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Abstract—We pose the direct and inverse problem of finding the electromagnetic field and the di-
agonal memory matrix for the reduced canonical system of integro-differential Maxwell’s equations.
The problems are replaced by a closed system of Volterra-type integral equations of the second kind
with respect to the Fourier transform in the variables x1 and x2 of t he solution to the direct problem
and the unknowns of the inverse problem. To this system, we then apply the method of contraction
mapping in the space of continuous functions with a weighted norm. Thus, we prove the global
existence and uniqueness theorems for solutions to the posed problems.
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INTRODUCTION

The propagation of various waves is described by hyperbolic systems of first-order equations.

In media with aftereffect, such a phenomenon in generally depends on the previous state of the process.

An example is given by the phenomenon of the propagation of electromagnetic waves in media with

dispersion. It turns out that, in these media, a violation occurs of the unique dependence of D and B

(the induction of the electric and magnetic fields respectively) on E and H (the intensities of the

corresponding fields) at the same time. The more general kind of linear dependence between D(x, t),

B(x, t) and the corresponding values of the functions E(x, t), H(x, t) at all previous time can be written

in the form of the integral relations (see [1, pp. 357–376]):

D(x, t) = ε̂E +

t∫

0

ϕ(t− τ)E(x, τ) dτ, B(x, t) = µ̂H +

t∫

0

ψ(t− τ)H(x, τ) dτ. (1)

Here

E = (E1, E2, E3), H = (H1, H2,H3), D = (D1, D2, D3),

B = (B1, B2, B3), x = (x1, x2, x3),
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2 DURDIEV, TURDIEV

ϕ(t) = diag(ϕ1, ϕ2, ϕ3) and ψ(t) = diag(ψ1, ψ2, ψ3) are diagonal matrices that represent the memory.

In an anisotropic medium with dispersion, the system of Maxwell’s equations has the form

∇×H =
∂

∂t
D(x, t) + σ̂E + J, ∇× E = − ∂

∂t
B(x, t),

div B = 0, div D = ρ.

(2)

The matrices ε̂ and µ̂ are assumed positive definite, symmetric, and depending only on x3, and σ̂ is

a constant matrix. In the first equation of (2), J = J(x, t) is a vector-function characterizing the external

current density. The third equation in (2) is a consequence of the second equation and the condition

div (µ̂H)|t=0 = 0. (3)

Indeed, applying the operation div to the second equation in (2), taking into account the equality

div (∇× E) = 0, we have

∂

∂t
(div B) = 0.

Hence, integrating the last equality under condition (3), we obtain the third equality in (2). The fourth

equation in (2) determines the electric charge density after the distribution of the induction of the electric

field has been found.

Supposing the fulfillment of condition (3), we will consider system (1), (2) as an independent object

of study. Write it as a symmetric hyperbolic system:

A0
∂

∂t
U +

3∑

j=1

Aj
∂

∂xj
U + A4U =

t∫

0

K(t− τ)U(x, τ) dτ + Ĵ(x, t), (4)

in which U = (U1, . . . , U6)∗ is the column vector with entries Uk = Ek, Uk+3 = Hk, k = 1, 3; Aj ,

j = 0, 4, are symmetric matrices, where A0 is positive definite; K(t) = diag(ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3),

J = (χ1, . . . , χ6)∗ is the column-vector with entries χk = χk(x, t), χk+3 = 0, k = 1, 3, and χk are some

given sufficiently smooth functions. The matrices Aj have the cell structure:

A0 =




ε̂ 0

0 µ̂




6×6

, Aj =




0 pj

p∗j 0




6×6

, j = 1, 2, 3,

p1 =




0 0 0

0 0 1

0 −1 0




, p2 =




0 0 −1

0 0 0

1 0 0




, p3 =




0 1 0

−1 0 0

0 0 0




,

A4 =




ϕ(0) + σ̂ 0

0 ψ(0)




6×6

, K(t) =



−ϕ

′
(t) 0

0 −ψ
′
(t)




6×6

,

U = (E,H)∗, Ĵ = (−J, 01×3)∗,

(5)

where ∗ is the transposition symbol; 01×3 stands for the row vector (0; 0; 0).
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Multiplying equation (4) from the left by the inverse matrix A−1
0 , we obtain

I6
∂

∂t
U +

3∑

j=1

Bj
∂

∂xj
U + B4U =

t∫

0

K0(x3, t− τ)U(x, τ)dτ + J0. (6)

Here and in what follows, I6 stands for the identity matrix of order 6 and Bj = A−1
0 Aj , j = 1, 4.

Introduce the notations

ε = ε̂−1 = (εij), µ = µ̂−1 = (µij), σ = εσ̂ = (σij). (7)

In accordance with (4), we have

Bj =




0 εpj

µp∗j 0


 , j = 1, 3, B4 =




εϕ(0) + σ 0

0 µψ(0)


 ,

J0 = A−1
0 Ĵ , K0(x3, t) = A−1

0 K(x3, t) =



−εϕ

′
(t) 0

0 −µψ
′
(t)


 .

Reduce system (6) to the canonical form. As is known from linear algebra (see [2, p. 149–153]), in the

case under consideration, there exists a nondegenerate matrix T such that T−1B3T = Λ, where Λ is the

diagonal matrix whose diagonal contains the eigenvalues of B3.

Some matrix T with the above properties was constructed in [3, pp. 5-20]. It looks as

T (x3) =




q1 0 q1 0 0 0

0 q2 0 q2 0 0

q3 q4 q3 q4 1 0

0 1/q2 0 −1/q2 0 0

−1/q1 0 1/q1 0 0 0

0 0 0 0 0 1




, (8)

where

q1 =
(

ε11

µ22

)1/4

, q2 =
(

ε22

µ11

)1/4

, q3 =
ε31

ε
3/4
11 µ

1/4
22

, q4 =
ε32

ε
3/4
22 µ

1/4
11

. (9)

Note that T is defined not uniquely.
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The inverse matrix to T is defined by the formula

T−1(x3) =




1/(2q1) 0 0 0 −q1/2 0

0 1/(2q2) 0 q2/2 0 0

1/(2q1) 0 0 0 q1/2 0

0 1/(2q2) 0 −q2/2 0 0

−q3/q1 −q4/q2 1 0 0 0

0 0 0 0 0 1




. (10)

In (6), introduce the new function by the equality

U = TU (11)

and multiply (11) by T−1 from the left. Then for U we obtain the equation

(
I6

∂

∂t
+ Λ

∂

∂x3
+

2∑

j=1

Cj
∂

∂xj
+ C

)
U =

t∫

0

K(x3, t− τ)U(x, τ) dτ + F, (12)

where

C = C0 + C4, C0 = T−1B3
∂

∂x3
T, Ci = T−1BiT, i = 1, 4,

C3 = Λ =
√

pΛ0, p = ε11µ22 = ε22µ11, Λ0 = diag(−1,−1, 1, 1, 0, 0),

K(x3, t) = T−1K0(x3, t)T = (aij)6i,j=1(x3, t), F = T−1J0.

(13)

Using the consequences stemming from (13) for the entries of the matrices ε and µ

ε11 = q2
1

√
p, ε12 = 0, ε13 = q1q3

√
p, ε22 = q2

2

√
p, ε23 = q2q4

√
p,

µ11 = q−2
2

√
p, µ22 = q−2

1

√
p,

(14)

and introducing the additional notations by the equalities

ε33 =
(

q2
3 + q2

4 +
1
2
q5

)√
p, µ33 =

1
2

q6
√

p

q1q2
, (15)

we can write the matrices Ci involved in (12) in the form

C1 =
√

p

2q1




2q3 q4 0 q4 1 0

q4 0 −q4 0 0 q1q2

0 −q4 −2q3 −q4 −1 0

q4 0 −q4 0 0 q1q2

q5 0 −q5 0 0 0

0 q6 0 q6 0 0




, C2 =
√

p

2q2




0 q3 0 −q3 0 −q1q2

q3 2q4 q3 0 1 0

0 q3 0 −q3 0 −q1q2

−q3 0 −q3 −2q4 −1 0

0 q5 0 −q5 0 0

−q6 0 −q6 0 0 0




,
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C0 =
√

p

2q2




0 0 − ∂

∂x3
ln q1 0 0 0

0 0 0 − ∂

∂x3
ln q2 0 0

∂

∂x3
ln q1 0 0 0 0 0

0
∂

∂x3
ln q2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, C4 =
(
κij + Mij

)6

i,j=1

.

Here we use the following notations:

κ11 = κ33 =
√

p

2

(
q2
1ϕ1(0) + q2

3ϕ3(0) +
ψ2(0)

q

2

1

)
,

κ13 = κ31 =
√

p

2

(
q2
1ϕ1(0) + q2

3ϕ3(0)− ψ2(0)
q2
1

)
,

κ12 = κ14 = κ21 = κ23 = κ32 = κ34 = κ41 = κ43 =
√

p

2
q3q4ϕ3(0),

κ15 = κ35 =
√

p

2
q3ϕ3(0), κ22 = κ44 =

√
p

2

(
q2
2ϕ2(0) + q2

4ϕ3(0) +
ψ1(0)

q

2

2

)
,

κ24 = κ42 =
√

p

2

(
q2
2ϕ2(0) + q2

4ϕ3(0)− ψ1(0)
q2
2

)
, κ25 = κ45 =

√
p

2
q4ϕ3(0),

κ51 = κ53 =
√

p

2
q3q5ϕ3(0), κ52 = κ54 =

√
p

2
q4q5ϕ3(0),

κ55 =
√

p

2
q5ϕ3(0), κ6j = κj6 = 0, j = 1, 5, κ66 =

√
p
q6ψ3(0)

q1q2
;

M11 = M13 = M31 = M33 =
1

2q1
(σ11q1 + σ13q3),

M12 = M14 = M32 = M34 =
1

2q1
(σ12q2 + σ13q3), M15 =

1
2q1

σ13,

M21 = M23 = M41 = M43 =
1

2q2
(σ21q1 + σ23q3), M25 =

1
2q2

σ23,

M22 = M24 = M42 = M44 =
1

2q2
(σ22q2 + σ23q4),

M51 = M53 =
(
− σ11

q3

q1
− σ21

q4

q2
+ σ31

)
q1 +

(
− σ13

q3

q1
− σ23

q4

q2
+ σ33

)
q3,

M52 = M54 =
(
− σ12

q3

q1
− σ22

q4

q2
+ σ32

)
q2 +

(
− σ13

q3

q1
− σ23

q4

q2
+ σ33

)
q4,

M55 = −σ13
q3

q1
− σ23

q4

q2
+ σ33, M6j = Mj6 = 0, j = 1, 5, M66 = 0.
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The entries of K(x3, t) have the form

ā11(x3, t) = ā33(x3, t) =

√
p(x3)
2

(
q2
1(x3)ϕ

′
1(t) + q2

3(x3)ϕ
′
3(t) +

ψ
′
2(t)

q2
1(x3)

)
,

ā13(x3, t) = ā31(x3, t) =

√
p(x3)
2

(
q2
1(x3)ϕ

′
1(t) + q2

3(x3)ϕ
′
3(t)−

ψ
′
2(t)

q2
1(x3)

)
,

ā12(x3, t) = ā14(x3, t) = ā21(x3, t) = ā23(x3, t)

= ā32(x3, t) = ā34(x3, t) = ā41(x3, t) = ā43(x3, t) =

√
p(x3)
2

q3(x3)q4(x3)ϕ
′
3(t),

ā15 = ā35 =

√
p(x3)
2

q3(x3)ϕ
′
3(t), ā25(x3, t) = ā45(x3, t) =

√
p(x3)
2

q4(x3)ϕ
′
3(t),

ā22(x3, t) = ā44(x3, t) =

√
p(x3)
2

(
q2
2(x3)ϕ

′
2(t) + q2

4(x3)ϕ
′
3(t) +

ψ
′
1(t)

q2
2(x3)

)
,

ā24(x3, t) = ā42(x3, t) =

√
p(x3)
2

(
q2
2(x3)ϕ

′
2(t) + q2

4(x3)ϕ
′
3(t)−

ψ
′
1(t)

q2
2(x3)

)
,

ā51(x3, t) = ā53(x3, t) =

√
p(x3)
2

q3(x3)q5(x3)ϕ
′
3(t),

ā52(x3, t) = ā54(x3, t) =

√
p(x3)
2

q4(x3)q5(x3)ϕ
′
3(t), ā55(x3, t) =

√
p(x3)
2

q5(x3)ϕ
′
3(t),

āk6(x3, t) = ā6k(x3, t) = 0, k = 1, 5, ā66(x3, t) =
√

p(x3)
q6(x3)ψ

′
3(t)

q1(x3)q2(x3)
.

Introduce the new variable z as

z = ν(x3) =

x3∫

0

dξ√
p(ξ)

. (16)

Denote by ν−1(z) the function inverse to ν(x3) and let

V (x1, x2, z, t) := U(x1, x2, ν
−1(z), t), Ĉj(z) := Cj(ν−1(z)), Ĉ(z) = C(ν−1(z)),

K̂(z, t) := K(ν−1(z), t), F̂ (x1, x2, z) := F (x1, x2, ν
−1(z)),

aij(z, t) := āij(ν−1(z), t), i, j = 1, 6.

Then (12) takes the form

(
I6

∂

∂t
+ Λ0

∂

∂z
+

2∑

j=1

C̃j
∂

∂xj
+ C̃

)
V =

t∫

0

K̂(z, t− τ)V (x1, x2, z, τ) dτ + F̂ (x1, x2, z, t). (17)

1. STATEMENT OF THE PROBLEM

In the direct problem, given matrices K̂, Ĉ1, Ĉ2, and Ĉ and vector-function F̂ , it is required,

in the domain

D = {(x1, x2, z, t) | 0 < z < L, t > 0, (x1, x2) ∈ R2},
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find a vector-function V (z, t) satisfying equation (17) for the following initial and boundary conditions:

Vi(x1, x2, z, t)|t=0 = φi(x1, x2, z), i = 1, 6, (18)

Vi(x1, x2, z, t)|z=0 = gi(x1, x2, t), i = 1, 2,

Vi(x1, x2, z, t)|z=L = gi(x1, x2, t), i = 3, 4,
(19)

where

φ(x1, x2, z) = (φ1, φ2, . . . , φ6)(x1, x2, z), g(x1, x2, t) = (g1, g2, . . . , g6)(x1, x2, t)

are some given functions.

Remark 1. For given initial data, equality (3) takes the form

div




µ̂(z)




1
q2

(
φ2(x1, x2, z)− φ4(x1, x2, z)

)

1
q2

(
φ3(x1, x2, z)− φ1(x1, x2, z)

)

φ6(x1, x2, z)







= 0. (20)

Pose the inverse problem as follows:

Find the functions ϕi(t) and ψi(t) for t > 0 and i = 1, 2, 3 that are involved in the matrix K̃ if

the extra conditions

Vi(x1, x2, z, t)|z=L = hi(x1, x2, t), i = 1, 2,

Vi(x1, x2, z, t)|z=0 = hi(x1, x2, t), i = 3, 6
(21)

are given for a solution to problem (17)–(19). Moreover, we assume that ϕi(0) and ψi(0) are given

as well.

Remark 2. As follows from (8), (11), and (16), the vector-function V is expressed through (E,H)∗

by the formula

V (x1, x2, z, t) =




1
2q1

E1 − q1

2
H2

1
2q2

E2 +
q2

2
H1

1
2q1

E1 +
q1

2
H2

1
2q2

E2 − q2

2
H1

−q3

q1
E1 − q4

q2
E2 + E3

H6




(x1, x2, ν
−1(z), t).
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In terms of the vector-function (E,H)∗, the boundary and extra conditions (19) and (21) take

the form

(Ei, Hi)∗(x1, x2, ν
−1(z), t)|z=0 = T (0)× (g1, g2, h3, h4, h5, h6)∗(x1, x2, t);

(Ei, Hi)∗(x1, x2, ν
−1(z), t)|z=L = T (ν−1(L))× (h1, h2, g3, g4, g5, g6)∗(x1, x2, t), i = 1, 3.

By now, the problems of finding the kernels from one second-order integro-differential equation

have been widely studied (see [4–23]. The numerical solution of direct and inverse problems for such

equations were under study in [24–38]. As a rule, the second-order equations are derived from systems

of first-order partial differential equations under some additional assumptions.

The inverse problem of finding the kernels of the integral terms from a system of first-order integro-

differential equations of general form with two independent variables was studied in [39]. Some theorem

of local existence and global uniqueness was obtained.

It seems quite natural to carry out the study of inverse problems of finding the kernels of the integral

terms of a system of integro-differential equations directly in terms of the system itself. The present

article is a natural continuation of this circle of problems and, to a certain extent, generalizes the results

of [39] to the case of the system of Maxwell’s equations with memory (1), (2).

Suppose that functions F̃ (x1, x2, z, t), φi(x1, x2, z), and gi(x1, x2, t) occurring on the right-hand

side of (17) and the data (18), (19) have some compact support with respect to x1, x2 for every fixed z

and t. The existence for (17) of a finite dependence domain and the property of having compact support

with respect to x1, x2 of the right-hand side of (17) and the data (18), (19) imply that solutions

to problem (17)–(19) have the compact support with respect to x1, x2.

We investigate the properties of solutions to this problem. More exactly, we will confine ourselves

to the study of the Fourier transform of a solution with respect to x1 and x2. Put

Ṽ (η1, η2, z, t) =
∫

R2

V (x1, x2, z, t)ei[η1x1+η2x2] dx1dx2,

F̃ (η1, η2, z, t) =
∫

R2

F̂ (x1, x2, z, t)ei[η1x1+η2x2] dx1dx2,

(22)

where η1 and η2 are the parameters of the transform.

In terms of the function Ṽ , we write problem (17)–(19) as follows:

∂Ṽi

∂t
+ γi

∂Ṽi

∂z
= −

6∑

j=1

bij(η1, η2, z)Ṽj(η1, η2, z, t)

+

t∫

0

6∑

j=1

aij(z, τ)Ṽj(η1, η2, z, t− τ) dτ + Fi(η1, η2, z, t), i = 1, 2, 3, 4, (23)

∂Ṽi

∂t
= −

6∑

j=1

bij(η1, η2, z)Ṽj(η1, η2, z, t) +

t∫

0

6∑

j=1

aij(z, τ)Ṽj(η1, η2, z, t− τ) dτ, i = 5, 6. (24)

Here γi takes real values

γi =




−1, i = 1, 2

1, i = 3, 4,
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THE PROBLEM OF FINDING THE KERNELS 9

and the coefficients bij are defined as follows:

b11 = κ11 + M11 − iη1
q3
√

p

q1
, b12 = κ12 + M12 − iη1

q4
√

p

2q1
− iη2

q3
√

p

2q2
,

b13 = κ13 + M13 −
√

p

2q2

q
′
1

q1
, b14 = κ14 + M14 − iη1

q4
√

p

2q1
+ iη2

q3
√

p

2q2
,

b15 = κ15 + M15 − iη1

√
p

2q1
, b16 = κ16 + M16 − iη2

2
q1
√

p,

b21 = κ21 + M21 − iη1
q4
√

p

2q1
− iη2

q3
√

p

2q2
, b22 = κ22 + M22 − iη2

q4
√

p

q2
,

b23 = κ23 + M23 + iη1
q4
√

p

2q1
− iη2

q3
√

p

2q2
, b24 = κ24 + M24 −

q
′
1
√

p

2q2
2

,

b25 = κ25 + M25 − iη1

√
p

2q2
, b26 = κ26 + M26 − iη1

2
q2
√

p,

b31 = κ31 + M31 −
√

p

2q2

q
′
1

q1
, b32 = κ32 + M32 + iη1

q4
√

p

2q1
− iη2

q3
√

p

2q2
,

b33 = κ33 + M33 + iη1
q3
√

p

q1
, b34 = κ34 + M34 + iη1

q4
√

p

2q1
+ iη2

q3
√

p

2q2
,

b35 = κ35 + M35 + iη1

√
p

2q1
, b36 = κ36 + M36 − iη1

2
q1
√

p,

b41 = κ41 + M41 − iη1
q4
√

p

2q1
+ iη2

q3
√

p

2q2
, b42 = κ42 + M42 −

q
′
1
√

p

2q2
2

,

b43 = κ43 + M43 + iη1
q4
√

p

2q1
+ iη2

q3
√

p

2q2
, b44 = κ44 + M44 + iη2

q4
√

p

q2
,

b45 = κ45 + M45 + iη2

√
p

2q2
, b46 = κ46 + M46 − iη1

2
q2
√

p,

b51 = κ51 + M51 − iη1
q5
√

p

2q1
, b52 = κ52 + M52 − iη2

q5
√

p

2q2
,

b53 = κ51 + M51 + iη1
q5
√

p

2q1
, b54 = κ52 + M52 + iη2

q5
√

p

2q2
, b55 = κ55 + M55,

b56 = 0, b61 = κ61 + M61 + iη2
q6
√

p

2q2
, b62 = κ62 + M62 − iη1

q6
√

p

2q1
,

b63 = κ63 + M63 + iη2
q6
√

p

2q2
, b64 = κ64 + M64 − iη1

q6
√

p

2q1
, b65 = 0, b66 = κ66.

Fix η1 and η2 and for convenience introduce the notation Ṽ (η1, η2, z, t) = Ṽ (z, t). We will adopt these

notations for the Fourier transforms of the functions occurring in the initial, boundary, and additional

conditions (18), (19), and (21):

Ṽi

∣∣
t=0

≡ φ̃i(z), i = 1, 2, . . . , 6, (25)

Ṽi|z=0 = g̃i(t), i = 1, 2, Ṽi|z=L = g̃i(t), i = 3, 4, (26)

Ṽi|z=L = h̃i(t), i = 1, 2, Ṽi|z=0 = h̃i(t), i = 3, 4, 5, 6. (27)
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Fig. 1. Characteristic lines

2. EXAMINATION OF THE DIRECT PROBLEM

Let Π = {(z, t) | 0 < z < L, t > 0} be the projection of the domain D to the plane of the variables z

and t. Consider an arbitrary point (z, t) ∈ Π on the plane of the variables ξ and τ and draw a characteristic

of the ith equation of system (23), (24) through (z, t) till the intersection with the boundary of Π
in the domain τ < t. The equation looks as

ξ = z + γi(τ − t). (28)

For γi = 1 (i.e., i = 3, 4), this point lies either on the interval [0, L] of the axis t = 0 or on the straight

line z = 0, and for γi = −1 (i.e., i = 1, 2), either on the interval [0, L] or on the straight line z = L (see

Fig. 1).

Integrating the ith component of equations (23), (24) over characteristic (28) from
(
zi
0, t

i
0

)
to (z, t),

we find

Ṽi(z, t) = Ṽi

(
zi
0, t

i
0

)
+

t∫

ti0

[
Fi(ξ, τ)−

6∑

j=1

bij(ξ)Ṽj(ξ, τ)
]∣∣∣∣

ξ=z+γi(τ−t)

dτ

+

t∫

ti0

τ∫

0

6∑

j=1

aij(ξ, α)Ṽj(ξ, τ − α) dα

∣∣∣∣
ξ=z+γi(τ−t)

dτ, i = 1, 2, 3, 4, (29)

Ṽi(z, t) = Ṽi(z, 0)−
t∫

0

6∑

j=1

bij(z)Ṽj(z, τ) dτ +

t∫

0

τ∫

0

6∑

j=1

aij(z, α)Ṽj(z, τ − α) dαdτ, i = 5, 6. (30)

Find ti0 in (29) and (30). It depends on the coordinates of (z, t). It is easy to observe that ti0(z, t) has
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the form

ti0(z, t) =





t +
L− z

γi
, t ≥ L− z

γi
,

0, 0 < t <
L− z

γi
,

i = 1, 2,

ti0(z, t) =





t− z

γi
, t ≥ z/γi,

0, 0 < t < z/γi,

i = 3, 4, ti0(z, t) = 0, i = 5, 6.

Then the condition that the pair (zi
0, t

i
0) enjoys (28) implies

zi
0(z, t) =





L, t ≥ L− z

γi
,

z − γit, 0 < t <
L− z

γi
,

i = 1, 2,

zi
0(z, t) =





0, t ≥ z/γi,

z − γit, 0 < t < z/γi,
i = 3, 4, zi

0(z, t) = z, i = 5, 6.

The free terms of the integral equations (28) are defined through the initial and boundary condi-

tions (25) and (26) as follows:

Ṽi

(
zi
0, t

i
0

)
=





g̃i

(
t +

L− z

γi

)
, t ≥ L− z

γi
,

φ̃i(z − γit), 0 ≤ t <
L− z

γi
,

i = 1, 2,

Ṽi(zi
0, t

i
0) =





g̃i(t− z/γi), t ≥ z/γi,

φ̃i(z − γit), 0 ≤ t < z/γi,
i = 3, 4.

It is required that Ṽi

(
zi
0, t

i
0

)
be continuous in Π. Note that, for these conditions to be fulfilled, the given

functions φ̃i and g̃i must satisfy the fitting conditions at the angular points of Π:

φ̃i(0) = g̃i(0), i = 1, 2; φ̃i(L) = g̃i(0), i = 3, 4. (31)

Here and below, the values of g̃i for t = 0 and φ̃i for z = 0 and z = L are understood as the limit values

at these points as the argument tends from the side of the point where these functions are defined.

Suppose that all given functions in (29) and (30) are continuous functions of their arguments in Π.

Then we have a closed system of Volterra-type integral equations with continuous kernels and free terms.

As usual, such a system has a unique solution in the bounded subdomain

ΠT = {(z, t) | 0 ≤ z ≤ L, 0 ≤ t ≤ T}
of Π, where T > 0 is some fixed number.

Introduce the vector-function

w(z, t) =
∂

∂t
Ṽ (z, t).

For obtaining a problem for w(z, t) similar to (23)–(26), we differentiate (23), (24) and the boundary

conditions (29) with respect to t and find the condition for t = 0 by means of (23), (24) and the initial
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conditions (25). We infer

∂wi

∂t
+ γi

∂wi

∂z
= −

6∑

j=1

bij(z)wj(z, t) +
6∑

j=1

aij(z, t)φ̃j(z)

+

t∫

0

6∑

j=1

aij(z, τ)wj(z, t− τ) dτ +
∂

∂t
Fi(z, t), i = 1, 2, 3, 4, (32)

∂wi

∂t
= −

6∑

j=1

bij(z)wj(z, t) +
6∑

j=1

aij(z, t)φ̃j(z) +

t∫

0

6∑

j=1

aij(z, τ)wj(z, t− τ) dτ, i = 5, 6, (33)

wi(z, t)|t=0 = Φi(z), i = 1, 6, (34)

wi(z, t)|z=0 =
d

dt
g̃i(t), i = 1, 2; wi(z, t)|z=L =

d

dt
g̃i(t), i = 3, 4, (35)

where

Φi(z) = Fi(z, 0)− γi
∂

∂z
φ̃i(z)−

6∑

j=1

bij(z)φ̃i(z), i = 1, 4;

Φi(z) = −
6∑

j=1

bij(z)φ̃i(z), i = 5, 6.

(36)

Once again, integration along the corresponding characteristics reduces (32)–(35) to the integral

equations

wi(z, t) = wi(zi
0, t

i
0)

+

t∫

ti0

[
∂

∂t
Fi(ξ, τ)−

6∑

j=1

bij(ξ)wj(ξ, τ) +
6∑

j=1

aij(ξ, τ)φ̃j(ξ)
]∣∣∣∣

ξ=z+γi(τ−t)

dτ

+

t∫

ti0

τ∫

0

6∑

j=1

aij(ξ, α)wj(ξ, τ − α) dα

∣∣∣∣
ξ=z+γi(τ−t)

dτ, i = 1, 4, (37)

wi(z, t) = wi(z, 0) +

t∫

0

[
−

6∑

j=1

bij(z)wj(z, τ) +
6∑

j=1

aij(z, τ)φ̃j(z)
]
dτ

+

t∫

0

τ∫

0

6∑

j=1

aij(z, α)wj(z, τ − α) dαdτ, i = 5, 6. (38)

For the functions wi, the additional conditions (27) look as

wi(0, t) =
d

dt
h̃i(t), i = 3, 6, wi(L, t) =

d

dt
h̃i(t), i = 1, 2. (39)

In equations (37), the functions wi

(
zi
0, t

i
0

)
are defined as follows:

wi(zi
0, t

i
0) =





d

dt
g̃i

(
t +

L− z

γi

)
, t ≥ L− z

γi
,

Φi(z − γit), 0 ≤ t <
L− z

γi
,

i = 1, 2,
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wi(zi
0, t

i
0) =





d

dt
g̃i(t− z/γi), t ≥ z/γi,

Φi(z − γit), 0 ≤ t < z/γi,

i = 3, 4.

Suppose the fulfillment of the conditions

Fi(0, 0)− γi

[
∂

∂z
φ̃i(z)

]

z=0

−
6∑

j=1

bij(0)φ̃i(0) =
[

d

dt
g̃i(t)

]

t=0

, i = 1, 2, (40)

Fi(L, 0)− γi

[
∂

∂z
φ̃i(z)

]

z=L

−
6∑

j=1

bij(L)φ̃i(L) =
[

d

dt
g̃i(t)

]

t=0

, i = 3, 4. (41)

It is not hard to see that the fitting conditions for the initial data (34) and the boundary data (35) coincide

with (40) and (41) at the angular points of Π. It is clear that if the same equalities (40) and (41) are fulfilled

then (37) and (38) have unique continuous solutions wi(z, t) and the same
∂

∂t
Ṽi(z, t).

Thus, we have proved the following

Theorem 1. Suppose that

ε̂(x3) ∈ C1[0,∞), µ̂(x3) ∈ C1[0,∞), φ̃(x3) ∈ C1[0,∞],

g̃(t) ∈ C1[0,∞), K(t) ∈ C1[0,∞), F̃ (x3, t) ∈ C1(Π)

and conditions (20), (31), (40), and (41) are fulfilled. Then there is a unique solution to prob-
lem (23)–(26) in Π.

3. EXAMINATION OF THE INVERSE PROBLEM.

DEDUCTION OF AN EQUIVALENT SYSTEM OF INTEGRAL EQUATIONS.

Consider an arbitrary point (z, 0) ∈ Π and draw the characteristic (8) through (z, 0) till the intersec-

tion with the lateral boundaries of Π. Iterating the ith component of equation (32), using the data (39),

we infer

wi(z, 0) =
d

dt
h̃i(ti(z)) +

ti(z)∫

0

[
∂

∂t
Fi(ξ, τ)−

6∑

j=1

bij(ξ)wj(ξ, τ) +
6∑

j=1

aij(ξ, τ)φ̃j(ξ)
]∣∣∣∣

ξ=z+γiτ

dτ

+

ti(z)∫

0

τ∫

0

6∑

j=1

aij(ξ, α)wj(ξ, τ − α)dα

∣∣∣∣
ξ=z+γiτ

dτ, i = 1, 4, (42)

where

ti(z) =
1
γi





z, i = 1, 2,

L− z, i = 3, 4.

Integrating (33) leads to the integral equations

wi(z, t) = Φi(z) +

t∫

0

[
−

6∑

j=1

bij(z)wj(z, τ) +
6∑

j=1

aij(z, τ)φ̃j(z)
]
dτ

+

t∫

0

τ∫

0

6∑

j=1

aij(z, α)wj(z, τ − α) dαdτ, i = 5, 6. (43)
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Reckoning with the initial data (34), rewrite (42) and (43) as

ti(z)∫

0

6∑

j=1

aij(z + γiτ, τ)φ̃j(z + γiτ) dτ +

ti(z)∫

0

τ∫

0

6∑

j=1

aij(z + γiτ, α)wj(z + γiτ, τ − α) dαdτ

= Φi(z)− d

dt
h̃i(ti(z))−

ti(z)∫

0

[
∂

∂t
Fi(z + γiτ, τ)−

6∑

j=1

bij(z + γiτ)wj(z + γiτ, τ)
]
dτ, i = 1, 4,

t∫

0

6∑

j=1

aij(0, τ)φ̃j(0) dτ +

t∫

0

τ∫

0

6∑

j=1

aij(0, α)wj(0, τ − α) dαdτ

=
d

dt
h̃i(t)− Φi(0) +

t∫

0

6∑

j=1

bij(0)wj(0, τ)dτ, i = 5, 6.

Differentiate the first equations with respect to z, and the second, with respect to t. Then

6∑

j=1

aij(z + γiti(z), ti(z))φ̃j(z + γiti(z))− γi

ti(z)∫

0

6∑

j=1

∂

∂z
(aij(z + γiτ, τ)φ̃j(z + γiτ)) dτ

+

ti(z)∫

0

6∑

j=1

aij(z + γiti(z), τ)wj(z + γiti(z), ti(z)− τ) dτ

− γi

ti(z)∫

0

τ∫

0

6∑

j=1

∂

∂z
(aij(z + γiτ, α)wj(z + γiτ, τ − α)) dαdτ = −γi

d

dz
Φi(z)− d2

dt2
h̃i(ti(z))

−
[

∂

∂t
Fi(z + γiti(z), ti(z))−

6∑

j=1

bij(z + γiti(z))wj(z + γiti(z), ti(z))
]

+ γi

ti(z)∫

0

[
∂2

∂t∂z
Fi(z + γiτ, τ)−

6∑

j=1

∂

∂z

(
bij(z + γiτ)wj(z + γiτ, τ)

)]
dτ, i = 1, 4, (44)

6∑

j=1

aij(0, t)φ̃j(0) +

t∫

0

6∑

j=1

aij(0, τ)wj(0, t− τ) dτ =
d2

dt2
h̃i(t) +

6∑

j=1

bij(0)wj(0, t), i = 5, 6. (45)

Now, replace ti(z) by t in (43). We infer

6∑

j=1

aij(0, t)φ̃j(0) = Pi(−γit) +

t∫

0

6∑

j=1

∂

∂z
(bij(−γi(t− τ))wj(−γi(t− τ, τ))) dτ

− γi

t∫

0

6∑

j=1

∂

∂z

(
aij(−γi(t− τ), τ)φ̃j(−γi(t− τ))

)
dτ −

t∫

0

6∑

j=1

aij(0, τ)
d

dt
h̃j(−γi(t− τ)) dτ

−
t∫

0

τ∫

0

6∑

j=1

∂

∂z

(
aij(−γi(t− τ), α)wj(−γi(t− τ), τ − α)

)
dαdτ, i = 1, 2, (46)
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6∑

j=1

aij(L, t)φ̃j(L) = Pi(L− γit) +

t∫

0

6∑

j=1

∂

∂z

(
aij(L− γi(t− τ), τ)φ̃j(L− γi(t− τ))

)
dτ

−
t∫

0

6∑

j=1

aij(L, τ)
d

dt
h̃j(−γit− τ) dτ −

t∫

0

6∑

j=1

∂

∂z

(
bij(H − γi(t− τ))wj(L− γi(t− τ), τ)

)
dτ

+

t∫

0

τ∫

0

6∑

j=1

∂

∂z

(
aij(L− γi(t− τ), α)wj(L− γi(t− τ), τ − α)

)
dαdτ, i = 3, 4, (47)

where Pi(z) are defined by the formulas

Pi(z) = −γi
d

dz
Φi(z)− d2

dt2
h̃i(ti(z))− ∂

∂t
Fi(z + γiti(z), ti(z))

+
6∑

j=1

bij(z + γiti(z))wj(z + γiti(z), ti(z)) + γi

ti(z)∫

0

∂2

∂t∂z
Fi(z + γiτ, τ) dτ, i = 1, 4,

and the notations

Pi(t) =
d2

dt2
h̃i(t) +

6∑

j=1

bij(0)
d

dt
h̃j(t), i = 5, 6,

are introduced.

Put

Q(z; φ̃) :=




c11(z) 0 c13(z) 0 c15(z) 0

0 c22(z) c23(z) c24(z) 0 0

c31(z) 0 c33(z) 0 c35(z) 0

0 c42(z) c43(z) c44(z) 0 0

0 0 c53(z) 0 0 0

0 0 0 0 0 c66(z)




, (48)

where

c11(z) = c31(z) =
√

p

2
(
q2
1(z)φ̃1(z) + q2

1(z)φ̃3(z)
)
, c12(z) = 0,

c13(z) = c33(z) =
√

p

2
(
q3
3(zφ̃1(z) + q3(z)q4(z)φ̃2(z) + q2

3(z)φ̃3(z) + q3(z)q4(z)φ̃4(z) + q3(z)φ̃5(z)
)
,

c14(z) = 0, c15(z) = −c35(z) =
√

p

2
φ̃1(z)− φ̃3(z)

q2
1(z)

, c16(z) = 0, c21(z) = 0,

c22(z) = c42(z) =
√

p

2
(
q2
2(z)φ̃2(z) + q2

2(z)φ̃4(z)
)
,

c23(z) = c43(z) =
√

p

2
(
q3(z)q4(z)φ̃1(z) + q2

4(z)φ̃2(z) + q3(z)q4(z)φ̃3(z) + q2
4(z)φ̃4(z) + q4(z)φ̃5(z)

)
,

c24(z) = −c44(z) =
√

p

2
φ̃2(z)− φ̃4(z)

q2
2(z)

, c25(z) = 0, c26(z) = 0,
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c31(z) =
√

p

2
(
q2
1φ̃1(z) + q2

1φ̃3(z)
)
, c32(z) = 0, c34(z) = 0, c36(z) = 0,

c41(z) = 0, c45(z) = 0, c46(z) = 0, c51(z) = 0, c52(z) = 0,

c53(z) =
√

p

2
(
q3q5φ̃1(z) + q4q5φ̃2(z) + q3q5φ̃3(z) + q4q5φ̃4(z) + q5φ̃5(z)

)
,

c54(z) = 0, c55(z) = 0, c56(z) = 0, c66(z) =
√

p
q6

q1q2
φ̃6(z),

c6i(z) = 0, i = 1, 5.

Reckoning with (48), rewrite (37) and (38) as follows:

wi(z, t) = wi(zi
0, t

i
0) +

t∫

ti0

[
∂

∂t
Fi(ξ, τ)−

6∑

j=1

bij(ξ)wj(ξ, τ) +
6∑

j=1

Qij(ξ; φ̃)Ψj(τ)
]∣∣∣∣

ξ=z+γi(τ−t)

dτ

+

t∫

ti0

τ∫

0

6∑

j=1

Qij(ξ; w(ξ, τ − α))Ψj(α) dα

∣∣∣∣
ξ=z+γi(τ−t)

dτ, i = 1, 6. (49)

Using (48), we can also rewrite (44) and (45) so that

6∑

j=1

Qij(νi; φ̃(νi))Ψj(t) = Pi(ti(t))

+ βi

t∫

0

6∑

j=1

[
∂

∂z
bij(−γi(t− τ))wj(−γi(t− τ, τ)) + bij(−γi(t− τ))

∂

∂z
wj(−γi(t− τ, τ))

]
dτ

−
t∫

0

6∑

j=1

[
γiβi

∂

∂z
Qij

(− γi(t− τ); φ̃(−γi(t− τ))
)

+ Qij

(− γi(t− τ);
d

dt
h̃(−γi(t− τ))

)]
Ψj(τ) dτ

− βi

t∫

0

τ∫

0

6∑

j=1

∂

∂z
Qij

(− γi(t− τ);wj(−γi(t− τ), τ − α)
)
Ψj(α)dαdτ, i = 1, 6. (50)

Here

βi =





1, i = 1, 4,

0, i = 5, 6,
νi =





L, i = 3, 4,

0, i = 1, 2, 5, 6,
t̄i(t) =





−λit, i = 1, 2,

L− λit, i = 3, 4,

t, i = 5, 6.

Let Ψ(t) =
(
ϕ
′
1, ϕ

′
2, ϕ

′
3, ψ

′
1, ψ

′
2, ψ

′
3

)∗ be the vector-function composed of the derivatives of the un-

known functions of the inverse problem, where Ψi(t) are the entries of this vector-function.

In what follows, we assume the fulfillment of the condition

detQ(νi; φ̃) 6= 0, (51)

which is equivalent to the inequalities

c11 6= 0, c15 6= 0, c22 6= 0, c24 6= 0, c53 6= 0, c66 6= 0.
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Now, solving (50) with respect to Ψi(t), we obtain

Ψi(t) =
1

detQ(νi; φ̃)

6∑

j=1

[
Pj(tj(t)) + βj

t∫

0

6∑

k=1

∂

∂z
bjk(−γj(t− τ))wk(−γj(t− τ, τ)) dτ

]
Qji(νi; φ̃)

+
1

det Q(νi; φ̃)

6∑

j=1

[
βj

t∫

0

6∑

k=1

bjk(−γj(t− τ))
∂

∂z
wk(−γj(t− τ, τ)) dτ

]
Qji(νi; φ̃)

− 1
detQ(νi; φ̃)

6∑

j=1

[
γjβj

t∫

0

6∑

k=1

∂

∂z
Qjk(−γj(t− τ); φ̃(−γj(t− τ)))Ψk(τ) dτ

]
Qji(νi; φ̃)

− 1
detQ(νi; φ̃)

6∑

j=1

[ t∫

0

6∑

k=1

Qjk(−γj(t− τ);
d

dt
h̃(−γj(t− τ)))Ψk(τ)dτ

]
Qji(νi; φ̃)

− 1
detQ(νi; φ̃)

6∑

j=1

[
βj

t∫

0

τ∫

0

6∑

k=1

∂

∂z
Qjk(−γj(t− τ);wk(−γj(t− τ), τ − α))Ψk(α) dαdτ

]
Qji(νi; φ̃),

(52)

whereQji are the algebraic complements to the entries cji of Q, i = 1, 6.

Equations (52) contain the unknown functions
∂wj

∂z
, j = 1, 6. For them we obtain integral equations

from (49) by differentiating in z. Moreover,

∂

∂z
wi(z, t) =

∂

∂z
wi(zi

0, t
i
0)−

∂

∂z
ti0

[
∂

∂t
Fi(zi

0, t
i
0)−

6∑

j=1

bij(zi
0)wj(zi

0, t
i
0) +

6∑

j=1

Qij(zi
0; φ̃)Ψj(ti0)

]

+

t∫

ti0

[
∂

∂t∂z
Fi(ξ, τ)−

6∑

j=1

d

dz
bij(ξ)wj(ξ, τ)−

6∑

j=1

bij(ξ)
∂

∂z
wj(ξ, τ)

+
6∑

j=1

∂

∂z
Qij(ξ; φ̃)Ψj(τ)

]∣∣∣∣
ξ=z+γi(τ−t)

dτ − ∂

∂z
ti0

ti0∫

0

6∑

j=1

Qij(zi
0; Gj(zi

0, t
i
0 − τ))Ψj(τ) dτ

+

t∫

ti0

τ∫

0

6∑

j=1

∂

∂z
Qij(ξ; wj(ξ, τ − α))Ψj(α) dα

∣∣∣∣
ξ=z+γi(τ−t)

dτ, i = 1, 6, (53)

where

Gj

(
zi
0, t

i
0 − τ

)
=





d

dt
hj

(
L− z

γi
− τ

)
, j = 3, 6,

d

dt
gj

(
L− z

γi
− τ

)
, j = 1, 2.
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The fulfillment of the following fitting conditions is required:

d

dt
g̃i(0) = Fi(0, 0)− γi

∂

∂z
φ̃i(z)

∣∣∣∣
z=0

−
6∑

j=1

bij(0)φ̃i(0), i = 1, 2,

d

dt
g̃i(0) = Fi(L, 0)− γi

∂

∂z
φ̃i(z)

∣∣∣∣
z=L

−
6∑

j=1

bij(L)φ̃i(L), i = 3, 4,

(54)

d

dt
h̃i(t)

∣∣∣∣
t=0

= −
6∑

j=1

bij(0)φ̃i(0), i = 5, 6. (55)

4. THE MAIN RESULT AND THE PROOF

The main result of the present article is as follows:

Theorem 2. Suppose the fulfillment of the conditions of Theorem 1 and also the conditions

φ̃(z) ∈ C2[0, L], g̃(t) ∈ C2[0,∞), h̃(t) ∈ C2(0,∞), F (z, t) ∈ C2(Π)

condition (51), and the fitting conditions (31), (40), (41), (54), and (55). Then, for every L > 0,

on the interval [0, L], there exists a unique solution to the inverse problem (32)–(35) of the class
Ψ(t) ∈ C1[0, L], and each component ϕi ∈ C1[0, L] is determined by defining hi(t) for t ∈ [0, L],
i = 1, 2, 3; and each ψi ∈ C1[0, L], by defining hi(t) for t ∈ [0, L], i = 4, 5, 6.

Proof. Equations (49), (52), and (53) supplemented with the initial and boundary value conditions

from (32) and (33) constitute the closed system of equations on the unknown wi(z, t), Ψj(t), and
∂

∂z
wi(z, t) for i = 1, 6. Now, consider the square

Π0 := {(z, t) | 0 ≤ z ≤ L, 0 ≤ t ≤ L}.

Equation (49), (52), and (53) show that the values of wi(z, t), Ψj(t), and
∂

∂z
wi(z, t) for (z, t) ∈ Π0 are

expressed in terms of the integrals of some combinations of these functions over segments lying in Π0.

Write (49), (52), and (53) as a closed system of Volterra-type integral equations. For this introduce

the vector-functions υ(z, t) =
(
υ1

i , υ
2
i , υ

3
i

)
, i = 1, 6, by defining their components by the equalities

υ1
i (z, t) = wi(z, t), υ2

i (z, t) = Ψi(t), υ3
i (z, t) =

∂

∂z
wi(z, t) +

6∑

j=1

Qij(zi
0; φ̃)Ψj(ti0)

∂

∂z
ti0.

Then the system (49), (52), and (53) takes the operator form

υ = Aυ, (56)
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where A is the operator A =
(A1

i ,A2
i ,A3

i

)
, i = 1, 6, that is defined in accordance with the right-hand

sides of (49), (52), and (53) by the equalities

A1
i υ = υ01

i (z, t)

+

t∫

ti0

[ 6∑

j=1

Qij(z + γi(τ − t); φ̃)υ2
j (τ)−

6∑

j=1

bij(z + γi(τ − t))υ1
j (z + γi(τ − t), τ)

]
dτ

+

t∫

ti0

τ∫

0

6∑

j=1

Qij(z + γi(τ − t); υ1
j (z + γi(τ − t), τ − α))υ2

j (α) dα dτ, (57)

A2
i υ = υ02

i (z, t) +
1

det Q(νi; φ̃)

t∫

0

6∑

j=1

6∑

k=1

βj
∂

∂z
bjk(−γj(t− τ))υ1

k(−γj(t− τ, τ)) dτQji(νi; φ̃)

+
1

det Q(νi; φ̃)

t∫

0

6∑

j=1

6∑

k=1

βjbjk(−γj(t− τ))
[
υ3

k(−γj(t− τ), τ)

−
6∑

p=1

Qkp

(
zk
0 ; φ̃

)
υ2

p

(
tk0

) ∂

∂z
tj0

]
dτQji(νi; φ̃)

− 1
detQ(νi; φ̃)

t∫

0

6∑

k=1

6∑

j=1

γjβj
∂

∂z
Qjk(−γj(t− τ); φ̃(−γj(t− τ)))υ2

k(τ) dτQji(νi; φ̃)

− 1
detQ(νi; φ̃)

t∫

0

6∑

j=1

6∑

k=1

Qjk

(
− γj(t− τ);

d

dt
h̃(−γj(t− τ))

)
υ2

k(τ) dτQji(νi; φ̃)

− 1
det Q(νi; φ̃)

t∫

0

τ∫

0

6∑

j=1

6∑

k=1

βj
∂

∂z
Qjk

(− γj(t− τ); υ1
k(−γj(t− τ), τ − α)

)
υ2

k(α) dαdτQji(νi; φ̃),

(58)

A3
i υ = υ03

i (z, t)−
t∫

ti0

[ 6∑

j=1

d

dz
bij(ξ)υ1

j (ξ, τ) +
6∑

j=1

bij(ξ)
(

υ3
j (ξ, τ)−

6∑

k=1

Qjk

(
zj
0; φ̃

)
υ2

k

(
tj0

) ∂

∂z
tj0

)

−
6∑

j=1

∂

∂z
Qij(ξ; φ̃)υ2

j (τ)
]∣∣∣∣

ξ=z+γi(τ−t)

dτ − ∂

∂z
ti0

ti0∫

0

6∑

j=1

Qij

(
zi
0Gjz

i
0, t

i
0 − τ)

)
υ2

j (τ) dτ

+

t∫

ti0

τ∫

0

6∑

j=1

∂

∂z
Qij

(
ξ; υ1

j (ξ, τ − α)
)
υ2

j (α) dα

∣∣∣∣
ξ=z+γi(τ−t)

dτ, (59)

where i = 1, 6.
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In these formulas, we used the notations

υ01
i (z, t) = wi

(
zi
0, t

i
0

)
+

t∫

ti0

∂

∂t
Fi(z + γi(τ − t), τ) dτ,

υ02
i (z, t) =

1
det Q(νi; φ̃)

6∑

j=1

Pj(tj(t))Qji(νi; φ̃),

υ03
i (z, t) =

∂

∂z
wi

(
zi
0, t

i
0

)− ∂

∂z
ti0

∂

∂t
Fi

(
zi
0, t

i
0

)

+
∂

∂z
ti0

6∑

j=1

bij

(
zi
0

)
wj

(
zi
0, t

i
0

)
+

t∫

ti0

∂

∂t∂z
Fi(z + γi(τ − t), τ) dτ.

Endow the set of continuous functions Cs(Π0) with the norm

‖υ‖s = max
1≤i≤6, 1≤l≤3

sup
(z,t)∈Π0

∣∣υl
i(z, t)e−st

∣∣,

where s ≥ 0 is a number to be chosen below. Obviously, for s = 0 this space coincides with the set

of continuous functions with the norm ‖υ‖s. By the inequality,

e−sL‖υ‖s ≤ ‖υ‖s ≤ ‖υ‖
the norms ‖υ‖s and ‖υ‖ are equivalent for ant fixed L ∈ (0,∞).

Further, consider the set of functions S(υ0, r) ⊂ Cs(Π0) satisfying the inequality

‖υ − υ0‖s ≤ r, (60)

where the vector-function

υ0(z, t) =
(
υ01

i (z, t), υ02
i (t), υ03

i (z, t)
)
, i = 1, 6,

is defined by the free terms of the operator equation (56). It is not hard to observe that the following

estimate holds for υ ∈ S(υ0, r):

‖υ‖s ≤ ‖υ0‖s + r ≤ ‖υ0‖+ r := r0.

Thus, r0 is known.

Introduce the notations

φ̃0 := max
1≤i≤n

‖φ̃i‖C2[0,L], g0 := max
1≤i≤n

‖gi‖C2[0,L], F0 := max
1≤i≤n

‖Fi‖C2[Π0],

h0 := max
1≤i≤n

‖hi‖C2[0,L], Γ0 := max{g0, f0}, P0 := min{|Q(0)|, |Q(L)|},

Υ0φ̃0 = max
1≤i≤n

‖Qij(z + γi(τ − t); φ̃)‖C1[0,L], Q0 := max
{

max
1≤i≤n

|Qi(0)|, max
1≤i≤n

|Qi(L)|}.

The operator A takes Cs(Π0) into itself. Show that for a suitable choice of s (note that L > 0 is

an arbitrary fixed number) it is a contraction operator on S(υ0, r). Let us first verify that A takes
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the set S(υ0, r) into itself; i.e., the condition υ(z, t) ∈ S(υ0, r) implies that Aυ ∈ S(υ0, r) if s satisfies

some constraints. Indeed, given (z, t) ∈ Π0 and υ ∈ S(υ0, r), we have

∣∣(A1
i υ − υ01

i

)
e−st

∣∣ =
∣∣∣∣

t∫

ti0

[ 6∑

j=1

Qij(z + γi(τ − t); φ̃)e−s(t−τ)υ2
j (τ)e−sτ

−
6∑

j=1

bij(z + γi(τ − t))e−s(t−τ)υ1
j (z + γi(τ − t), τ)e−sτ

]
dτ

+

t∫

ti0

τ∫

0

6∑

j=1

Qij

(
z + γi(τ − t); υ1

j (z + γi(τ − t), τ − α)
)
e−s(τ−α)υ2

j (α)e−sα dαdτ

∣∣∣∣∣

≤ 6
[
(Υ0φ̃0 + b0)‖υ‖s + Υ0‖υ‖2

sτ
] ∫ t

0
e−s(t−τ) dτ ≤ 6

s

(
(Υ0φ̃0 + b0) + Υ0Lr0

)
r0 :=

1
s
α1.

Likewise, we obtain

∣∣(A2
i υ − υ02

i

)
e−st

∣∣ ≤ 36P0

sQ0

(
b0(2 + 6Υ0φ̃0) + Υ0φ̃0 + Υ0Γ0 + Υ0Lr0

)
r0 :=

1
s
α2,

∣∣(A3
i υ − υ03

i

)
e−st

∣∣ ≤ 6
s

(
b0(2 + 6Υ0φ̃0) + Υ0φ̃0 + Υ0Γ0 + Υ0Lr0

)
r0 :=

1
s
α3.

These together with (56) and (57)–(59) imply the estimates

‖Aυ − υ0‖s = max
{

max
1≤i≤6

sup
(z,t)∈Π0

∣∣(A1
i υ − υ01

i

)
e−st

∣∣,

max
1≤i≤6

sup
t∈[0,L]

∣∣(A2
i υ − υ02

i

)
e−st

∣∣, max
1≤i≤6

sup
t∈[0,L]

∣∣(A3
i υ − υ03

i

)
e−st

∣∣} ≤ 1
s
α0,

where α0 := max(α1, α2, α3). Choosing s > (1/r)α0, we obtain thatA takes S(υ0, ρ) into itself.

Now, take υ, υ̃ ∈ S(υ0, r) and estimate the norm of the difference Uυ − Uυ̃. Using the obvious

inequality

∣∣υk
i υl

i − υ̃k
i υ̃l

i

∣∣e−st ≤ ∣∣υk
i − υ̃k

i

∣∣ · ∣∣υl
i

∣∣e−st +
∣∣υ̃k

i

∣∣ · ∣∣υl
i − υ̃l

i

∣∣e−st ≤ 2r0‖υ − υ̃‖s
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and estimates for the integrals analogous to those above, we arrive at

∣∣(A1
i υ −A1

i υ̃
)
e−st

∣∣ =
∣∣∣∣

t∫

ti0

[ 6∑

j=1

Qij(z + γi(τ − t); φ̃)e−s(τ−α)
(
υ2

j (τ)− υ̃2
j (τ)

)
e−sτ

−
6∑

j=1

bij(z + γi(τ − t))e−s(τ−α)
(
υ1

j (z + γi(τ − t), τ)− υ̃1
j (z + γi(τ − t), τ)

)
e−sτ

]
dτ

+

t∫

ti0

τ∫

0

6∑

j=1

[
Qij

(
z + γi(τ − t); υ1

j (z + γi(τ − t), τ − α)
)
e−s(τ−α)υ2

j (α)e−sα

−Qij

(
z + γi(τ − t); υ̃1

j (z + γi(τ − t), τ − α)
)
e−s(τ−α)υ̃2

j (α)e−sα

]
dαdτ

∣∣∣∣∣

≤ n
[
(Υ0φ̃0 + b0)‖υ − υ̃‖s + 2r0Υ0‖υ − υ̃‖sτ

] t∫

0

e−s(t−τ) dτ

≤ 1
s
n(Υ0φ̃0 + b0 + 2r0Υ0L)‖υ − υ̃‖s :=

1
s

β1‖υ − υ̃‖s.

Likewise, we obtain the estimates

∣∣(A2
i υ −A2

i υ̃
)
e−st

∣∣ ≤ 36P0

sQ0

(
b0(2 + 6Υ0φ̃0) + Υ0φ̃0 + Υ0Γ0 + 2r0Υ0L

)
‖υ − υ̃‖s

:=
1
s

β2‖υ − υ̃‖s,

∣∣(A3
i υ −A3

i υ̃
)
e−st

∣∣ ≤ 6
s

(
b0(2 + 6Υ0φ̃0) + Υ0φ̃0 + Υ0Γ0 + 2r0Υ0L

)
‖υ − υ̃‖s

:=
1
s

β3‖υ − υ̃‖s.

Hence,

‖Aυ −Aυ̃‖s = max

{
max
1≤i≤6

sup
(z,t)∈Π0

∣∣(A1
i υ −A1

i υ̃
)
e−st

∣∣, max
1≤i≤6

sup
t∈[0,L]

∣∣(A2
i υ −A2

i υ̃
)
e−st

∣∣,

max
1≤i≤6

sup
t∈[0,L]

∣∣(A3
i υ −A3

i υ̃
)
e−st

∣∣
}
≤ 1

s
β0‖υ − υ̃‖s,

where β0 := max(β1, β2, β3).

Now, choosing s > β0, we conclude thatA contracts the distance between υ and υ̃ by S(υ0, ρ).

As follows from the estimates above, if s is chosen so that

s > s∗ := max{α0, β0}
then A is a contraction on S(υ0, ρ). In this event, by the Banach Principle (see [40, p. 87–97]),

equation (56) has a unique solution in S(υ0, ρ) for every fixed L > 0.

Theorem 2 is proved.
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Knowing ϕ
′
i(t) and ψ

′
i(t) for i = 1, 2, 3, we can find the functions ϕi(t) and ψi(t):

ϕi(t) = ϕi(0) +

t∫

0

ϕ
′
i(τ) dτ, ψi(t) = ψi(0) +

t∫

0

ψ
′
i(τ) dτ, i = 1, 2, 3.
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