. For the new functions v(t, λ, z) and r(t), Eqs. (19)–(22), in view of (23),
acquire the form

∂2v

∂t2
=
∂2v

∂z2
− λ2v −

t∫
0

h(t− τ)v(τ, λ, z)dτ, (t, z) ∈ D, (31)

v|t<0 ≡ 0, (32)

∂v

∂z

∣∣∣∣
z=0

= δ′(t),
∂v

∂z

∣∣∣∣
z=l

= 0, (33)

where we have introduced the notation h(t) := r′′(t). The additional condition (23) is as follows:

v(t, λ, 0) = g̃0(t, λ) +

t∫
0

k0(t− τ)g̃0(τ, λ) dτ. (34)

Lemma 1.The following equalities hold:

v(t, λ, z) ≡ 0, (z, t) ∈ D1 :=
{
(z, t) | 0 < z < l, 0 < t < z

}
, (35)

v(t, λ, z) = −δ(t− z) +

t−z∫
0

τ/2∫
0

λ2v(τ − ξ, λ, ξ) +

τ−2ξ∫
0

h(α)v(τ − ξ − α, λ, ξ) dα

 dξdτ
+

t∫
t−z

2τ−t+z
2∫

τ−t+z

λ2v(2τ − t+ z − ξ, λ, ξ) +

2τ−t+z−2ξ∫
0

h(α)v(2τ − t+ z − ξ − α, λ, ξ) dα

 dξdτ
(36)

for (z, t) ∈ D2 := {(z, t) | 0 < z < l, z < t < 2l − z}.
Proof. In the domain D0 := {(z, t) | 0 < z < l, 0 < t < l/2− |z − l/2|} ⊂ D1, by d’Alembert’s

formula we obtain a homogeneous integral equation of the Volterra type for v(t, λ, z); it follows
that v(t, λ, z) ≡ 0.

In the domain D1 \D0, we represent the wave operator in the form the product(
∂

∂t
+

∂

∂z

)(
∂

∂t
− ∂

∂z

)
,

integrate Eq. (31) along a segment of the fixed characteristic of the pencil
∂

∂t
+

∂

∂z
, and use

condition (32) to find(
∂

∂t
− ∂

∂z

)
v

∣∣∣∣
z=l

= −
t∫

t/2

λ2v(τ, λ, τ − t+ l, ) +

τ∫
0

h(τ − α)v(α, λ, τ − t+ l) dα

 dτ, t ∈ (0, l).
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In view of the boundary condition (33) for z = l, from this equality we obtain

v(t, λ, l) = −
t∫

0

τ∫
τ/2

λ2v(τ1, λτ1 + τ + l) +

τ1∫
0

h(τ1 − α)v(α, λ, τ1 − τ + l) dα

 dτ1dτ, t ∈ (0, l).

Making the change of variables τ1 for ξ by the formula τ1 − τ + l = ξ in the inner integral, we
rewrite the last equation in the form

v(t, λ, l) = −
t∫

0

l∫
l−τ/2

λ2v(τ − l + ξ, λ, ξ)

+

τ−l+ξ∫
0

h(τ − l + ξ − α)v(α, λ, ξ) dα

 dξdτ, t ∈ (0, l).

(37)

Integrating Eq. (31) along the characteristic
dz

dt
= 1, we obtain(

∂

∂t
− ∂

∂z

)
v(t, λ, z)

= −
z∫

l+z−t
2

λ2v(ξ + t− z, λ, ξ) +

ξ+t−z∫
0

h(ξ + t− z − α)v(α, λ, ξ) dα

 dξ, (t, z) ∈ D1\D0.

Further, using formula (37), we find an equation for v(t, λ, z) in the domain D1\D0,

v(t, λ, z) = −
t+z−l∫
0

l∫
l−τ/2

λ2v(τ − l + ξ, λ, ξ) +

τ−l+ξ∫
0

h(τ − l + ξ − α)v(α, λ, ξ) dα

 dξdτ
−

t∫
t+z−l

t+z−τ∫
l+t+z−2τ

2

λ2v(ξ, ξ + 2τ − t− z) +

ξ+2τ−t−z∫
0

h(ξ + 2τ − t− z − α)v(α, λ, ξ) dα

 dξdτ.
The resulting equation is a homogeneous equation of the Volterra type with continuous kernel.
Consequently, v(t, λ, z) ≡ 0 in the domain D1\D0.

Now consider the domain D2 := {(t, z) | 0 < z < l, z < t < 2l − z}. Integrating (31) along the
corresponding characteristic, we find

(
∂

∂t
+

∂

∂z

)
v|x=0 =

t/2∫
0

λ2v(t− ξ, λ, ξ) +

t−2ξ∫
0

h(α)v(t− ξ − α, λ, ξ) dα

 dξ, t ∈ (0, 2l).

Combining this with the boundary condition (33), we find v(t, λ, z) for z = 0,

v|z=0 = −δ(t) +
t∫

0

τ/2∫
0

λ2v(τ − ξ, λ, ξ) +

τ−2ξ∫
0

h(α)v(τ − ξ − α, λ, ξ) dα

 dξdτ, t ∈ (0, 2l).

Using the last equality and integrating (31) along the characteristics
dz

dt
= −1 and

dz

dt
= 1, we obtain

the integral equation (36) for v(t, λ, z) in the domain D2. The proof of Lemma 1 is complete. □
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In the outer integral in the last term in Eq. (36), we replace the integration variable τ by β
using the formula t− τ = β and represent the function v(t, λ, z) in the form

v(t, λ, z) = ṽ(t, λ, z)− δ(t− z), (38)

where ṽ(t, λ, z) is a regular function. Then Eq. (36) becomes

ṽ(t, λ, z) = −λ
2

2
t+

t−z∫
0

τ/2∫
0

λ2ṽ(τ−ξ, λ, ξ)−h(τ−2ξ)+

τ−2ξ∫
0

h(α)ṽ(τ−ξ−α, λ, ξ) dα

 dξdτ
+

z∫
0

t−2β+z
2∫

z−β

λ2ṽ(t− 2β + z − ξ, λ, ξ)− h(t− 2β + z − 2ξ)

+

t−2β+z−2ξ∫
0

h(α)ṽ(t− 2β + z − ξ − α, λ, ξ) dα

 dξdβ;
(39)

consequently, ṽ(t, λ, z)|t=z+0 = −zλ2/2. For the inverse problem to be solvable, note that the
function g̃0(t, λ) must have the structure g̃0(t, λ) = g̃00(t, λ) − δ(t). Then from condition (34) we
obtain

ṽ(t, λ, 0) = g̃00(t, λ)− k0(t) +

t∫
0

k0(t− τ)g̃00(τ, λ) dτ. (40)

Thus, in the domain D2 the function ṽ(t, λ, z) satisfies the equations

∂2ṽ

∂t2
=
∂2ṽ

∂z2
− λ2ṽ − h(t− z)−

t∫
0

h(t− τ)ṽ(τ, λ, z) dτ, (t, z) ∈ D2, (41)

ṽ|t<0 ≡ 0, (42)

∂ṽ

∂z

∣∣∣∣
z=0

= 0,
∂ṽ

∂z

∣∣∣∣
z=l

= 0. (43)

In Eq. (39), we set z = 0 and use the additional condition (40),

g̃00(t, λ)− k0(t) +

t∫
0

k0(t− τ)g̃00(τ, λ) dτ = −λ
2

2
t

+

t∫
0

τ/2∫
0

λ2ṽ(τ − ξ, λ, ξ)− h(τ − 2ξ) +

τ−2ξ∫
0

h(α)ṽ(τ − ξ − α, λ, ξ) dα

 dξdτ, t ∈ (0, 2l).

Hence, in particular, we obtain the necessary condition g̃00(0, λ) = 0 for the solvability of the inverse
problem.

Differentiating the preceding integral equation two times with respect to t and solving it for h(t),
we obtain

h(t) = −λ
4

4
t− 2g̃′′00t(t, λ) + 2k′′0 (t)− 2

t∫
0

k′′0 (t− τ)g̃00(τ, λ) dτ

+ 2

t/2∫
0

λ2ṽt(t− ξ, λ, ξ)− λ2

2
ξh(t− 2ξ) +

t−2ξ∫
0

h(α)ṽt(t− ξ − α, λ, ξ) dα

 dξ.
(44)
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Hence

h′(t) = −3λ4

4
+
λ2t2

4
h(0)− 2g̃′′′00t(t, λ) + 2k′′′0 (t) + 2

t∫
0

k′′0 (τ)g̃
′
00(t− τ, λ) dτ − λ2

4

t∫
0

h(ξ) dξ

+ 2

t/2∫
0

λ2ṽtt(t− ξ, λ, ξ)−
(
λ2

2
+

1

2
h(0)ξ

)
h(t− 2ξ) +

t−2ξ∫
0

h(α)ṽtt(t− ξ − α, λ, ξ) dα

 dξ.
(45)

For further study, we need to know the derivatives ṽt and ṽtt of the function ṽ. Let us calculate
them,

ṽt(t, λ, z) = −λ
2

2
− λ4

8
tz − 1

2
h(t− z)z

+

t−z
2∫

0

λ2ṽ(t−z−ξ, λ, ξ)−h(t−z−2ξ) +

t−z−2ξ∫
0

h(α)ṽ(t−z−ξ−α, λ, ξ) dα

 dξ
+

z∫
0

t+z−2β
2∫

z−β

λ2ṽt(t+ z − 2β − ξ, λ, ξ)− λ2

2
ξh(t− 2β + z − 2ξ)

+

t−2β+z−2ξ∫
0

h(α)ṽt(t− 2β + z − ξ − α, λ, ξ) dα

 dξdβ,

(46)

ṽtt(t, λ, z) = −λ
4

8
t(1 + z)− z

2
h′(t− z) +

1

2
m(z)h(t− z)

+

t−z
2∫

0

λ2ṽt(t−z−ξ, λ, ξ)−
λ2

2
ξh(t−z−2ξ) +

t−z−2ξ∫
0

h(α)ṽt(t−z−ξ−α, λ, ξ) dα

 dξ
−

z∫
0

t+z−2β
2∫

z−β

λ2ṽtt(t+z−2β−ξ, λ, ξ)−1

(
λ4

8
ξ2−h(0)

2
ξ+

λ2

2

)
h(t+z−2β−2ξ)

−
t+z−2β−2ξ∫

0

h(α)ṽtt(t+ x− 2β − ξ − α, λ, ξ) dα

 dξdβ,

(47)

where we have introduced the notation m(z) = λ2z2/4 − 1. To close the system of integral equa-
tions (39) and (44)–(47), we use the following obvious relations:

k0(t) =

t∫
0

(t− τ)k′′0 (τ) dτ, (48)

k′0(t) =

t∫
0

k′′0 (τ) dτ, (49)

k′′0 (t) = −h(t)− λ2k0(t)−
t∫

0

h(t− τ)k0(τ) dτ, (50)
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k′′′0 (t) = −h′(t)− λ2k′0(t)−
t∫

0

h(τ)k′0(t− τ) dτ. (51)

Theorem 1. Assume that g̃00(t, λ) ∈ C3[0, 2l], g̃00(+0, λ) = 0, and g̃′00t(+0, λ) = −λ2/2. Then
there exists a unique solution k0(t) ∈ C3[0, 2l] of the inverse problem (9)–(13) for each l > 0.

Proof. Equations (39) and (44)–(51) determine a closed system of integral equations for the
nine unknown functions ṽ(t, λ, z), ṽt(t, λ, z), ṽtt(t, λ, z), h(t), h′(t), k0(t), k′0(t), k′′0 (t), and k′′′0 (t)
in D2. Note that it would have been sufficient to consider the six functions ṽ(t, λ, z), ṽt(t, λ, z),
h(t), k0(t), k′0(t), and k′′0 (t), which also form a closed system in D2, but when proving Theorem 3,
there arises a need for the functions ṽtt(t, λ, z), h′(t), and k′′′0 (t); therefore, we will consider the
system of nine functions from the very beginning. This system can be represented in the form of
the operator equation

Aφ = φ, (52)

where

φ =
[
φ1(t, λ, z), φ2(t, λ, z), φ3(t, λ, z), φ4(t), φ5(t), φ6(t), φ7(t), φ8(t), φ9(t)

]
=
[
ṽ(t, λ, z), ṽt(t, λ, z) +

z

2
h(t− z), ṽtt(t, λ, z) +

z

2
h′(t− z)

+
1

2
m(z)h(t− z), h(t)− 2k′′0 (t), h

′(t)− 2k′′′0 (t), k0(t), k
′
0(t), k

′′
0 (t)

+ h(t) + λ2k0(t), k
′′′
0 (t) + h′(t) + λ2k′0(t)

]
is a vector function with components φi, i = 1, . . . , 9, and the operator A is defined on the set of
functions φ ∈ C[D2] and, in accordance with (39) and (44)–(51), has the form

A = (A1, A2, A3, A4, A5, A6, A7, A8, A9),

where

A1φ = φ01 +

t−z∫
0

τ/2∫
0

λ2φ1(t− ξ, λ, ξ)− 1

3
(2φ8(t− 2ξ) + φ4(t− 2ξ)− 2λ2φ6(t− 2ξ))

+
1

3

t−2ξ∫
0

[2φ8(α) + φ4(α)− 2λ2φ6(α)]φ1(ξ, λ, t− ξ − α) dα

]
dξdτ

+

t∫
t−z

2τ−t+z
2∫

τ−t+z

λ2φ1(t− 2β + z − ξ, λ, ξ)

− 1

3

(
2φ8(t− 2β + z − 2ξ) + φ4(t− 2β + z − 2ξ)− 2λ2φ6(t− 2β + z − 2ξ)

)
+

1

3

2τ−t+z−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]

× φ1(2τ − t+ z − ξ − α, λ, ξ) dα

 dξdτ,

(53)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 16 No. 1 2022



PROBLEM OF DETERMINING THE TWO-DIMENSIONAL KERNEL 31

A2φ = φ02 +

t−z
2∫

0

φ1(t− z − ξ, λ, ξ)

− 1

3

(
2φ8(t− z − 2ξ) + φ4(t− z − 2ξ)− 2λ2φ6(t− z − 2ξ)

)

− 1

3

t−z−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
φ1(t− z − ξ − α, λ, ξ) dα

 dξ
+

z∫
0

t+z−2β
2∫

x−β

λ2φ2(t+ z − 2β − ξ, λ, ξ)

− λ2

6
ξ
[
2φ8(t+ z − 2β − 2ξ) + φ4(t+ z − 2β − ξ)− 2λ2φ6(t+ z − 2β − 2ξ)

]
+

1

3

t+z−2β−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
×
(
λ2φ2(t+ z − 2β − ξ, λ, ξ)− λ2

6
ξ
[
2φ8(t+ z − 2β − 2ξ)

+ φ4(t+ z − 2β − ξ)− 2λ2φ6(t+ z − 2β − 2ξ)
])
dα

 dξdβ,

(54)

A3φ = φ03 +

t−z
2∫

0

λ2φ2(t− z − ξ, λ, ξ)

− λ2

6
ξ
[
2φ8(t− z − 2ξ) + φ4(t− z − 2ξ)− 2λ2φ6(t− z − 2ξ)

]
+

1

3

t−z−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

](
λ2φ2(t− z − ξ − α, λ, ξ)

− λ2

6
ξ
[
2φ8(t−z−2ξ−α) + φ4(t−z−2ξ−α)− 2λ2φ6(t−z−2ξ−α)

])
dα

 dξ
+

z∫
0

t+z−2β
2∫

z−β

λ2φ2(t+ z − 2β − ξ, λ, ξ)− λ2

6

[
2φ8(t+ z − 2β − 2ξ)

+ φ4(t+ z − 2β − 2ξ)− 2λ2φ6(t+ z − 2β − 2ξ)
]

− λ2ξ

6

[
2φ9(t+ x− 2β − ξ) + φ5(t+ x− 2β − ξ)− 2λ2φ7(t+ x− 2β − ξ)

]
−
(
h(0)

6
ξ − λ2

6

)[
2φ8(t+ z − 2β − 2ξ)

+ φ4(t+ z − 2β − 2ξ)− 2λ2φ6(t+ z − 2β − 2ξ)
]

+
1

3

t+z−2β−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
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×
[
φ3(t+ x− 2β − ξ − α, λ, ξ)

− ξ

6

[
2φ9(t+ x− 2β − 2ξ − α) + φ5(t+ x− 2β − 2ξ − α)

− 2λ2φ7(t+ x− 2β − 2ξ − α)
]
+

1

6

[
2φ8(t+ z − 2β − 2ξ − α)

+ φ4(t+z−2β−2ξ−α)− 2λ2φ6(t+z−2β−2ξ−α)
]]
dα

 dξdβ, (55)

A4φ = φ04 −
1

3

t∫
0

[
2φ8(τ)− φ4(τ)− 2λ2φ6(τ)

]
g̃00(t− τ, λ) dτ

− 2

t/2∫
0

λ2

[
φ2(t− ξ, λ, ξ)

− ξ

6

[
2φ8(t− 2ξ) + φ4(t− 2ξ)− 2λ2φ6(t− 2ξ)

]
− λ2φ5(t− 2ξ)

]

− 1

3

t−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

][
φ2(t− ξ − α, λ, ξ)

− ξ

6

[
2φ8(t− 2ξ − α)− φ4(t− 2ξ − α)− 2λ2φ6(t− 2ξ

]]
dα

]
dξ,

(56)

A5φ = φ05 −
1

3

t∫
0

[
φ8(τ)− 2φ4(τ)− λ2φ6(τ)

]
g̃′00(t− τ, λ) dτ

− 2

t/2∫
0

λ2

[
φ3(t− ξ, λ, ξ)− ξ

6

[
2φ9(t− 2ξ) + φ5(t− 2ξ)− 2λ2φ7(t− 2ξ)

]
− 1

6

[
2φ8(t− 2ξ) + φ4(t− 2ξ)− 2λ2φ6(t− 2ξ)

]]
−
(
h(0)

6
ξ − λ2

6

)[
2φ8(t− 2ξ) + φ4(t− 2ξ)− 2λ2φ6(t− 2ξ)

]
+

1

3

t−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
×
(
φ3(t− ξ − α, λ, ξ)

+
ξ

6

[
2φ8(t− 2ξ − α) + φ4(t− 2ξ − α)− 2λ2φ6(t− 2ξ − α)

]
− 1

6

[
2φ8(t−2ξ−α) + φ4(t−2ξ−α)− λ2φ6(t−2ξ−α)

])
dα

 dξ,

(57)

A6φ = φ06 +
1

3

t∫
0

(t− τ)
[
φ8(τ)− φ4(τ)− λ2φ6(τ)

]
dτ, (58)
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A7φ = φ07 +
1

3

t∫
0

[
φ8(τ)− φ4(τ)− λ2φ6(τ)

]
dτ, (59)

A8φ = φ08 +
1

3

t∫
0

[
2φ8(τ) + φ4(τ)− 2λ2φ6(τ)

]
φ6(t− τ) dτ, (60)

A9φ = φ09 +
1

3

t∫
0

[
2φ8(τ) + φ4(τ)− 2λ2φ6(τ)

]
φ7(t− τ) dτ, (61)

and we have introduced the notation

φ0(t, λ, z) = (φ01, φ02, φ03, φ04, φ05, φ06, φ07, φ08, φ09)

:=

[
− λ2

2
(t−z),−λ

2

2
,−λ

2

8
h(0)tz − λ4z

4
,−2g̃′′00t(t, λ),

λ4

2
+
1

4
h(0)t− 2g̃′′′00t(t, λ), 0, 0, 0, 0

]
.

By Cσ we denote the Banach space of continuous functions generated by the family of weighted
norms

∥φ∥σ = max

{
sup

(t,λ,z)∈D2

∣∣φi(t, λ, z)e
−σt
∣∣, i = 1, . . . , 3, sup

t∈[0,2l]

∣∣φj(t)e
−σt
∣∣, j = 4, . . . , 9

}
, σ ≥ 0.

For σ = 0, this space coincides with the space of continuous functions with the usual norm. We
denote this norm by ∥φ∥ in what follows. The inequality

e−σt∥φ∥ ≤ ∥φ∥σ ≤ ∥φ∥ (62)

implies the equivalence of the norms ∥φ∥σ and ∥φ∥ for each l ∈ (0,∞). The number σ will be
chosen later. Let Qσ(φ0, ∥φ0∥) := {φ | ∥φ−φ0∥ ≤ ∥φ0∥} be the ball of radius ∥φ0∥ centered at the
point φ0 in some weighted space Cσ(σ ≥ 0) in which

∥φ0∥ = max
(
∥φ01∥, ∥φ02∥, ∥φ03∥, ∥φ04∥, ∥φ05∥, ∥φ06∥, ∥φ07∥, ∥φ08∥, ∥φ09∥

)
.

It is easily seen that for Qσ(φ0, ∥φ0∥) we have the estimate

∥φ∥σ ≤ ∥φ0∥σ + ∥φ0∥ ≤ 2∥φ0∥.

Let φ(x, t) ∈ Qσ(φ0, ∥φ0∥). Let us show that, for a suitable choice of σ > 0, the operator A
takes the ball to itself; i.e., Aφ ∈ Qσ(φ0, ∥φ0∥). Indeed, using Eqs. (53)–(61) to compose the norm
of differences, for (t, z) ∈ D2 we have

∥A1φ− φ01∥σ = sup
(t,z)∈D2

∣∣(A1φ− φ01)e
−σt
∣∣

= sup
(t,z)∈D2

∣∣∣∣∣∣
t−z∫
0

τ/2∫
0

λ2φ1(t− ξ, λ, ξ)e−σ(t−ξ)e−σξ

− 1

3

(
2φ8(t− 2ξ) + φ4(t− 2ξ)− 2λ2φ6(t− 2ξ)

)
e−σ(t−2ξ)e−2σξ

+
1

3

t−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
e−σα
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× φ1(t− ξ − α, λ, ξ)e−σ(t−ξ−α)e−σξ dα

 dξdτ
+

t∫
t−z

2τ−t+z
2∫

τ−t+z

λ2φ1(2τ − t+ z − ξ, λ, ξ)e−σ(2τ−t+z−ξ)e−σ(ξ−2τ−z)

− 1

3

(
2φ8(t− 2β + z − 2ξ) + φ4(t− 2β + z − 2ξ)

− 2λ2φ6(t− 2β + z − 2ξ)
)
e−σ(2τ−t+z−2ξ)e−σ(2ξ−2τ−z)

+
1

3

2τ−t+z−2ξ∫
0

[
2φ8(α) + φ4(α)− 2λ2φ6(α)

]
e−σαφ1(2τ − t+ z − ξ − α, λ, ξ)

× e−σ(2τ−t+z−ξ−α)e−σ(2t+ξ−2τ−z) dα

 dξdτ
∣∣∣∣∣∣

≤ 2∥φ0∥
σ

l
[
3λ2 + (3 + 2λ2)

(
4∥φ0∥l + 2/3

)]
=:

∥φ0∥
σ

α1.

In a similar way, we obtain the estimates

∥Ajφ− φ0j∥σ ≤ ∥φ0∥
σ

αj, j = 2, . . . , 9,

where

(α2, α3, α4, α5, α6, α7, α8, α9)

=

{
2

[
λ2l + 1 + L

(
1 + λ2l2 +

(
16 + 2λ2(1 + l)

)
∥φ0∥

)]
,

2

[
λ2L

(
1 + L+

1

2
L(1 + l)

)
+ λ2(L+ 1)

(
4λ2L+ 3(1 + lL)

)
∥φ0∥

]
,

2
[
6λ2 + 2L

(
G0 + l + 8(1 + l2L)∥φ0∥

)]
,

2
[
2
(
λ2 + L(G1 + l + 1 + 6L0) + 8(2L+ l2)/3∥φ0∥

)]
,

(2 + λ2)

3
l,
(2 + λ2)

3
, 2

[
2

9
l2∥φ0∥

(
3 +

5λ2

2

)(
2 +

5λ2

4

)]}
,

2

[
2

9
l3∥φ0∥

(
3 +

5λ2

2

)(
2 +

5λ2

4

)]
.

Here we have introduced the notation

L = (3 + 2λ2)/6, L0 = h(0)l/6− λ2/6, G0 = max
t∈[0,2l]

∣∣g0(t, λ)∣∣, G1 = max
t∈[0,2l]

∣∣g′0(t, λ)∣∣.
Choosing σ ≥ α0 := max(α1, α2, α3, α4, α5, α6, α7, α8, α9), we conclude that A takes the

ball Qσ(φ0, ∥φ0∥) to the ball Qσ(φ0, ∥φ0∥).
Now let φ1 and φ2 be two arbitrary elements in Qσ(φ0, ∥φ0∥). Then, using auxiliary inequalities

of the form∣∣φ1
iφ

1
j − φ2

iφ
2
j

∣∣e−σt ≤
∣∣φ1

i

∣∣∣∣φ1
j − φ2

j

∣∣e−σt +
∣∣φ2

j

∣∣∣∣φ1
i − φ2

i

∣∣e−σt ≤ 4∥φ0∥
∥∥φ1 − φ2

∥∥
σ
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for (t, z) ∈ D2, we obtain

∥(Aφ1 −Aφ2)j∥σ = sup
(t,z)∈D2

|(Aφ1 −Aφ2)je
−σt| ≤ ∥φ1 − φ2∥σ

σ
β0,

where

β0 = max

{[
3λ2 + (3 + 2λ2)

(
8∥φ0∥l + 2/3

)]
,[

λ2l + 1 + L
(
1 + λ2l2 + 2

(
16 + 2λ2(1 + l)

)
∥φ0∥

)]
,[

λ2L
(
1 + L+ L(1 + l)/2

)
+ 2λ2(L+ 1)

(
4λ2L+ 3(1 + lL)

)
∥φ0∥

]
,[

6λ2 + 2L
(
G0 + l + 16(1 + l2L)∥φ0∥

)]
,[

2(λ2 + L(G1 + l + 1 + 6L0) + 16(2L+ l2/3)∥φ0∥
)]
,

(2 + λ2)

6
l,
(2 + λ2)

6
, 2

[
2

9
l2∥φ0∥

(
3 +

5λ2

2

)(
2 +

5λ2

4

)]}
,

2

[
2

9
l3∥φ0∥

(
3 +

5λ2

2

)(
2 +

5λ2

4

)]
.

It follows from the resulting estimates that if the number σ is chosen based on the condi-
tion σ > max(α0, β0), then the operator A is contracting on Qσ(φ0, ∥φ0∥), and by the Banach
principle there exists a unique solution of Eq. (52) in Qσ(φ0, ∥φ0∥) for each l > 0. The proof of
Theorem 1 is complete. □

Let K(m0) be the set of functions k0(t) ∈ C[0, 2l] satisfying the condition ∥k0∥C[0,2l] ⩽ m0 for
some l > 0 with a constant m0 > 0.

Theorem 2. Let k10(t), k20(t) ∈ K(m0) be two solutions of the inverse problem (9)–(13) with the
data g10 and g20 , respectively. Then there exists a positive number C = C(m0, l) such that∥∥k10(t)− k20(t)

∥∥
C[0,2l]

⩽ C
∥∥g10 − g20

∥∥
C3[0,2l]

. (63)

Proof. Let φ1 and φ2 be two vector functions that are solutions of (52) with the data g10 and g20,
respectively; i.e., φj = Aφj for j = 1, 2. Passing to the differences φ1

i − φ2
i , i = 1, . . . , 8, in the

integral equations, just as in the paper [37], from the argument in the proof of Theorem 1 for σ > σ0

we obtain the estimate

∥φ1 − φ2∥σ ≤ C0

∥∥g10 − g20
∥∥
C3[0,2l]

+
σ

σ0

∥φ1 − φ2∥σ, (64)

where the constant C0 depends on the same parameters as C. Inequalities (62) and (64) imply the
estimate ∥∥k10(t)− k20(t)

∥∥
C[0,2l]

⩽
C0σ

|σ − σ0|
∥∥g10 − g20

∥∥
C3[0,2l]

.

If we denote
C0σ

|σ − σ0|
=: C

in this inequality, then we obtain the estimate (63). The proof of Theorem 2 is complete. □
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Now let us establish some facts that will be useful when proving theorems in the next section.
It follows from formulas (29) and (38) that u0 can be expressed via ṽ by the formula

ũ0(t, λ, z) = ṽ(t, λ, z)− δ(t− z) +

t∫
0

r(t− τ)(ṽ(τ, λ, z)− δ(τ − z)) dτ. (65)

Since ṽ(t, x, z) = v(t, x, z) in the domain t > z > 0, we obtain, removing the tilde on the function
ṽ and differentiating Eq. (65) with respect to λ,

ũ0λ(t, λ, z) = vλ(t, λ, z) +

t∫
z

r(t− τ)vλ(τ, λ, z) dτ. (66)

It should be noted that for the function vλ one has the following problem obtained by differen-
tiating (40)–(43) with respect to λ:

∂2vλ
∂t2

=
∂2vλ
∂z2

− 2λv − λ2vλ −
t∫

z

h(t− τ)vλ(τ, λ, z)dτ, (t, z) ∈ D2, (67)

vλ|t=z+0 = −λz, (68)

∂vλ
∂z

∣∣∣∣
z=0

= 0,
∂vλ
∂z

∣∣∣∣
z=l

= 0, (69)

ṽλ(t, λ, 0) = g̃0λ(t, λ) +

t∫
0

k0(t− τ)g̃0λ(τ, λ) dτ. (70)

Lemma 2. In the domain D2 , the function ṽλ(t, λ, z) belongs to C3(D2), and one has the integral
equation

vλ(t, λ, z) =
1

2

[
g̃0λ(t+z, λ)+ g̃0λ(t−z, λ)+

t+z∫
0

k0(t+z−τ)g̃0λ(τ, λ) dτ+
tz∫
0

k0(t−z−τ)g̃0λ(τ, λ) dτ

]

−1

2

z∫
0

t+z−ξ∫
t−z+ξ

[
λ2vλ(τ, λ, ξ) + 2λv(τ, λ, ξ) +

τ∫
ξ

h(τ − α)v(α, λ, ξ) dα+

τ∫
ξ

k1(τ − α) dα

]
dτdξ, (71)

Proof. Let us use the equivalent description of the domain D2 in the form D2={(t, z) |0<t<2l,
t<z<2l−t}. Using d’Alembert’s formula, from Eq. (67) and the initial conditions (70), (69) (we
mean the first of the two conditions in (69)) we obtain the linear integral equation (71) in the
domain D2. It follows from the theory of integral equations that Eq. (71) has a unique continuous
solution in D2. The smoothness of the solution can be established by differentiating Eq. (71)
sufficiently many times. One can readily verify that the right-hand side of the differentiated equation
will be continuous, and consequently, so will be the left-hand side [38, Ch. 2]. Thus, vλ ∈ C3[D2]. □

4. PROBLEM OF DETERMINING THE FUNCTIONS k1 AND ũ1

We will assume that the functions k0 and ũ0 are given. Let us introduce a new function w(t, λ, z),
just as in the previous section, in the following manner:

w(t, λ, z) := ũ1(t, λ, z) +

t∫
0

k0(t− τ)ũ1(τ, λ, z) dτ.
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Then the function ũ1(t, λ, z) can be expressed via w(t, λ, z) by the formula

ũ1(t, λ, z) = w(t, λ, z) +

t∫
0

r(t− τ)w(τ, λ, z) dτ,

where

r(t) = −k0(t)−
t∫

0

k0(t− τ)r(τ) dτ.

For the new functions w(t, λ, z) and r(t), Eqs. (24)–(27), in view of (28), acquire the form

∂2w

∂t2
=
∂2w

∂z2
− λ2w −

t∫
0

h(t− τ)w(τ, λ, z) dτ

− i

t∫
0

k1(t− τ)

[
2λũ0(τ, λ, z) + λ2ũ0λ(τ, λ, z)−

∂2ũ0λ

∂z2

]
dτ, (z, t) ∈ D2, λ ∈ R,

(72)

w|t<0 ≡ 0, (73)[
∂w

∂z
− i

t∫
0

k1(t− τ)
∂ũ0λ

∂z
dτ

]∣∣∣∣∣
z=0

= 0, (74)

[
∂w

∂z
− i

t∫
0

k1(t− τ)
∂ũ0λ

∂z
dτ

]∣∣∣∣∣
z=l

= 0, (75)

w|z=0 = a1(t, λ), (76)

w|t=z = 0, (77)

where h(t) := r′′(t) and

a1(t, λ) := g̃1(t, λ) +

t∫
0

k0(t− τ)g̃1(τ, λ) dτ. (78)

Using formulas (65)–(69), we transform the last terms in (72), (74), and (75) as follows:

t∫
0

k1(t− τ)
∂ũ0λ

∂z
dτ =

t∫
z

k1(t− τ)

∂vλ(τ, λ, z)
∂z

dτ −
η∫

z

r(τ − η)
∂vλ(τ, λ, η)

∂z
dη

 dτ,
t∫

0

k1(t− τ)
∂2ũ0λ

∂z2
dτ =

t∫
z

k1(t− τ)

∂2vλ
∂z2

dτ −
η∫

z

r(τ − η)
∂2vλ
∂z2

dη

 dτ,
t∫

0

λ2k1(t− τ)u0λ(τ, λ, z) dτ =

t∫
z

λ2k1(t− τ)

v(τ, λ, z)− η∫
z

r(τ − η)v(τ, λ, η) dη

 dτ,
t∫

0

2λk1(t− τ)ũ0(τ, λ, z) = −2λk1(t− z)− 2λ

t∫
z

k1(t− τ)r(τ − z)dτ
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+ 2λ

t∫
z

k1(t− τ)

v(τ, λ, z) + τ∫
z

r(τ − η)v(η, λ, z) dη

 dτ.
Thus, problem (72)–(77) can be rewritten as

∂2w

∂t2
=
∂2w

∂z2
− λ2w + λ1k1(t− z)−

t∫
z

h(t− τ)w(τ, λ, z) dτ −
t∫

z

k1(t− τ)s(τ, λ, z) dτ,

(z, t) ∈ D2, λ ∈ R, λ1 := 2iλ,

(79)

w|t<0 ≡ 0, (80)

∂w

∂z
|z=0= 0,

∂w

∂z
|z=l= 0, (81)

w|z=0 = a1(t, λ), (82)

w|t=z = 0, (83)

s(t, λ, z) := i

λ2

v(t, λ, z)− t∫
z

r(t− τ)v(τ, λ, z) dτ

+
∂2vλ
∂z2

−
t∫

z

r(t− τ)
∂2vλ
∂z2

dτ

+ 2λ

t∫
z

k1(t− τ)r(τ − z) dτ − 2λ

t∫
z

k1(t− τ)

v(τ, λ, z) + τ∫
z

r(τ − η)v(η, λ, z) dη

 .
(84)

Lemma 3. In the domain D2 , one has the relation

s(t, λ, z)|t=z+0 = − iλ
2

2
z. (85)

Proof. For t = z + 0, all terms in (84) except for the first one vanish, and in the first term, if

for (v(z+0, λ, z) we substitute the known value ṽ(t, λ, z)|t=z+0 = −λ
2

2
z readily following from (39),

then we obtain (85). □

Note that the unknown functions occur in Eq. (24) linearly. Let us replace system (79)–(83) by
equivalent integral equations. Using d’Alembert’s formula, from (79), (81), and (82) we obtain the
equation

w(t, λ, z) =
1

2

[
a1(t− z, λ) + a1(t+ z, λ)

]
− 1

2

z∫
0

t+z−ξ∫
t−z+ξ

λ2w(τ, λ, ξ)− λ1k1(τ − ξ)

+

τ∫
ξ

h(τ − α)w(α, λ, ξ) dα+

τ∫
ξ

k1(τ − α)s(α, λ, ξ) dα

 dτdξ.
(86)

Passing to the limit as t→ z + 0 in this equation and taking into account the conditions w|t=z = 0
and a1(0, λ) = 0, we find

a1(2z, λ)

=

z∫
0

2z−ξ∫
ξ

λ2w(τ, λ, ξ)−λ1k1(τ−ξ)+
τ−ξ∫
0

h(α)w(τ−α, λ, ξ) dα+
τ−ξ∫
0

k1(α)s(τ−α, λ, ξ) dα

 dτdξ.
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To obtain an integral equation for k1(t), we replace 2z by t in the last equation and differentiate
it two times with respect to t, thus obtaining

k1(t) =
2

λ1

a′′1(t, λ)−
2

λ1


t/2∫
0

λ2wt(t− ξ, λ, ξ)

+

t−2ξ∫
0

h(α)wt(t− ξ − α, λ, ξ) dα+

t−2ξ∫
0

k1(α)st(t− ξ − α, λ, ξ) dα

 dξ
 .

(87)

Differentiating (86) with respect to t and taking into account (85), we obtain equations for wt,

wt(t, λ, z) =
1

2

[
a′1(t− z, λ) + a′1(t+ z, λ)

]
− 1

2
λ1k1(t− z)z

+
1

2

z∫
0

{
λ2w(t+ z − ξ, λ, ξ)− λ2w(t− z + ξ, λ, ξ)

− λ1k1(t+ z − 2ξ)−
t+z−2ξ∫
0

h(α)w(t+ z − ξ − α, λ, ξ) dα

+

t−z∫
0

h(α)w(t− z + ξ − α, λ, ξ) dα+

t+z−2ξ∫
0

k1(α)s(t+ z − ξ − α, λ, ξ) dα

−
t−z∫
0

k1(α)s(t− z + ξ − α, λ, ξ) dα

}
dξ.

(88)

Equations (86)–(88) form a closed linear system of integral Volterra equations of the second kind
in the domain D2 for the functions w(t, x, z), wt(t, x, z), and k1(t) with a given λ.

Since st(t, λ, z) occurs in Eq. (87), for further reasoning we must show that s(t, λ, z) belongs to
the class C1[D2]. Consequently, we need to show that vλ(t, λ, z) ∈ C3[D2]. The fact that vλ(t, λ, z)
belongs to the class C3[D2] has been proved in Lemma 2.

The main results of this section are Theorems 3 and 4 on the unique global solvability and
stability of the inverse problem of determining k1(t).

Theorem 3. Let g̃00(t, λ) ∈ C3[0, 2l], g̃00(+0, λ) = 0, g̃′00(+0, λ) = −λ2/2, g̃1(+0, λ) ∈ C2[0, 2l],
and g̃1(+0, λ) = g̃′1(+0, λ) = 0. Then there exists a unique solution k1(t) ∈ C2[0, 2l] of the inverse
problem (24)–(28) for each l > 0.

Proof. System (86)–(88) is a closed system of integral equations in D2. We write this system
in the form of the operator equation

ψ = Fψ, (89)

where

ψ =
[
ψ1(t, λ, z), ψ2(t, λ, z), ψ3(t)

]
=

[
w(t, λ, z), wt(t, λ, z) +

1

2
λ1k1(t− z)z, k1(t)

]
is a vector function with components ψi, i = 1, . . . , 3, and the operator F is defined on the set of
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functions φ ∈ C[D2] and, in accordance with Eqs. (86)–(88), has the form F = (F1, F2, F3). Here

F1ψ = ψ01 −
1

2

z∫
0

t+z−ξ∫
t−z+ξ

λ2ψ1(τ, λ, ξ)− λ1φ3(τ − ξ)

+

τ∫
ξ

h(τ − α)ψ1(α, λ, ξ) dα+

τ∫
ξ

ψ3(τ − α)s(α, λ, ξ) dα

 dτdξ,
(90)

F2ψ = ψ02 −
1

2

z∫
0

λ2ψ1(t+ z − ξ, λ, ξ)− λ2ψ1(t− z + ξ, λ, ξ)

−
t+z−2ξ∫
0

h(α)ψ1(t+ z − ξ − α, λ, ξ) dα+

t−z∫
0

h(α)ψ1(t− z + ξ − α, λ, ξ) dα

+

t+z−2ξ∫
0

φ3(α)s(t+ z − ξ − α, λ, ξ) dα−
t−z∫
0

φ3(α)(α)s(t− z + ξ − α, λ, ξ) dα

 dξ,

(91)

F3ψ = ψ03 −
2

λ1


t/2∫
0

λ2

(
ψ2(t− ξ, λ, ξ)− 1

2
λ1ψ3(t− 2ξ)ξ

)

+

t−2ξ∫
0

h(α)

(
ψ2(t− ξ − α, λ, ξ)− 1

2
λ1ψ3(t− 2ξ − α)ξ

)
dα

+

t−2ξ∫
0

ψ3(α)st(t− ξ − α, λ, ξ) dα

 dξ
 ,

(92)

where

ψ0(x, t) = (ψ01, ψ02, ψ03) :=

[
a1(t− z, λ) + a1(t+ z, λ),

1

2

[
a′1(t− z, λ) + a′1(t+ z, λ)

]
,
2

λ1

a′′1(t, λ)

]
.

Let us show that, for some n ∈ N, the nth power of the linear mapping Fψ is a contraction. Set

∥ψ∥ = max

{
max

(t,z)∈D2

∣∣ψj(t, λ, z)
∣∣, j = 1, 2, max

t∈[0,2l]

∣∣ψ3(t)
∣∣} .

Let ψ1 and ψ2 be two continuous vector functions in D2 satisfying the linear system of integral
equations (90)–(92). Set

∆(t, z) =
{
(ξ, τ) | 0 ≤ ξ ≤ z, t− z + ξ ≤ τ ≤ t+ z − ξ

}
,

Π(t, ξ, z) =
{
τ | (ξ, τ) ∈ ∆(t, z)

}
.

Then for (t, z) ∈ D2 we have (in the estimates we use the fact that t = 2z in Eq. (87))

∣∣F1ψ
(1) − F1ψ

(2)
∣∣(t, λ, z) ≤ γ1

z∫
0

max

{
max

(t,λ,z)∈Π

∣∣ψ(1)
1 − ψ

(2)
1

∣∣(τ, λ, ξ), ∣∣ψ(1)
3 − ψ

(2)
3

∣∣(2ξ)} dξ
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≤ γ1

z∫
0

max

{
max

(ξ,τ)∈D2

∣∣ψ(1)
1 − ψ

(2)
1

∣∣(τ, λ, ξ), max
(ξ)∈[0,l]

∣∣ψ(1)
3 − ψ

(2)
3

∣∣(2ξ)} dξ ≤ γ1z
∥∥ψ(1) − ψ(2)

∥∥,
∣∣F2ψ

(1) − F2ψ
(2)
∣∣(t, λ, z)

≤ γ2

z∫
0

max

{
max

(ξ,τ)∈D2

∣∣ψ(1)
1 − ψ

(2)
1

∣∣(τ, λ, ξ), max
(ξ)∈[0,l]

∣∣ψ(1)
3 − ψ

(2)
3

∣∣(2ξ)} dξ ≤ γ2z
∥∥ψ(1) − ψ(2)

∥∥,
∣∣F3ψ

(1) − F3ψ
(2)
∣∣(2z)

≤ γ3

z∫
0

max

{
max
(ξ∈[0,l]

∣∣ψ(1)
2 − ψ

(2)
2

∣∣(2l − ξ, λ, ξ), max
(ξ)∈[0,l]

∣∣ψ(1)
3 − ψ

(2)
3

∣∣(2ξ)} dξ ≤ γ3z
∥∥ψ(1) − ψ(2)

∥∥,
where the γj are constants depending on the quantities occurring in C (Theorem 2). Setting
M = max{γ1, γ2, γ3}, we obtain

max
1≤j≤3

∣∣Fjψ
(1) − Fjψ

(2)
∣∣(t, λ, z) ≤Mz∥ψ(1) − ψ(2)∥.

Further,∣∣F 2
1ψ

(1) − F 2
1ψ

(2)
∣∣(t, λ, z)

≤ γ1

z∫
0

max

{
max

(t,λ,z)∈Π

∣∣F1ψ
(1)
1 − F1ψ

(2)
1

∣∣(τ, λ, ξ), ∣∣F1ψ
(1)
3 − F1ψ

(2)
3

∣∣(2ξ)} dξ

≤ γ1M

z∫
0

ξ∥ψ(1) − ψ(2)∥ dξ ≤ γ1M
z2

2!
∥ψ(1) − ψ(2)∥,

∣∣F 2
2ψ

(1) − F 2
2ψ

(2)
∣∣(t, λ, z)

≤ γ2

z∫
0

max

{
max

(t,λ,z)∈Π

∣∣F2ψ
(1)
1 − F2ψ

(2)
1

∣∣(τ, λ, ξ), ∣∣F2ψ
(1)
3 − F2ψ

(2)
3

∣∣(2ξ)} dξ

≤ γ2M

z∫
0

ξ∥ψ(1) − ψ(2)∥ dξ ≤ γ2M
z2

2!
∥ψ(1) − ψ(2)∥,

∣∣F 2
3ψ

(1) − F 2
3ψ

(2)
∣∣(2z)

≤ γ3

z∫
0

max

{
max

(τ∈[ξ,2z−ξ]

∣∣F3ψ
(1)
2 − F3ψ

(2)
2

∣∣(2l − ξ, λ, ξ),
∣∣F3ψ

(1)
3 − F3ψ

(2)
3

∣∣(2ξ)} dξ

≤ γ3M
z2

2!
∥ψ(1) − ψ(2)∥.

Hence

max
1≤j≤3

∣∣F 2
j ψ

(1) − F 2
j ψ

(2)
∣∣(t, λ, ξ) ≤M2 z

2

2!
∥ψ(1) − ψ(2)∥, (t, z) ∈ D2,
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and consequently,

max
1≤j≤3

∣∣F n
j ψ

(1) − F n
j ψ

(2)
∣∣(t, λ, ξ) ≤Mn z

n

n!
∥ψ(1) − ψ(2)∥, (t, z) ∈ D2,∣∣F nψ(1) − F nψ(2)

∣∣(t, λ, ξ) ≤Mn l
n

n!
∥ψ(1) − ψ(2)∥.

For any given l, the number n can be selected large enough thatMn l
n

n!
< 1. Then the mapping F n

is a contraction. According to a generalization of the contraction mapping principle, Eq. (89) has
a unique solution in C(D2). This solution can be found by the successive approximation method.
The proof of Theorem 3 is complete. □

Let K(m1) be the set of functions k1(t) ∈ C[0, 2l] satisfying the condition ∥k1∥C[0,2l] ⩽ m1 with
a constant m1 > 0 for some l > 0.

Theorem 4. Let k11(t), k21(t) ∈ K(m1) be two solutions of the inverse problem (24)–(28) with
data

(
g̃11, k

1
0, u

1
0

)
and

(
g̃21, k

2
0, u

2
0

)
, respectively. Then there exists a positive number C1 = C1(k1, l)

such that the following inequality holds:∥∥k11(t)− k21(t)
∥∥
C[0,2l]

⩽ C1

[∥∥g̃11 − g̃21
∥∥
C3

1 [0,2l]
+
∥∥k10(t)− k20(t)

∥∥
C[0,2l]

]
.

The proof of Theorem 4 is similar to that of Theorem 2.
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