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Abstract—We pose the direct and inverse problem of finding the electromagnetic field and the di-
agonal memory matrix for the reduced canonical system of integro-differential Maxwell’s equations.
The problems are replaced by a closed system of Volterra-type integral equations of the second kind
with respect to the Fourier transform in the variables x; and x5 of t he solution to the direct problem
and the unknowns of the inverse problem. To this system, we then apply the method of contraction
mapping in the space of continuous functions with a weighted norm. Thus, we prove the global
existence and uniqueness theorems for solutions to the posed problems.
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INTRODUCTION

The propagation of various waves is described by hyperbolic systems of first-order equations.
In media with aftereffect, such a phenomenon in generally depends on the previous state of the process.
An example is given by the phenomenon of the propagation of electromagnetic waves in media with
dispersion. It turns out that, in these media, a violation occurs of the unique dependence of D and B
(the induction of the electric and magnetic fields respectively) on £ and H (the intensities of the
corresponding fields) at the same time. The more general kind of linear dependence between D(z,t),
B(z,t) and the corresponding values of the functions E(x,t), H(z,t) at all previous time can be written
in the form of the integral relations (see[1, pp. 357—376]):

t t
D(z,t) =€E + / o(t —1)E(z,T)dT, B(z,t) = pH + /w(t —7)H(z,7)dT. (1)
0 0
Here

E:(E17E27E3)7 H:(H17H27H3)) D:(D17D27D3)7
B = (B1,B2,B3),  x=(v1,72,73),
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2 DURDIEV, TURDIEV

o(t) = diag(e1, w2, ¢3) and ¥ (t) = diag(1, 12, 13) are diagonal matrices that represent the memory.

In an anisotropic medium with dispersion, the system of Maxwell’s equations has the form
0 0
VxH=—D(x,t)+6E+ J. VxE=—-—B(z,t
div B =0, div D = p.

The matrices é and [ are assumed positive definite, symmetric, and depending only on x3, and & is
a constant matrix. In the first equation of (2), J = J(«, t) is a vector-function characterizing the external
current density. The third equation in (2) is a consequence of the second equation and the condition

div (H )|¢=0 = 0. (3)

Indeed, applying the operation div to the second equation in (2), taking into account the equality
div (V x E) =0, we have

%(div B) =0.

Hence, integrating the last equality under condition (3), we obtain the third equality in (2). The fourth
equation in (2) determines the electric charge density after the distribution of the induction of the electric
field has been found.

Supposing the fulfillment of condition (3), we will consider system (1), (2) as an independent object
of study. Write it as a symmetric hyperbolic system:

0

A
0ot

t

U+ZAJa U+A4U:/Kt—7 Uz, 7)dr + J(z,t), (4)
0

in which U = (Uy,...,Us)* is the column vector with entries Uy = Ej, Ugys = Hy, k=1,3; Aj,

j = 0,4, are symmetric matrices, where Ag is positive definite; K (t) = diag(e1, 2, ©3, %1, V2, ¥3),

J =(x1,---,x6)" is the column-vector with entries xx = xx(z,t), xx+3 = 0, k = 1,3, and xj, are some

given sufficiently smooth functions. The matrices A; have the cell structure:

£ 0 0 pj
A0: s A]: ! ) j:172737
0 [ =0
H 6x6 Pj 6x6
0 0 O 00 -1 0 10
=10 0 1]> P2=100 0 |> Ps=1-10 0]>
(5)
0 -1 0 10 0 0 00
e0)+o 0 —p (¢ 0
A= (0) K@= (t) ’
0 0 0 't
¥(0) o Y () o

U= (Ea H)*7 j = (_Ja 01><3)*7

where x is the transposition symbol; 01«3 stands for the row vector (0; 0;0).
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THE PROBLEM OF FINDING THE KERNELS 3
Multiplying equation (4) from the left by the inverse matrix Ao_l, we obtain
D e~ O /
[6U—i—ZBjamU—i-BglU:/K()(.Z‘g,t—T)U(x,T)dT-l-JQ. (6)
j=1 !

ot
0

Here and in what follows, I stands for the identity matrix of order 6 and B; = Ag'A;, j = 1,4.

Introduce the notations

e=el= (o), p=pt=(uj), o=cb=(oy). (7)
In accordance with (4), we have
0 ep; ep(0)+0 0
B] = ’ , J= 17 37 B4 = )
pp; 0 0 11(0)
. —eyp (1) 0
Jo= A1, Ko(w3,t) = Ag' K (23,t) =
0 —u(t)

Reduce system (6) to the canonical form. As is known from linear algebra (see 2, p. 149—153]), in the
case under consideration, there exists a nondegenerate matrix 7" such that 7! B3T = A, where A is the
diagonal matrix whose diagonal contains the eigenvalues of Bs.

Some matrix 7" with the above properties was constructed in [3, pp. 5-20]. It looks as

q 0 Q1 0 00
0 @ 0 @2 00
q3 @ g3 g9 10
0 1/ 0 —1/g2 0 0

-1/¢g 0 1/gg 0 00

where

€11 14 €22 14 €31 €32
wo ()" wm () e we
a2 i T e my’

Note that T is defined not uniquely.
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The inverse matrix to T is defined by the formula

1/2¢) 0 0 0 -q/20
0 1/(QQQ> 0 QQ/Q 0 0
1/(2q1) 0 0 0 ¢1/2 0
T (x3) =
0 1/(2(]2) 0 —QQ/Q 0 0
—a3/q —ai/e2 10 0 0
0 0 0 0 0 1
In (6), introduce the new function by the equality
U=TU

and multiply (11) by T~ from the left. Then for U we obtain the equation

¢
0 8 — _
(]6(% +;Cja —|—C>U:/K3:3,t—7 U(z,7)dr + F,
= 0

where
0 —
C = Co+Cy, Co = 1Bga—T C;=T7'BT, i=1,4,
3
=A= \/f)AOv P = 11422 = E22411, Ao = dlag(_17 -1,1, 17070)7
F(l‘g,t) = TﬁlKo(.%'g,t)T = (aij)gj:l(xg,t), F= Tﬁlj().

Using the consequences stemming from (13) for the entries of the matrices € and p

en=qivp,  €12=0, ci3=aqayD  e2=d¢VD €3 =q@au/p
= g5 °/p, fi22 = a4 °/D,
and introducing the additional notations by the equalities
1 1 %f
— (2 24 =
£33 = (Q3 +q5 + 2(15) VP Has =5
we can write the matrices C; involved in (12) in the form
23 g2 0 @ 1 0 0 ¢ 0 —g O
@4 0 —qg 0 0 qg 3 2q2 ¢z 0 1
vo | 0 —a —2¢3 —qa —1 0 vol 0 @ 0 —g 0
Cl - 5 ) 02 - 5.
2q1 2¢2
s 0 —@¢a 0 0 qe -3 0 —q3 —2q4 -1
0 —¢ 0 0 O 0 ¢ 0 —¢ O
0O e 0 g 0O O -6 0 —g 0 O
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0
0 0 In ¢y 0 00
81’3
0
0 0 0 ———1Ing 0 O
0x3
NG 9 Ingq 0 0 0 00 6
D 1
Cop= Y2 | Ozs , Cz( ~ ) .
"7 2 ) ! iy + Mij ij=1
0 —Inge 0 0 00
8903
0 0 0 0 00
0 0 0 0 00

Here we use the following notations:

2
P 2(0)
21| = 233 = VP ai1(0) + g33(0) ?/) ©)
2 q 1
p
13 = M31 = g (Q%SOI(O) + @3p3(0 )
M2 = M4 = A1 = M3 = M3 = H34 = M4] = M43 = 7 (J3(J4<P3(0)

7 Z 0)?
K5 = M35 = vP a3¢3(0), Hog = 4y = VP (q%m(()) + q3p3(0) + 1/11(5 ) >7
2

2 2
D 0 D
Moy = My = g <Q%<P2(0) + qitpg(O) — Ll )>a M5 = 45 = §Q4<P3(O)a
2

p D
51 = 53 = 7%(15903(0), M5y = M54 = ngWs(O),

D . — q6%3(0
M55 = %q‘%p?)(o)v Xej = Hj6 = 07 J = 1>5> 266 = \/]3 (J1q(2 )7
1
My = My = M3, = M3z = 2711(011(11 =+ 013(]3)7
1 1
My = My = M3y = M3y = —(012¢2 + 013¢3), M5 = —o013,
2q1 2q1

1 1
Moy = Moz = My = Myz = —(021q1 + 023¢3), Mas = —o093,
2qo 2q9

1
Moy = Moy = Mys = My = T@(@QQQ + 023q4),

q3 q4 q3 44
M5y = Ms3 = < —0o11— —021— + 031> q1 + < —013— — 03— + 033>Q3,
q1 q2 q1 q2
q3 qa q3 44
Mso = M54 = < —019— — 02— + 032> g2 + ( —013— —023— + U33>€l4,
q1 q2 q1 q2
q3 q4 J—
Ms5 = —01367 - 023@ + 033, Mg; = Mjg =0, j=1,5, Mes = 0.
1
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6 DURDIEV, TURDIEV

The entries of K (z3,t) have the form

(o) = (e, 0) = Y2 (Rl ) + a0+ FA ),

2 f(z3)
(o) = a1 = L5 () h0) + o)1)~ A ).
(_112(21)3, t) = 514(1'3, t) = (_121(1‘3, t) = (_123(2123, t)
= azz(w3,t) = aza(w3, t) = aa1 (w3, t) = asz(w3, t) = péxg) g3(3)qa(3)03(t),
s = 2 = Y2 4o (0) 1), sl 1) = auslas, ) = YA gu(as)on)
(o, t) = asa(os.) = L5 () ) + o)1)+ gL ).
oo t) = (s, ) = L5 ()0 + o)1)~ 3L ).
as1(ws,t) = as3(xs,t) = \/]@ q3(3) 5 (3) 3 (t),
asz (3, t) = asa(ws, t) = p2(x3) qa(73)q5(23)03(t),  ss(ws,t) = \/@ a5 (23)p3(t),
ape(ws,t) = ae(rs, t) =0, k=15, age(r3,t) = \/p qG ;33 qu’x?})
Introduce the new variable z as
z=v(x de 16
y 0/ e (16)

Denote by v~1(z) the function inverse to v(z3) and let
V(wr,ay,2,0) = Ulen,ea,v ' (2), 1), Ci(z) = Ci(v ' (2)),  Clz) = Clv!(2)),

K(z,t):= K (2),t), F(xy,39,2) := F(z1, 22,0 '(2)),

aij(Z,t> = dij(y_l(z),t), i,7=1,6.
Then (12) takes the form

t
0 0 ~
<I§8t+A0+ZC]a +C> / t—T 1‘1,372,2,7‘)d7‘—|—F<1’1,J}2,Z,t). (17)
0

1. STATEMENT OF THE PROBLEM

In the direct problem, given matrices IA(, 61, 62, and C and vector-function 13, it is required,
in the domain

D= {(‘Tlax%Z)t) ’O <z< L7 t> 07 (.’171,:1}2) €R2}7
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THE PROBLEM OF FINDING THE KERNELS 7
find a vector-function V'(z, t) satisfying equation (17) for the following initial and boundary conditions:

Vi(x1, z2, 2, ) |t=0 = ¢i(x1, 2, 2), i = 1,6, (18)

Vi(z1, z2, 2,t)|2=0 = gi(x1, 22, 1), i=1,2,
(19)

Vi(z1, 29, 2,t)oer, = gi(21, 22, t), =34,
where
¢(I1,$2,Z> - (¢1’¢2" : -7¢6)(371,1'2,Z), 9(131,.1?2,15) = (91792) e ,gG)(fL‘l,ZEQ,t)

are some given functions.

Remark 1. For given initial data, equality (3) takes the form

l (¢2(x17$2,2’) — ¢4(x1,x2,z))

q2

div | a(z) q12((;53(331’932,2)_¢1(x1’$2,2)) = 0. (20)

d6(x1, 22, 2)

Pose the inverse problem as follows:

Find the functions ¢;(t) and ¢;(t) for t >0 and i = 1,2,3 that are involved in the matrix K if
the extra conditions

Vi(x1, 22, 2,t)| =1 = hi(x1, 22, 1), i=1,2,
(21)

‘/i(xl)xQ,Z7t)|Z:0:hi([El,xQ?t)’ 123,76

are given for a solution to problem (17)—(19). Moreover, we assume that ¢;(0) and v;(0) are given

as well.

Remark 2. As follows from (8), (11), and (16), the vector-function V' is expressed through (E, H)*
by the formula

1

— Fy — @HZ

2q1 2
1 q2

B+ 2H

20 Ty
1

S —Ei+ D Hy

V(l’l,l‘z,Z,t) = @ (.Tl,xQ,Vil(Z),t).

1

— B -2,

QQQ 2

Bp _Lp 4By
q1 q2

Hg
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8 DURDIEV, TURDIEV

In terms of the vector-function (E, H)*, the boundary and extra conditions (19) and (21) take
the form

(EivHi)*(x17$27yil(z)7t)‘2’=0 - T(O) X (91792)h37h’47h’57h6)*(:p17$27t>;
(Ei7Hi)*(xhx%yil(z)?tNZ:L = T(Vil(L)) X (hhh?a93794795796)*(x17x27t)7 i = 1773

By now, the problems of finding the kernels from one second-order integro-differential equation
have been widely studied (see [4—23]. The numerical solution of direct and inverse problems for such
equations were under study in [24—38]. As a rule, the second-order equations are derived from systems
of first-order partial differential equations under some additional assumptions.

The inverse problem of finding the kernels of the integral terms from a system of first-order integro-
differential equations of general form with two independent variables was studied in [39]. Some theorem
of local existence and global uniqueness was obtained.

[t seems quite natural to carry out the study of inverse problems of finding the kernels of the integral
terms of a system of integro-differential equations directly in terms of the system itself. The present
article is a natural continuation of this circle of problems and, to a certain extent, generalizes the results
of [39] to the case of the system of Maxwell’s equations with memory (1), (2).

Suppose that functions ﬁ(ml, x9,2,t), ¢i(x1,x9,2), and g;(x1,x2,t) occurring on the right-hand
side of (17) and the data (18), (19) have some compact support with respect to x;, x5 for every fixed z
and t. The existence for (17) of a finite dependence domain and the property of having compact support
with respect to zj, zo of the right-hand side of (17) and the data (18), (19) imply that solutions
to problem (17)—(19) have the compact support with respect to z1, xs.

We investigate the properties of solutions to this problem. More exactly, we will confine ourselves
to the study of the Fourier transform of a solution with respect to z; and x2. Put

V(nl,ng,z,t) = /V(:Ul,xQ,z,t)ei[m:”’ﬁ’””} dxidza,

“ (22)
ﬁ(m,ng, z,t) = /ﬁ(xl,xg, z,t)ei[mxﬁnﬁﬂ dxidxs,
R2
where 17 and 72 are the parameters of the transform.
In terms of the function V, we write problem (17)—(19) as follows:
=~ = 6
86‘? +%% = —sz’j(mm% 2)V;(m,ma, 2,t)

t
6
+/Zawz7‘ (1, M2, 2, t — ) dT + Fi(n1,m2, 2, 1), i=1,2,3,4, (23)
o J=1

aV; 0 _
o == > big (e, 2)Vi (e, 2,t) +
7=1

6
Zaw Vi(m,ne,z,t —7)dr, 1=25,6. (24)
Jj=1

c>\N

Here ~; takes real values

1, i=1,2

Vi
1, 1= 3,4,
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and the coefficients b;; are defined as follows:

. 434/P . q44/D . 434/D
b1 = »11 + M1 — i f, bia = 512 + M2 — i f—l 247
Q1 2q1 2qo
P q P . 43D
513:%13+M13—£q*1, 514:%14+M14—Z771i+1 2 f,
2¢2 1 2q 2q2

) D )
bis = »15 + M5 — “7152, big = »16 + Mg — %QM/};,

Y

. q4,/P . 4g3\/P . qa\/P
ba1 = 2091 + Moy — iy VP 12 \f, bag = 2099 + Moy — in2 VP
2q1 2q0 q2

9

. qa/P . 434/P SRV Y
bog = 293 + Moz + i . — 2 \2[ boy = s004 + Moy — VP

2q 2q 2g5
. D "
bas = 395 + Mos — ng/q;, bag = 396 + Mog — %(D\/f%
P4 N
b31 2%31+M31—£*17 b3a = 232 + M3 + iy f—ﬂhi,
22 1 2q1 2q2
. g34/P . q4\/P . g3\/P
b33 = 333 + M33 + i1 \f, b3y = s34 + M3y + i VP + Zﬁziv
Q1 2q1 2q2
. D 1
bss = se35 + M35 + “71527 b3g = 236 + M3 — 7ql\/f%
@D . @3\D /P
bar = se1 + My — i f—l—“hi, 5422%42+M42—L2[,
2¢1 2q2 2q;
. q4,\/P . g3\/P . q4,\/P
byz = se43 + My3 + i 2;{ + i 2;57 bas = 2044 + Myg +inp q\[7

/D iny
bas = 45 + Mys + mzi, bag = s46 + Mas — %(D\/QB,

2q0
. g54/P . G54/D
bs1 = »51 + M1 — i \f, bso = 50 + M5z — inp \[7
2q1 2q2
. 454/D . Q454/D
bs3 = 351 + Ms1 + imy 2(\](, bsy = 250 + M5 + 12 2;2[, bss = 255 + Mss,
. g6+/P . ge\/P
bsg = 0, be1 = 261 + Me1 + in2 \[, be2 = 62 + Mea — i1 \f,
2qo 2q1
. Q4e+/DP . 46+/DP
bes = 63 + Megs + ino Q;Qf, bes = 264 + Mea — i1 2;1[7 bgs = 0, bes = 6.

Fix n1 and 72 and for convenience introduce the notation 17(771, N2, 2,t) = ‘7(2', t). We will adopt these

notations for the Fourier transforms of the functions occurring in the initial, boundary, and additional
conditions (18), (19), and (21):

Vil_y=i(2),  i=1,2,...,6, (25)
Vilimo = Gi(t), i=1,2, Vil = Gi(t), i=3,4, (26)
Vilser = hi(t), i=1,2,  Vil—o = hi(t), i=3,4,5,6. (27)
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10 DURDIEV, TURDIEV

-
(2,t)
(ziati)a': i 4
0st0/Ti = 3,4 i:LQ’(ZO’tO)
0 (2,0) L 3

Fig. 1. Characteristic lines

2. EXAMINATION OF THE DIRECT PROBLEM

LetII = {(2,t) | 0 < z < L, t > 0} be the projection of the domain D to the plane of the variables z
and t. Consider an arbitrary point (z,¢) € IT on the plane of the variables £ and 7 and draw a characteristic
of the ith equation of system (23), (24) through (z,t) till the intersection with the boundary of II
in the domain 7 < t. The equation looks as

E=z+y(T—1t). (28)
For ~; =1 (i.e., i = 3,4), this point lies either on the interval [0, L] of the axis ¢ = 0 or on the straight
line z =0, and for 7; = —1 (i.e., i = 1, 2), either on the interval [0, L] or on the straight line z = L (see
Fig. 1).

Integrating the ith component of equations (23), (24) over characteristic (28) from (z{, ) to (z,1),
we find

¢ 6
‘Z(Z,t) ‘7(20,t0) +/|: Zb ‘7 5, :| dT
i j=1 E=z+vi(T—t)
t
—i—//Zaw £,a)Vj(&, 7 — a)da dr, i=1,2,3,4, (29)
50 §=z+v;(T—t)
0
t 6 t T 6
Vi(z,t) :‘71-(2,0)—/Zbij(z)f/j(z,T)dT—i—//Za (2,7 —a)dadr, i=5,6. (30)
0o J=1 0o o0 J=1

Find #} in (29) and (30). It depends on the coordinates of (z,t). It is easy to observe that 4(z,t) has

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No.2 2021



THE PROBLEM OF FINDING THE KERNELS 11

the form
L—=z L—=z
' t+ —, t> —,
t6(27t) = L ’YZL—Z 1=1,2,
0, 0<t< ,
Vi
to(z,t) = Vi 1= 3,4, to(z,t) =0, ©=5,6.
0, 0<t<2’/’}/i,

Then the condition that the pair (2§, t}) enjoys (28) implies

| L, 1> 12
zo(2,t) = T, i=1,2,
z—yt, 0<t< ,
Vi
; 0, t>z/v, . : .
zo(z,t) = /i i=3,4, zo(z,t) =z, 1=5,6.

z—t, 0<t<z/v,

The free terms of the integral equations (28) are defined through the initial and boundary condi-
tions (25) and (26) as follows:

5 L—=z L—=z
SO gi|t+ . , t2=> —,
Vi(zé,tf)) =< Vi %L ., 1=1,2,
¢i(z — vit), 0<t< o
i

~ gi(t—z/v), t=>z/v,
Vilz6, ) = Gt —2/w), 122/ i =3,4.

bi(z —mit), 0<t<z/v,

It is required that V; (2, t}) be continuous in IT. Note that, for these conditions to be fulfilled, the given
functions ¢; and §; must satisfy the fitting conditions at the angular points of II:

$i(0) = §i(0), i=1,2; ¢i(L) = §i(0), i=3,4. (31)
Here and below, the values of g; fort = 0 and (;31 for z = 0 and z = L are understood as the limit values
at these points as the argument tends from the side of the point where these functions are defined.

Suppose that all given functions in (29) and (30) are continuous functions of their arguments in II.
Then we have a closed system of Volterra-type integral equations with continuous kernels and free terms.
As usual, such a system has a unique solution in the bounded subdomain

My ={(z,t)|0<2< L, 0<t<T}
of IT, where T' > 0 is some fixed number.

Introduce the vector-function

O ~
w(z,t) = EV(z,t).
For obtaining a problem for w(z,t) similar to (23)—(26), we differentiate (23), (24) and the boundary

conditions (29) with respect to ¢ and find the condition for ¢ = 0 by means of (23), (24) and the initial

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No.2 2021



12 DURDIEV, TURDIEV
conditions (25). We infer

8wi 8wl~ 6 6 ~
j=1 j=1
/ 0
+/Zaij(z,7)wj(z,t —7)dr + éFi(z,t), 1=1,2,3,4, (32)
o J=1
5 p t .
;;Z:—wa( Jw;(z,t) +Zawzt —i—/Zaij(z,T)wj(z,t—T)dT, i=5,6, (33)
7j=1 7j=1 o J=1
wi(z,t)|t:0 = (I)Z'(Z), 7 = 1,6, (34)
(s Dlomo = 23u(t), =12 wi(sDloes = SGit), =34 (35)
Z, z=0 — dtgl ) 1= 1,2] Wiz, z:L_dtgl y 1=9,4,
where
6
D,(2) = Fi(z,0) - sz‘j =14
j=1
. (36)
=Y bij(2)¢i(2),  i=5,6.

j=1
Once again, integration along the corresponding characteristics reduces (32)—(35) to the integral
equations

’LUZ‘(Z, t) = 'LU(ZS, tf))

t
-l-/[at (& 7) bij(&w; (&, T —i—ZaU &)

j=1 } ‘E=Z+%(T—t)

=]

dr

dr, i=1,4, (37)

+ / / Z aij(z, a)w;(z, 7 — a) dodr, i =15,6. (38)
00

For the functions w;, the additional conditions (27) look as
d
dt
In equations (37), the functions w; (2, t{)) are defined as follows:

d . L—=z L—z
w; (20, th) = W i i=1,2,

L
®i(2 — yit), 0<t< 712,
1

qa
dt

wi(0,t) = —hi(t), i=3,6,  wi(L,t)=—hi(t), i=1,2. (39)
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d .
—ai(t—2/v), t>z/v,

wi(zh,th) = { dt i=3,4.
Di(z — vit), 0<t<z/v,
Suppose the fulfillment of the conditions
d - : - d_ _
RO.0) -5 566 = n0) = | gaw] i1 (40)
< z=0 j=1 t t=0
9 - : - d
RLO) -5 )] =Yt =|gaw| = @
< z=L dt t=0

j=1
[t is not hard to see that the fitting conditions for the initial data (34) and the boundary data (35) coincide
with (40)and (41) at the angular points of IL. It is clear that if the same equalities (40) and (41) are fulfilled
then (37) and (38) have unique continuous solutions w;(z, t) and the same affz(z, t).

Thus, we have proved the following

Theorem 1. Suppose that
é(.%'3> S 01[0700)7 ﬂ(l’g) < 01[07 OO)v &(1}3) < Cl[ov OO]:

j(t) € C'0,00),  K(t) € C'[0,00),  F(as,t) € C'(IN)
and conditions (20), (31), (40), and (41) are fulfilled. Then there is a unique solution to prob-

lem (23)—(26) in IL.

3. EXAMINATION OF THE INVERSE PROBLEM.
DEDUCTION OF AN EQUIVALENT SYSTEM OF INTEGRAL EQUATIONS.
Consider an arbitrary point (z,0) € IT and draw the characteristic (8) through (z, 0) till the intersec-
tion with the lateral boundaries of II. Iterating the ith component of equation (32), using the data (39),
we infer

t,(z)

wilz,0) = i)+ [ | GEEn -
0

ti Z) T

+ O/ O/jzzaz‘j(&a)wj(ﬁﬁ—a)da

6
me( wj fa Zam 6)

j=1

dr, i=1,4, (42)
=24t

where
1 9 , = 17 27
ti(z)= 4" '
L—2z i=34.
Integrating (33) leads to the integral equations

t

wi(z,t) = +/{ me Dw;(z,T +§;% 2 ﬂ@(@}dr

0

t T 6
+//Za¢j(z,a)wj(z,7'—a) dodr, i=25,6. (43)
0o o J=t
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Reckoning with the initial data (34), rewrite (42) and (43) as

t; Z) tz(z) T 6
/ Z aij(z 4+ %7, T) i (2 + viT) dr + / /Z a;j(z + 7T, )w;(z + %7, 7T — o) dodT
0 J=1 0o 0 J=
d "o 6
:‘I’i(z)—aﬁi(ti(z)) / [at (z 4+ T, 7) ]Z;sz Z 4T wj(Z+’YiT,T):|dT, 1=1,4,
5 —
t g t 7 ¢
/ a;;(0,7) dT—i—//Za” (0, 0)w;(0,7 — ) dewdr
o J=1 0 j=1

d ~
= = hi(t) — +/wa Jw;(0,7)dr i=5,6.
0o J=1
Differentiate the first equations with respect to z, and the second, with respect to ¢. Then
ti(2)

6 6
> i+ Wt N i) = [ 5 @i (e ) d

J=1

l\z

ti( 6
+ / Z (2 +iti(2), T)w; (2 + viti(2), ti(2) — 7) dr
0o J=l1

tz(z T

—%‘0//
Fi(z +miti(2), ti(2)) —

—[ iti(2),ti
J

8 d
il — N D _ (4.
3 (aij(z + T, )wj(z + 7,7 — @) dodr Vi i(2) o2 hi(ti(z))

M@

l\z

1

J

b2 +m(z»wj(z+%tz~<z>,ti<z>>}

Se\Qv
M@

1

Z

6
d .
/ [(‘%8 (z+ 1, 7) — ; a( bij(z + viT)w;(z + 3T, T)):|d7', i=1,4, (44)
5 -
t 6 2 6
Zaw (0,1) gZ)] +/ZQU (0,7 w;(0,t —7)dr = @hi(t) +Zbij(0)wj(0,t), i=>5,6. (45)
o =1 j=1
Now, replace t;(z) by ¢ in (43). We infer
t g 5
Zaw (0.06,0) = (=3t + [ 3 2 it = )uw(—ult — 7.r) dr
o J=1

o (=t = 71,352t = 7)) dr — [ 3 ai0.7) Ghs(-vie — 7)) dr
0

¥l

J=1

—%/tz

6
o
_//Zaz aij(—yi(t = 7), @)wj(—yi(t = 7), 7 — @) dadr,  i=1,2, (46)
0 o0 J=1
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6 ¢
- 0 ~
> (L3 (L) = PAL =)+ [ 3 (s (L =t = 7). )35 (L — e~ 7)) dr
j=1 o J=1
t 6 t 6
d - 0
—/z:laij(L,T)d —yt —71)d /Z:laz zy (H — t_T))wJ(L Yilt — 1), )) dr
0 J= 0 J=

z

t 1 ¢
+O/O/Zaa(aij(L_%(t_T)aa)wj(L—%(t—T),T—Oé))dOddT, i=3,4, (47)

j=1
where P;(z) are defined by the formulas

2 ~
Pi(z) = —%d%@z‘(z) - %hi(ti(z)) - gth‘(Z + 7iti(2), ti(2))

6
82
+ ]Zl bij(z + viti(2))w; (2 + viti(2), ti(2)) + v / 8t8zFi(Z + 7, T) dT, i=1,4,
= 0

and the notations

are introduced.

Put
en(z) 0 es(z) 0 as(z) 0
0 c2(z)  ca3(z) caa(z) 0O 0
Qi) e w0 el 0 sl 0| )
0 caz(z)  cas(z)  caa(z) 0 0
0 0 c3(2) 0O 0 0
0 0 0 0 0 ce6(2)
where
en(e) = en(z) = (@A) + d (@), () =0,
c3(z) = cs3(2) = \éﬁ( 3(201(2) + 3(2)qa(2)92(2) + 63 (2)83(2) + 43(2)qa(2)94(2) + g3(2)b5(2)),
ca(2) =0,  c5(2) = —ez5(2) = ;’él(z;%_jg’ D e(2) =0, ea(z) =0,
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c31(2) = S (g1 01(2) + ¢1ds(2)),  c32(2) =0,  caa(2) =0,  es6(2) =0,

C41(Z) = 0, 645(2) = 0, 646(2) = 0, 651(2) = 0, 652( ) 0,

oS

c53(2) = VP (Q3Q5<Z>1(Z) + Q4Q5<52(Z) + Q3CI5¢33(2) =+ Q4Q5</34(Z) + CI5GE5(Z)),

2
csa(z) =0, cs5(2) =0, cs6(2) =0, ce6(2) = \/23q76€56(2)7
q192

061'(2) = 07 i = 175

Reckoning with (48), rewrite (37) and (38) as follows:

6

t
wi(z7t> = wi(zé7t6) +/ [;Fl(gﬂ—) _Zbij( w] 57 +ZQW 5 ¢

(T )] ’ dr
: j=1 §=z+i(T—t)
£

dr, i=1,6. (49)
E=z+i(T—t)

t T 6
+ [ [ au@uer -
a0 J=1
Using (48), we can also rewrite (44) and (45) so that

6
D Qijlwis b)) ¥5(t) = Pilti(1))
o

T D e R A e e e e

Jj=1

0
6 ) -
> [ ng — it = 7); ¢(—(t — 7)) +Qz‘j(—%(t—7)§ﬁh(—%(t—T)))]‘I’j(T)dT

l

7j=1
t T 6 a
- 5; / / Z &Qw —7)wi(—y(t —71), 7 — a))\I/j(a)dadT, i=1,6. (50)
0 Jj=1
Here
_>\’Lt7 1= 1 2
17 i:1,47 L’ ’L’:374’ _
Bi = v = ti(t) = qL—N\t, i=3,4,
07 7::5,67 0’ ’i:172’5’6’

£, i =5,6.

Let WU(t) = (80/1» g0/2, @é,w;, @Z/Q,wé)* be the vector-function composed of the derivatives of the un-
known functions of the inverse problem, where W;(t) are the entries of this vector-function.

In what follows, we assume the fulfillment of the condition

det Q(vi; ) # 0, (51)

which is equivalent to the inequalities
c11 # 0, c15 # 0, a2 # 0, co4 # 0, cs3 # 0, ce6 7 0.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No.2 2021



THE PROBLEM OF FINDING THE KERNELS 17

Now, solving (50) with respect to ¥;(¢), we obtain

Wi(t) = ! Pt 6 6b d X
i(t) = W;[ j(tj(t))+ﬁj0/§a k(= (t = T))wi (= (t = 7,7)) T] Qji(vi; ¢)

6 t g
+;~Z {ﬁj/zbﬂf(_%’(t_T))iwk(_’Yj(t_TaT))dT] Qji(vi; b)
j=1

k=1

J=1 k=1
1 6 t T 6 P ~
- m ; [ﬂj 0/ 0/ ; @ij(iw(t = T)iwp(=(t = 7), 7 — a))¥(a) dadT} Q;i(vi; 9),

(52)

where Q;; are the algebraic complements to the entries ¢j; of @, ¢ = 1, 6.

Equations (52) contain the unknown functions aawj, j = 1,6. For them we obtain integral equations
z

from (49) by differentiating in z. Moreover,

0 o ... 0,[0 d : ;
%wi(z,t) = &wi(%ato) 7510 [&F(zmto) me(?«’o)wa(zo’to +ZQ’L] 2’07@‘1’]‘(750)]

7=1 7j=1

9 LI 0
[ (a6 = X febatemite n ~ o) St
: j:
6 g i
+Y. (a0 %/Z@myzmo»%mm
j=1

t

76
0
+//;&%&%& @)¥;(a) da

to O

E=24;(T— t)

dr, i=T1,6, (53)
)

where

Gi(z0to—7)=4"q 0. .
-9\ — — 7|, ]:1a2
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The fulfillment of the following fitting conditions is required:

6
L 5i0) = F0.0) — i 6i2)| = by(0di0), =12,
2=0 j=1
. 5 5 (54)
& gl(o) = Fi(L’ 0) - ’Yi@ d)l(z) L - ;bij(l’)d)i([’)v i =3,4,
d - 6 .
—hi(t)] == bij(0)gs(0),  i=5,6. (55)
dt P

4. THE MAIN RESULT AND THE PROOF

The main result of the present article is as follows:

Theorem 2. Suppose the fulfillment of the conditions of Theorem 1 and also the conditions
M) €C0,L),  §lt) € C20,00),  h(t) € CH0,00),  F(z,1) € CA(I)

condition (51), and the fitting conditions (31), (40), (41), (54), and (55). Then, for every L > 0,
on the interval [0, L], there exists a unique solution to the inverse problem (32)—(35) of the class
U (t) € C0, L], and each component p; € C[0, L] is determined by defining h;(t) for t € [0, L],
i =1,2,3; and each v; € C*0, L], by defining h;(t) fort € [0, L], i = 4,5,6.

Proof. Equations (49), (52), and (53) supplemented with the initial and boundary value conditions

from (32) and (33) constitute the closed system of equations on the unknown w;(z,t), ¥;(t), and

2wi(z, t) fori = 1,6. Now, consider the square

0z

o :={(2,t) |0<2<L,0<t<L}.

Equation (49),(52), and (53) show that the values of w;(z,t), ¥;(t), and gwi(z, t)for (z,t) € Il are
z

expressed in terms of the integrals of some combinations of these functions over segments lying in Ilj.

Write (49), (52), and (53) as a closed system of Volterra-type integral equations. For this introduce

the vector-functions v(z,t) = (v}, v?, v}

1771 7

), i = 1,6, by defining their components by the equalities

0 SV
v}(z,t) = wi(z,t), vi(z,t) = Uy(t), v3(z,t) = Ewi(z,t) + ]Z:; Qij(20; (b)\Ilj(tO)@to.
Then the system (49), (52), and (53) takes the operator form
v = Av, (56)
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where A is the operator A = (A}, A?, A?), i = 1,6, that is defined in accordance with the right-hand
sides of (49), (52), and (53) by the equalities

Ao =0 (2,1)

t 6

6
+/ [ZQij(z+’Yi(T—t);<5)U?(T) =Y bij(z + 7l — ) (z 4+ vilr — 1), 7) | dr
j=1

. j=1
to

- o .
=2 Qu(a0:9)v; (t’(ﬁ)azt{)} drQ;i(vi; §)

p 6
—1,,~//Zzﬁjfi@jk(—Wj(t—T);Uzi(—%(t—T)J—a))vﬁ(a) dadr Qji(vis ¢),
0 0

det Q(vi; ¢) =1 k=1
(58)
t 6 d 6 6 5
Alv =0 (z,) — / [Z b (v (€ 7) + Y bis(©) (vf(E,T) ZQJk(zO,cb)v%(té)até)
£ Jj=1 Jj=1 k=1
65 t g
_ 2 ) 2
> e @6 O e g 0/ >4 (st =)o
t T 6
8 1 2
+ a_ Wt ) ) d d, 59
/ 0/ Y g@ulenier -yl dn o 69)

where i = 1, 6.
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In these formulas, we used the notations

U?l(z,t) = wi(zé,té) + / —Fi(z+ (Tt —t),7)dT,

t

6
02, 4y — 1 (E(N O (1
v; (Z,t) == detQ(yué) ;F)j(t_](t))gﬂ( zagb))

vz 0) = gowi( ) = 5t 5 (46 )
0 o [0
+ 5210 ;:1 bij (26)w; (26, th) +/ataze‘(Z+%‘(T —1),7)dr.

t
Endow the set of continuous functions Cs(Ily) with the norm

l —st
— (2.t
ol 1<i<6. i<i<3 (z,st;lepno RIC

)

where s > 0 is a number to be chosen below. Obviously, for s = 0 this space coincides with the set
of continuous functions with the norm ||v||s. By the inequality,

e ulls < Jlolls < [lvl
the norms ||v||s and ||v|| are equivalent for ant fixed L € (0, c0).
Further, consider the set of functions S(v°, r) C Cy(Tly) satislying the inequality
lo =l <7, (60)
where the vector-function
Uz t) = (0] (= 0),0%(1), 0% (2, 1)), i=186,

is defined by the free terms of the operator equation (56). It is not hard to observe that the following
estimate holds for v € S(v°,7):

lolle < o°lls +7 < o0l 47 2= ro.
Thus, g is known.
Introduce the notations

¢o = fg?;%”?bz'HCQ[OL]a g0 = max lgillc2(0,z)5 Fo = max 1 Fill 2 110)

ho := max |hllc2p0,1), Ty := max{go, fo}, Py :=min{|Q(0)|, |Q(L)|},

1<i<n

Yodo = max [Qij(z + (T —);@)cippry, Qo :=max{ max |Q;(0)], max |Qi(L)|}.

1<i<n 1<i<n 1<i<n

The operator A takes Cs(Ilp) into itself. Show that for a suitable choice of s (note that L > 0 is
an arbitrary fixed number) it is a contraction operator on S(v°, 7). Let us first verify that A takes
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the set S(v°, r) into itself; i.e., the condition v(z,t) € S(v°,7) implies that Av € S(v°,r) if s satisfies
some constraints. Indeed, given (z,t) € Il and v € S(v°,7), we have

L6
(Ao =29 = | [ [ @ute-tutr = 181Dy
th =t
6

= Y bij(z il = )+ (T 1), )”}dT
j=1

t T 6
+ / / Z sz z 4+ vi(T —t); Ujl-(z +vi(r —t), T — a))e*s(T*a)U?(a)e*m dadt
7j=1

ty

6

t
7 —s(t—7 7 1
6[(T0¢0+b0)uvus+T0HUH§T]/ e dr < ~((Todo + bo) + ToLro)ro := 0
0

Likewise, we obtain

|(AZv — %) e ™| < ?;6P° (bo(2 + 6Y0do) + Yoo + Tolo + YoLro)ro == 1a2,

1
|(Afv —0f)e™!| < = (b0(2 +6Yo¢0) + Yodo + Yolo + ToLro)ro := Lo

These together with (56) and (57)—(59) imply the estimates

[Av — 0| = max { max. (zi;lepno |(Afv — v e ],

1
02 —st 3 03\ ,—st
iz o, (0= o)™ gy s [(Afo o) < e

where ag := max(ay, az, az). Choosing s > (1/r)ag, we obtain that A takes S(v°, p) into itself.

Now, take v, € S(v°,7) and estimate the norm of the difference Uv — U®. Using the obvious
inequality

|fu vh — o Ul{e st < ‘v k‘ : ‘vﬂe*s’f + ’”&ﬂ . ‘Uﬁ —fjﬂe*St < 2ro|lv — 0|5
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and estimates for the integrals analogous to those above, we arrive at

t 6
’(A}U - A}ﬁ)e_St‘ - ‘ / [Z Qij(z +vi(T —t); gg) —s(r—a) (UJ (1) — @]Z(T))B_ST
i Jj=1

6

=3 bzl = )T (W 4 alr = £),7) — Dz 4l — 1), T>)e”] ir
j=1
t T 6
+//Z [Qw 24 (T = 1);0) (2 4+ 7T — 1), 7 — ) e ST Vi (a)e
g 0 I=1

= Qi (z+ (T —t); 17]1-(,2 + (T —t), 7 — a))e_s(T_"‘)ﬁjz-(oz)e_m} dodT

t
< n[(Yodo + bo)llv — s + 2roYollv — 57 / —s(t—r)
0

1 ~ - -
< ;"(Toqbo +bo +2roYoL)|lv — 0[5 := 3 51||U — 0lfs.
Likewise, we obtain the estimates

365

(A — azp)e] < T

(vo(2 + 6060) + Todo + YaTo + 2raYoL) [l = ol

=~ Pallv—olls,
S

(A — APD)e | < = <b0(2 +6Y000) + Yodo + Yolo + 2T0T0L) ||u — 0|

= 2 Byllo - 9.
S

Hence,

| Av — AD||s = max { max  sup | (Ajv— AjD)e ™|, max sup |(Aiv— A7D)e |,

<i<6 (4 1)l 1<i<6 4eo,1]

jmox, sup | (Al — A?ﬁ)e‘“\} < % Bollv = 3s,
where 3y := max(/1, 52, 33).
Now, choosing s > 3, we conclude that A contracts the distance between v and © by S(v°, p).
As follows from the estimates above, if s is chosen so that

s> s* = max{ag, B}

then A is a contraction on S(v°, p). In this event, by the Banach Principle (see [40, p. 87—97]),
equation (56) has a unique solution in S(v?, p) for every fixed L > 0.

Theorem 2 is proved. O
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Knowing ¢;(t) and ¢;(t) for i = 1,2, 3, we can find the functions ;(t) and t;(t):

t

’ ’

i(t) =s0i(0)+/%(7)dﬂ Pi(t) =¢i(0)+/¢i(7)dﬂ i=1,2,3.
0

0
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