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1 Introduction and problem formulation
Fractional calculus is emerging as an unavoidable tool to model many phenomena in
Science and Engineering. Although, there are a number of phenomena in the physical
sciences that we associate with the idea of diffusion. Thus, populations of different kinds
diffuse; particles in a solvent and other substances diffuse. Besides, heat propagates
according to a process that is mathematically similar, and this is a major topic in
applied science [5]. The mathematical analysis of initial and boundary value problems
(linear or nonlinear) of fractional differential equations has been studied extensively by
many authors (see, [11] and references therein).

The problem of determination of temperature at interior points of a region when
the initial and boundary conditions alon with heat source term are specified are known
as direct heat conduction problems. In many physical problems, determination of
coefficients or right hand side (the source term, in case of the heat equation) in a
differential equation from some available information is required: these problems are
known as inverse problems. A number of articles address the solvability problem of
the inverse problems (see, [8], [3]). The inverse problem of determining coefficient was
already considered in the literature for parabolic equations, see for example [4], [17],
[7], [6], [9].

Here, we consider the so-called one-dimensional fractional diffusion equation(
CDαt u

)
(x, t)− uxx(x, t) + q(t)u(x, t) = f(x, t), (x, t) ∈ Ω, (1.1)

with initial
u(x, 0) = ϕ(x), x ∈ (0, l), (1.2)

and the homogeneous Dirichlet boundary conditions

u(0, t) = u(l, t) = 0, t ∈ (0, T ], (1.3)
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where Ω := (0, l)×(0, T ], CDαt stands for Caputo fractional derivative of order 0 < α <
1 in the time variable (see formula (2.3) and f(x, t) is the known source term, ϕ(x) is
the initial temperature.

For (1.1)-(1.3) the direct problem is the determination of u(x, t) in Ω̄ such that
u(·, t) ∈ C2((0, l),R) and

(
CDαt u

)
(x, ·) ∈ C((0, T ],R), when the coefficient q(t), the

initial temperature ϕ(x) and the source term f(x, t) are given and continuous.
Inverse problem. Find the couple of functions {u(x, t), q(t)} satisfying equation

(1.1)-(1.3), under the over-determination conditions∫ l

0

u(x, t)dx = g(t), t ∈ [0, T ], (1.4)

where g(t) ∈ C([0, T ],R) is the additional data of the thermal energy. The solvability
of inverse problems with such type of integral over-determination has been considered
in the paper [19], [6], [9].

We carry out the next converting of the inverse problem (1.1)-(1.4). Denote for
this purpose the second derivative of u(x, t) with respect to x, by v(x, t), i.e. v(x, t) =
uxx(x, t). Differentiating (1.1)-(1.3) twice in x, we get(

CDαt v
)

(x, t)− vxx(x, t) + q(t)v(x, t) = fxx(x, t), (1.5)

v(x, 0) = ϕ′′(x), v(0, t) = v(l, t) = 0, (x, t) ∈ Ω. (1.6)

Also, we can easily get additional condition for v, by using (1.1):∫ l

0

v(x, t)dx =
(
CDαt g

)
(t) + q(t)g(t)− F (t), t ∈ [0, T ] (1.7)

where

F (t) :=

∫ l

0

f(x, t)dx.

When the matching conditions

ϕ(0) = ϕ(l) = 0, ϕ′′(0) = ϕ′′(l) = 0, g(0) =

∫ l

0

ϕ(x)dx, (1.8)

are fulfilled, it is easy to drive from (1.5)-(1.7) to the equations (1.1)-(1.4).
The outline of the paper is as follows. In Section 2, some necessary preliminaries are

given. In Section 3, the existence and uniqueness of the solution of the direct problem
(1.5)-(1.6) is established by using the Fourier method and Laplace transform. In Section
4, the existence and uniqueness of the solution of the inverse problem (1.5)-(1.7) is
established by using the Banach fixed point theorem. In Section 5, the continuous
dependence of the solution of the inverse problem upon the data of {f(x, t), ϕ(x), g(t)}
is shown.
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2 Preliminaries
In this section, we recall some necessary definitions and properties of fractional

calculus which can be found in [13], [10].
For an integrable function f : (0,∞) → R, the left sided Riemann-Liouville

fractional integral of order 0 < α < 1 is defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, Rα > 0, (2.1)

where Γ(α) is the Euler Gamma function and Rα denotes the real part of the complex
numbers α.

The left sided Riemann-Liouville fractional derivative of order α ∈ (0, 1) of the
continuous function f is defined by

Dα
0+f(t) =

d

dt
I1−α
0+ (t). (2.2)

The Caputo fractional derivative of order 0 < α < 1 of a function f : (0,∞) → R
is defined by

CDαt f(t) = Dα
0+

(
f(t)− f(+0)

)
, (2.3)

The Mittag-Leffler function plays an important role in the theory of fractional
differential equation; for any z ∈ C the Mittag-Leffler function with one parameter is
defined as

Eα(z) =
∞∑
k=0

zk

Γ(kα+ 1)
, (2.4)

where Rα > 0.
The Mittag-Leffler function with two parameters is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, (2.5)

where α, β, z ∈ C and Rα > 0, Rβ > 0.
Let us set eα(t, µ) := Eα(−µtα) where Eα(t) is the Mittag-Leffler function with

one parameter α as defined in (2.4) and µ is a positive real number.
The Mittag-Leffler functions eα(t;µ), eα,β(t, µ) := tβ−1Eα,β(−µtα) for 0 < α ≤ 1,

0 < α ≤ β < 1 respectively, and µ > 0 are completely monotone functions; i.e.,

(−1)n[eα(t;µ)]n ≥ 0, and (−1)n[eα,β(t;µ)]n ≥ 0, n ∈ N ∪ {0}.

Furthermore, we have

Eα,β(−µtα) ≤M, t ∈ [a, b], (2.6)

where [a, b] is a finite interval with a ≥ 0, and∫ t

0

(t− s)α−1Eα,β(µτα)dτ <∞,
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on [a, b]. Furthermore, for µ ∈ R+, t ∈ (0, T ](see [16])

µtα−1Eα,α(−µtα) ≤ 1

t

µtα

1 + µtα
<∞.

For any α > 0, β > 0 and γ ∈ C, there is

L
[
tβ−1Eα,β(λtα)

]
=

sα−β

sα − λ , (2.7)

with Rs > |λ|1/α, the Laplace transform of a function f(t) is defined by

L[f ](s) =

∫ ∞
0

e−stf(t)dt. (2.8)

The initial value problem of fractional differential equation for α ∈ (0, 1),{
CDαt u(t) = λu(t) + f(t), t > 0,

u(0) = u0,
(2.9)

where CDαt stands for a Caputo fractional derivative operator, u0 is a constant number.

Theorem 2.1. [12] Consider the problem (2.9), then there is a explicit solution which
is given in the integral form

u(t) = u0Eα,1(λtα) +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)f(s)ds. (2.10)

3 Investigation of direct problem (1.5)-(1.6)
Let Φ(x, t) := fxx(x, t)−q(t)v(x, t). We shall search for a solution v(x, t) as a Fourier

series in sin πn
l
x:

v(x, t) =

∞∑
n=1

vn(t) sinλnx, λn =
πn

l
, n = 1, 2, ... . (3.1)

In order to find the function v(x, t) it is necessary to find the function vn(t). Let us
represent the function Φ(x, t) as a series

Φ(x, t) =

∞∑
n=1

Φn(t) sinλnx,

where

Φn(t) =
2

l

∫ l

0

Φ(ξ, t) sinλnξdξ. (3.2)

Substituting the assumed from of the solution in the original equation (1.6), we
have:

∞∑
n=1

{
1

Γ(1− α)

∫ t

0

v′n(τ)dτ

(t− τ)α
+ λ2

nvn(t)− Φn(t)

}
sinλnx = 0, (3.3)
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or according to the definition of Caputo’s derivative (1.2), may rewrite
∞∑
n=1

{(
CDαt vn

)
(t) + λ2

nvn(t)− Φn(t)
}

sinλnx = 0, (3.4)

This equation will be satisfied if all the coefficients in the bracket equal zero, i.e.(
CDαt vn

)
(t) + λ2

nvn(t) = Φn(t). (3.5)

Making use of the initial condition for v(x, t)

v(x, 0) =

∞∑
n=1

vn(0) sinλnx = ϕ′′(x),

we derive the initial condition for vn(t):

vn(0) = −λ2
nϕn, ϕn =

2

l

∫ l

0

ϕ(ξ) sinλnξdξ. (3.6)

Equation (3.5) may be solved in the following way. Changing t to τ and τ to s
respectively in (3.5), multiplying both sides of the equation by 1

Γ(α)
(t − τ)α−1 and

integrating we have

1

Γ(α)Γ(1− α)

∫ t

0

dτ

(t− τ)1−α

∫ τ

0

v′n(s)

(τ − s)α ds+
λ2
n

Γ(α)

∫ t

0

vn(τ)

(t− τ)1−α dτ =

=
1

Γ(α)

∫ t

0

Φn(τ)

(t− τ)1−α dτ.

Interchanging the order of integration in the left-hand side by Dirichlet formula, we
arrive at

1

Γ(α)Γ(1− α)

∫ t

0

v′n(s)ds

∫ t

s

dτ

(t− τ)1−α(τ − s)α +
λ2
n

Γ(α)

∫ t

0

vn(τ)

(t− τ)1−α dτ =

=
1

Γ(α)

∫ t

0

Φn(τ)

(t− τ)1−α dτ.

The inner integral is easily evaluated after the change of variable τ = s+ (t− s)y and
application of the Eualer’s beta functions:∫ t

s

dτ

(t− τ)1−α(τ − s)α =

∫ 1

0

y−α(1− y)α−1dy =

= B(1− α, α) = Γ(1− α)Γ(α).

Therefore ∫ t

0

v′n(s)ds+
λ2
n

Γ(α)

∫ t

0

vn(τ)

(t− τ)1−α dτ =
1

Γ(α)

∫ t

0

Φn(τ)

(t− τ)1−α dτ.
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Hence after integration we have:

vn(t) + λ2
nϕn +

λ2
n

Γ(α)

∫ t

0

vn(τ)

(t− τ)α
dτ =

1

Γ(α)

∫ t

0

Φn(τ)

(t− τ)1−α dτ, (3.7)

According to Definitions (2.7) and (2.8), taking Laplace transform with respect to t in
both sides of Eq. (3.7), we obtain

L[vn](s) = (sα + λ2
n)−1L[Φn](s)− λ2

nϕns
α−1(sα + λ2

n)−1, (3.8)

The inverse Laplace transform using formula (2.7) yields

L−1[sα−1(sα + λ2
n)−1] = Eα,1(−λ2

nt
α), (3.9)

and
L−1[(sα + λ2

n)−1L[Φn](s)
]

= L−1[(sα + λ2
n)−1] ∗ Φn(t) =

= tα−1Eα,α(−λ2
nt
α) ∗ Φn(t) =

∫ t

0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)Φn(τ)dτ. (3.10)

Substituting the expressions (3.9), (3.10) and taking into inverse Laplace transform
to (3.8), we obtain the final explicit form of the functions

vn(t) = −λ2
nϕnEα,1(−λ2

nt
α) +

∫ t

0

(t− τ)α−1Eα,α(−λ2
n(t− τ)α)Φn(τ)dτ. (3.11)

Based on the solution (3.1) and Fourier coefficient (3.2), also relation (3.11), one
can represent the solution of the considered problem as the sum of the Fourier series

v(x, t) =

∞∑
n=1

vn(t) sinλnx, (3.12)

where the functions vn(t) are defined by relation (3.11).

Lemma 3.1. The estimates

|vn(t)| ≤ c1
(
n2|ϕn|+ n2|fn|

)
, (3.13)

∣∣∣(CDαt vn)(t)∣∣∣ ≤ c2(n4|ϕn|+ n2|fn|
)

(3.14)

hold for any t ∈ [0, T ], where fn(t) = 2
l

∫ l
0
f(ξ, t) sinλnξdξ and ci, i = 1, 2 are positive

constants here and throughout the following.

The validity of the estimates (3.13) and (3.14) follows directly from the
representation (3.11), applying the Gronuoll-Bellman inequality [1] and relation (2.3).

Formal termwise differentiation of the series (3.1) yields the series

(CDαt v)(x, t) =

∞∑
n=1

(CDαt vn)(t) sinλnx, (3.15)
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vxx(x, t) = −
∞∑
n=1

λ2
nvn(t) sinλnx. (3.16)

By lemma 3.1, the series (3.1), (3.15), and (3.16) are dominated by the series

c3

∞∑
n=1

(
n4|ϕn|+ n4|fn|

)
(3.17)

for any (x, t) ∈ Ω̄.

Lemma 3.2. If the conditions

ϕ(x) ∈ C5[0, l], ϕ(k)(0) = ϕ(k)(l) = 0,

f(x, t) ∈ C5,0
x,t (Ω̄), ∂kxf(0, t) = ∂kxf(l, t) = 0, k = 0, 2, 4,

are satisfied, then the representations

ϕn =
1

λ5
n

ϕ(5)
n , fn(t) =

1

λ5
n

f (5)
n (t) (3.18)

are valid, where

ϕ(5)
n :=

2

l

∫ l

0

ϕ(5)(x) sinλnxdx, f (5)
n (t) :=

2

l

∫ l

0

∂5
xf(x, t) sinλnxdx,

with the following estimates holding ture

∞∑
n=1

|ϕ(5)
n |2 ≤ c4‖ϕ(5)(x)‖2L2[0,l],

∞∑
n=1

|f (5)
n |2 ≤ c5‖∂5

xf(x, t)‖2L2[0,l]×C[0,T ]. (3.19)

Proof. Suppose ϕ(x) ∈ C5[0, l] be such that ϕ(0) = ϕ(l) = ϕ′′(0) = ϕ′′(l) =
ϕ(4)(0) = ϕ(4)(l) = 0. As ϕn is the coefficient of the sine Fourier expansion of the
function ϕ(x) with respect to basis

sin
πn

l
x, n = 1, 2, ..., (3.20)

from (3.6) expression for ϕn, which integrated by parts five times gives

ϕn =
2

λ5
nl

∫ l

0

ϕ(5)(x) sinλnxdx =
1

λ5
n

ϕ(5)
n ,

where ϕ(5)
n is the coefficient of the sine Fourier expansion of the function ϕ(5)(x) with

respect to the basis (3.20).
Alike, we obtain second part of (3.18) for fn(t). Inequalities (3.19) are the Bessel

inequalities for the coefficients of the Fourier expansions of the functions ϕ(5)(x) and
∂5
xf(x, t) in the sine system 2

l
sinλnx on the interval [0, l].
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If the functions ϕ(x) and f(x, t) satisfy the assumptions of lemma 3.2, then, by
virtue of the representations (3.18) and (3.19), the series (3.17) can be estimated by
the convergent numerical series

c6

∞∑
n=1

1

n

(
|ϕ(5)
n |+ ‖f (5)

n ‖C[0,T ]

)
=: µ0 <∞. (3.21)

Then the series (3.12), (3.15) and (3.16) converge uniformly on Ω̄. Consequently,
the sum of the series (3.12) satisfies relations (1.6) and (1.7).

Note that the obtained estimate (3.21) yields the following estimate of the solution
to (1.6) and (1.7)

‖v(x, t)‖L2[0,l]×C[0,T ] ≤ c0µ0e
2q0MT ,

where c0 := max{M,Tα}, q0 := ‖q‖C[0,T ].
So, the existence of a unique solution to (3.12) has been proved.
Thus, the theorem is proved.

Theorem 3.3. If the functions ϕ(x) and f(x, t) satisfy the assumptions of Lemma
3.2, then there exists the unique solution to problem (1.5) and (1.6).

4 Existence and uniqueness of the local solution
to the inverse problem (1.5)-(1.7)

For the proof of the main result, i.e., Theorem 3.3 we will use properties of the
direct problem and application of the Banach fixed point theorem. This method is
widely used by many authors, for example [14], [18], [2], [5].

Let us consider the inverse problem (1.6)-(1.8). First, let rewrite the series (3.12)
by integral equation

v(x, t) = v0(x, t)−
∫ t

0

∫ l

0

G(x, ξ, t− s)q(s)v(ξ, s)dξds, (4.1)

where

v0(x, t) = −
∞∑
n=1

λ2
nϕneα(t, λ2

n) sin(λnx)−
∫ t

0

K(t, τ)dτ sinλnx, (4.2)

and

K(t, τ) =

∞∑
n=1

λ2
nfn(t− τ)eα,α(τ, λ2

n), (4.3)

G(x, ξ, t) =
2

l

∞∑
n=1

eα,α(t, λ2
n) sin(λnξ) sin(λnx). (4.4)

Let us integrate Eq. (4.1) over the closed interval [0, l] and taking into account
(1.7), we get

q(t) = q0(t)− 1

g(t)

∫ t

0

∫ l

0

∫ l

0

G(x, ξ, t− s)q(s)v(ξ, s)dξdxds, (4.5)
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where

q0(t) :=
1

g(t)

[
F (t)−

(
CDαt g

)
(t) +

∫ l

0

v0(ξ, t)dξ
]
. (4.6)

We have the following theorem.

Theorem 4.1. Suppose the following conditions hold:
(i) ϕ ∈ C5[0, l], ϕ(k)(0) = ϕ(k)(l) = 0, k = 0, 2, 4;
(ii) f ∈ C5,0

x,t (Ω̄), ∂kxf(0, t) = ∂kxf(l, t) = 0, k = 0, 2, 4;
(iii) g(t) ∈ AC[0, T ], |g(t)| ≥ g0 > 0 and g(t) satisfies the matching condition g(0) =∫ l

0
ϕ(x)dx.
Then the inverse problem (1.1)-(1.4) has a unique solution.

Proof. We rewrite the system formed, respectively, by Eq. (4.1) and (4.5), in the
form of the operator equation

ψ = Aψ, (4.7)

where ψ = (ψ1, ψ2) := (v(x, t), q(t)) and

(Aψ)1(x, t) = v0(x, t)−
∫ t

0

∫ l

0

G(x, ξ, t− s)ψ2(s)ψ1(ξ, s)dξds,

(Aψ)2(t) = q0(t)− 1

g(t)

∫ t

0

∫ l

0

∫ l

0

G(x, ξ, t− s)ψ2(s)ψ1(ξ, s)dξdxds. (4.8)

Let ψ0 = (ψ10, ψ20) be a vector with components

ψ10 = v0(x, t), ψ20 = q0(t).

Denote by C(Ω̄) the space of continuous vector functions, with the norm

‖ψ‖C(Ω̄) = max
k=1,2

‖ψk‖C(Ω̄).

If g(t) 6= 0, ∀t ∈ [0, T ] and g(t), F (t) ∈ C[0, T ], then all vector functions defined
by (4.8) are evidently elements of C(Ω̄). We introduce in this Banach space the closed
ball

BT := {ψ ∈ C(Ω̄) : ‖ψ − ψ0‖C(Ω̄) ≤ ‖ψ0‖C(Ω̄)}, (4.9)

of radius ‖ψ0‖C(Ω̄) > 0 centered at ψ0 ∈ C(Ω̄). Evidently,

‖ψ0‖C(Ω̄) ≤ c7 := max
(
‖v0‖C(Ω̄), ‖q0‖C[0,T ]

)
, (4.10)

where q0(t) and v0(x, t) are defined by (4.2) and (4.5), respectively.
Hereafter, we assume that q0(t) and v0(x, t) are given fixed functions. Then their

norms ‖v0‖C(Ω̄), ‖q0‖C[0,T ] depend on T and α. Taking it into account we have used in
(4.10) the notation c7 for the maximum of these two norms. The similar notations for
some values we shall use and later on in order indicate on a dependence of these values
on T and α.
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Now we are going to prove that the operator A, defined by (4.7) and (4.8) is a
contraction on the Banach space BT , if the final time T > 0 is small enough. Recall
that an operator is named contracting one on BT , if the following two conditions hold:

(c1) Aψ ∈ BT , for all ψ ∈ BT ;
(c2) for all ψ1, ψ2 ∈ BT , the condition

‖Aψ1 −Aψ2‖C(Ω̄) ≤ ρ‖ψ
1 − ψ2‖C(Ω̄)

holds with some ρ ∈ (0, 1).
We verify the first condition (c1). Let ψ ∈ BT. Then

‖ψ‖C(Ω̄) ≤ 2c7,

by (4.10). Using this in (4.8) we estimate the norms |(Aψ)k −ψk0|, k = 1, 2 as follows:

|(Aψ)1 − ψ10| ≤
∫ t

0

∣∣∣ ∫ l

0

G(x, ξ, t− s)ψ2(s)ψ1(ξ, s)dξ
∣∣∣ds ≤

≤ 2c1MTα
∞∑
n=1

n2[|ϕn|+ ‖fn(t)‖C[0,T ]

]
‖ψ0‖ =: c

(1)
7 ‖ψ0‖,

|(Aψ)2−ψ20| ≤
∫ t

0

∣∣∣ 1

g(t)

∫ l

0

∫ l

0

G(x, ξ, t−s)ψ2(s)ψ1(ξ, s)dξdx
∣∣∣ds ≤

≤ 2c1
g0
MTα

∞∑
n=1

n2

2n+ 1

[
|ϕn|+ ‖fn(t)‖C[0,T ]

]
‖ψ0‖ =: c

(2)
7 ‖ψ0‖.

Therefore Aψ ∈ BT , if the following condition holds:

max
k=1,2

c
(k)
7 (T ) ≤ 1. (4.11)

We verify the second condition (c2). Let ψk := (ψk1 , ψ
k
2 ) and ψk ∈ BT , k = 1, 2.

Then one has

|(Aψ1 −Aψ2)1| ≤
∫ t

0

∣∣∣ ∫ l

0

G(x, ξ, t− s)
(
ψ1

2(s)ψ1
1(ξ, s)− ψ2

2(s)ψ2
1(ξ, s)

)
dξ
∣∣∣ds ≤

≤
∫ t

0

∣∣∣∣∣
∫ l

0

G(x, ξ, t− s)
[
ψ1

2(s)
(
ψ1

1(ξ, s)− ψ2
1(ξ, s)

)
+

+ψ2
1(ξ, s)

(
ψ1

2(s)− ψ2
2(s)

)]
dξ

∣∣∣∣∣ds ≤ 2c1MTα
∞∑
n=1

n2(|ϕn|+ ‖fn‖C[0,T ]

)
×

×
(

1 +
T

g0(α+ 1)(2n+ 1)

)
‖ψ1 − ψ2‖ =: c

(3)
7 ‖ψ

1 − ψ2‖.

Similarly,

|(Aψ1 −Aψ2)2| ≤
∫ t

0

∣∣∣ 1

g(t)

∫ l

0

∫ l

0

G(x, ξ, t− s)
(
ψ1

2(s)ψ1
1(ξ, s)−
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−ψ2
2(s)ψ2

1(ξ, s)
)
dξdx

∣∣∣ds ≤ 2c1
g0
MTα

∞∑
n=1

n2

2n+ 1

(
|ϕn|+ ‖fn‖C[0,T ]

)
×

×
(

1 +
T

g0(α+ 1)(2n+ 1)

)
‖ψ1 − ψ2‖ =: c

(4)
7 ‖ψ

1 − ψ2‖.

Hence, ‖Aψ1 −Aψ2‖ ≤ ρ‖ψ1 − ψ2‖ with ρ < 1, if T satisfies the conditions

max
k=3,4

c
(k)
7 ≤ ρ < 1. (4.12)

Thus, if the final time T > 0 is chosen so (small) that both conditions (4.11) and
(4.12) hold, then the operator A is contracting on BT . Then, according to Banach
contraction mapping principle, there exists a unique solution of the operator Eq. (4.7)
in BT . This completes the proof of the theorem.

5 Continuous dependence on the data
Let Ψ be the set of triples {f, ϕ, g} where the functions f, ϕ, g satisfy the assumptions
of Theorem 4.1 and

‖f‖C5([0,l])×C([0,T ]) ≤M1, ‖ϕ‖C5([0,l]) ≤M2, ‖g‖AC([0,T ]) ≤M3.

For ψ ∈ Ψ, we define the norm

‖Ψ‖ = ‖f‖C5([0,l])×C([0,T ]) + ‖ϕ‖C([0,l]) + ‖g‖AC([0,T ]).

Before presenting the result about the stability of the solution of the inverse problem
let us mention that the series

∞∑
n=1

l5

π5n5
|f (5)
n | ≤M4,

is uniformly convergent, where f (5)
n are the coefficients of the sine Fourier expansion of

the function f (5)(·, t). The functions {f (5)
n }∞n=1 are bounded by virtue of the Bessel’s

inequality.
Setting T such that

T < min
{ 1

2c7
α
√

1 + α
,

g0

l2c7
α
√

1 + α
,
}

(5.1)

where c7 is from (4.10). Then we have the following theorem.

Theorem 5.1. The solution (u(x, t), q(t)) of the inverse problem (1.1)-(1.4), under
the assumptions of Theorem 4.1, depends continuously upon the data of Ψ =
{f(x, t), ϕ(x), g(t)} for satisfying (5.1).
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Proof. Let (u(x, t), q(t)), (ū(x, t), q̄(t)) be the solutions of the inverse problem
(1.1)-(1.4), corresponding to the data Ψ and Ψ̄ respectively. From (4.3) we have

‖K‖C([0,T ])×C([0,T ]) ≤M
∞∑
n=1

l5

π5n5
|f (5)
n |

or
‖K‖C([0,T ])×C([0,T ]) ≤MM4.

First, we estimate each term of u(x, t) − ū(x, t) in C([0, l] × [0, T ]). We will use this
from |qu− q̄u| ≤ |q||u− ū|+ |ū||q − q̄|.

From, (4.2) we have
v0(x, t)− v̄0(x, t) =

= −
∞∑
n=1

λ2
nEα,1(−λ2

nt
α) sin(λnx)[ϕn − ϕ̄n]−

∫ t

0

[K(t, τ)− K̄(t, τ)]dτ sin(λnx).

Notice that we can consider ϕn− ϕ̄n as the Fourier coefficient of the function ϕ− ϕ̄;
i.e.,

ϕn − ϕ̄n =
2

l

∫ l

0

(ϕ− ϕ̄)(x) sin(λnx)dx.

The following estimates for the Mittag-Leffler type function

|λ2
nEα(−λ2

nt
α)| ≤ λ2

n

1 + λ2
ntα
≤M,

|tα−1Eα,α(−λ2
nt
α)| ≤ 1

t

tαλ2
n

1 + λ2
ntα
≤M5,

leads to the estimate

‖v0 − v̄0‖C([0,l])×C([0,T ]) ≤M‖ϕ− ϕ̄‖C5([0,l]) +M5‖f − f̄‖C5([0,l])×C([0,T ]), (5.2)

where M5 := 1
α√1+α

.
From (4.1) and (5.2), we obtain

‖v − v̄‖C([0,l])×C([0,T ]) ≤MM6‖ϕ− ϕ̄‖C5([0,l])+

+M5M6‖f − f̄‖C5([0,l])×C([0,T ]) + 2c7M5M6‖q − q̄‖C([0,T ]), (5.3)

where M6 :=
(
1− 2c7M5T

)−1.
Now, we estimate each term of q(t)− q̄(t) in C([0, T ]). From (4.6), we have

q0(t)− q̄0(t) =
1

g(t)

[ ∫ l

0

f(x, t)dx−
(
CDαt g

)
(t) +

∫ l

0

v0(ξ, t)dξ
]
−

− 1

ḡ(t)

[ ∫ l

0

f̄(x, t)dx−
(
CDαt ḡ

)
(t) +

∫ l

0

v̄0(ξ, t)dξ
]

=

= (g(t)ḡ(t))−1
[
ḡ(t)

∫ l

0

(
f(x, t)− f̄(x, t)

)
dx−

(
g(t)− ḡ(t)

) ∫ l

0

f̄(x, t)dx+
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+ḡ(t)
((

CDαt g
)

(t)−
(
CDαt ḡ

)
(t)
)
−
(
CDαt ḡ

)
(t)
(
g(t)− ḡ(t)

)
+

+ḡ(t)

∫ l

0

(
v0(x, t)− v̄0(x, t)

)
dx−

(
g(t)− ḡ(t)

) ∫ l

0

v̄0(x, t)dx
]
.

We use (2.3) and (5.2), the estimate of q0(t)− q̄0(t) in C([0, T ])

‖q0 − q̄0‖C[0,T ] ≤M8‖f − f̄‖C5([0,l])×C([0,T ])+

+M9‖ϕ− ϕ̄‖C([0,l]) +M10‖g − ḡ‖AC[0,T ], (5.4)

where M8 := g0l+M5
g0

, M9 := lM
g0

, M10 := g0+M1+M7+lc7
g20

, M7 is a bound of(
CDαt g

)
(t) = Dα

0+

(
g(t)− g(+0)

)
. In addition, we have∣∣∣∣∣− 1

g(t)

∫ t

0

∫ l

0

∫ l

0

G(x, ξ, t− s)q(s)v(ξ, s)dξdxds+

+
1

ḡ(t)

∫ t

0

∫ l

0

∫ l

0

G(x, ξ, t− s)q̄(s)v̄(ξ, s)dξdxds

∣∣∣∣∣ ≤
≤M11‖g − ḡ‖AC[0,T ] +M12‖q − q̄‖C([0,T ]) +M12‖v − v̄‖C([0,l])×C([0,T ]), (5.5)

where M11 :=
l2c27
g20
TM5, M12 := l2c7

g0
TM5. From (5.4) and (5.5), we get estimate of

q − q̄, i.e.,

‖q − q̄‖C([0,T ]) ≤M8M13‖f − f̄‖C5([0,l])×C([0,T ]) +M9M13‖ϕ− ϕ̄‖C([0,l])+

+(M10 +M11)M13‖g − ḡ‖AC[0,T ] +M12M13‖v − v̄‖C(Ω̄), (5.6)

where M13 := (1−M12)−1. From (5.3) and (5.6), we can obtain stability estimate for
the inverse problem (1.1)-(1.4) for some positive constant C:

‖q − q̄‖C([0,l]) ≤ C‖Ψ− Ψ̄‖.

The theorem 5.1 is proved.
Conclusion. The purpose of this paper is to determine the pair of functions

{u(x, t), q(t)} for the fractional diffusion equation (1.1)-(1.4). The inverse problem
regarding the simultaneous identification of the time-dependent coefficient in a
one-dimensional equation with nonlocal boundary and integral overdetermination
conditions has been considered.
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