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Abstract. We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for
a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-
type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the
unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the
space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given
problems.

INTRODUCTION

This research belongs to the class of inverse problems of nonlinear dynamic viscoelasticity. A viscoelastic medium
is a medium with memory (the state of such media at the current moment of time depends on the entire prehistory of
the process). The desired value in the problem posed is the kernel of the integral operator that models the memory
phenomenon that occurs during the propagation of wave processes in viscoelastic media.

The problem of determining the kernel (depending on time and space variables) of an integral operator is a direction
in the theory of inverse problems that appear at the end of the last century [1, 2, 3, 4]. A more detailed analysis of
sources in this area is presented in the papers [5, 6, 7, 8], which is one of the latest fundamental works in the field of
studying inverse problems for media with memory (or with aftereffect).

Among the first results on inverse problems of linear viscoelasticity, close to the, works [9, 10, 11, 12]. Further
development of research is reflected, for example, in [13, 14, 15]. In particular interest to multidimensional inverse
problems for determining kernels when the required function depends on two or more variables. The one-dimensional
and multidimensional inverse problem for with initial, boundary and additional conditions were studied in [16, 17, 18,
19, 20]. In this paper, based on the method of fixed point spaces, we obtain a local unique solvability of the problem
of determining the kernel K(t) in the class of functions that are analytic in the variable t.

The study of inverse problems of determining the kernel or coefficient of an integral operator in hyperbolic integro-
differential equations is the object of study by many authors. Among those closest to the present work, we can single
out [21, 22, 23, 24, 25, 26, 27]. In these papers, the problems of determining the kernel depending only on the time
variable (one-dimensional inverse problem) for the case of distributed [21, 22, 23, 24] and lumped [27] sources of
wave excitation are considered. The problems are reduced to solving integral equations of the Volterra type with
respect to unknown functions. Further, the principle of contraction mappings (Banach’s theorem) is applied to these
equations in the corresponding function spaces. Existence and uniqueness theorems are obtained, as well as estimates
of the continuous dependence of the solution on given functions.

The inverse problem of determining the convolution kernels of integral terms from a system of first-order integro-
differential equations of general form with two independent variables were studied in [28, 29, 30]. The theorem of
local existence and global uniqueness is obtained. In the work [31] the method for studying the work [29] was applied
to the investigating of the inverse problem of determining the diagonal relaxation matrix from the system of Maxwell’s
integro-differential equations.
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Now, we consider anisotropic media with a matrix of independent elastic module of the tetragonal form [32]:

ci j =

⎛⎜⎜⎜⎜⎜⎝
c11 c12 c13 c14 −c25 0
c12 c11 c13 −c14 c25 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 c25

−c25 c25 0 0 c44 c14

0 0 0 c25 c14
c11−c12

2

⎞⎟⎟⎟⎟⎟⎠ .

Let us denote by σi j the projection onto the xi axis of the stress acting on the area with the normal parallel to the x j
axis, and ui are the projection onto the xi axis of the vector particle displacement. In viscoelastic anisotropic media,
the stress tensor has the following representation [33], [34]:

σi j(x, t) =
3

∑
k,l=1

ci jkl

⎡⎣Skl +

t∫
0

Ki j(t − τ)Skl(x,τ)

⎤⎦ , i, j = 1,2,3, (1)

Skl =
1

2

(
∂uk

∂xl
+

∂ul

∂xk

)
, x ∈ R

3, k, l = 1,2,3,

here Ki j(t) are functions responsible for the viscosity of the medium and Ki j = Kji, i, j = 1,3.
The equations of motion of a viscoelastic body particles in the absence of external forces have the form [35]:

ρ
∂ 2ui

∂ t2
=

3

∑
j=1

∂σi j

∂x j
, i = 1,3, (2)

where ρ = ρ(x3) is medium density and ρ > 0, u(x, t) = (u1(x, t),u2(x, t),u3(x, t)) is displacement vector.
Note that (1) can be considered as integral Volterra equations of the second kind with respect to the expression

3

∑
k,l=1

ci jklSkl . For each fixed pair (i, j) solving these equations, differentiating with respect to t and introducing the

notation ui =
∂
∂ t ui, we get

∂
∂ t

σi j(x, t) =
3

∑
k,l=1

ci jkl

(
∂uk

∂xl
+

∂ul

∂xk

)
+ ri j(0)σi j(x, t)+

t∫
0

r′i j(t − τ)σi j (x,τ)dτ, (3)

where ri j are the resolvents of the kernels Ki j and they are related by the following integral relations [36]:

ri j(t) =−Ki j(t)−
t∫

0

Ki j(t − τ)ri j(τ)dτ, i, j = 1,3. (4)

From the condition Ki j = Kji implies the ri j = r ji.
Then the system of equations (1) and (2) for the velocity ui and strain σi j (σi j = σ ji) in view of (3) can be written

as a system of first-order integro-differential equations. For convenience, let x3 = z

(
I

∂
∂ t

−B
∂

∂x1
−C

∂
∂x2

−D
∂
∂ z

−F
)

U(x, t) =
t∫

0

R(t − τ)U(x,τ)dτ, (5)

where U = (u1,u2,u3,σ11,σ12,σ13,σ22,σ23,σ33)
∗, ∗ is the transposition sign,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O3×3

1
ρ 0 0 0 0 0

0 0 0 1
ρ 0 0

0 0 0 0 1
ρ 0

c11 c14 −c25

c12 c25 0
c13 0 0
c14 c44 0
−c25 0 c44

0 c25 c14

O6×6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O3×3

0 0 0 1
ρ 0 0

0 1
ρ 0 0 0 0

0 0 0 0 0 1
ρ

c14 c12 0
−c14 c11 0
0 c13 0
c44 c14 c25

0 c25 c14

c25 0 c11−c12
2

O6×6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O3×3

0 0 0 0 1
ρ 0

0 0 0 0 0 1
ρ

0 0 1
ρ 0 0 0

−c25 0 c13

−c25 0 c13

0 0 c33

0 c25 0
c44 c14 0

c14
c12−c11

2 0

O6×6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F =

(
O3×3 O3×6

O6×3 diag(r11(0),r22(0),r33(0),r12(0),r13(0),r23(0))

)
, R(t)=

(
O3×3 O3×6

O6×3 diag(r′11,r
′
22,r

′
33,r

′
12,r

′
13,r

′
23)

)
.

The system (5) can be reduced to a symmetric hyperbolic system [37].
Let us reduce the system (5) to the canonical form with respect to the variables t and z. To do this, we write the

equation

|D−λ I|= 0, (6)

where I is an identity matrix of dimension 9. Equation (6) has roots

λ1 =

√
c33

ρ
, λ2 =

1

2
√ρ

√
a1 −√

a2, λ3 =
1

2
√ρ

√
a1 +

√
a2, λ4 = λ5 = λ6 = 0, (7)

λ7 =− 1

2
√ρ

√
a1 +

√
a2, λ8 =− 1

2
√ρ

√
a1 −√

a2, λ9 =

√
c33

ρ
, (8)

where a1 = c11 − c12 +2c44, a2 = (c11 − c12 −2c44)
2 +16c2

14.
Now we choose a nonsingular matrix T (z, t) so that the equality holds

T−1DT = Λ, (9)

where Λ is a diagonal matrix that is composed by the eigenvalues of the matrix D.
The formula (9) implies the equality

DT = T Λ,

which means that the column with index i of the matrix T is an eigenvector of the matrix DT corresponding to the
eigenvalue λi. Direct calculations show that the matrix T satisfying the above conditions can be chosen as

T (z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 1 1 0

0
a3−√

a2

4c14

a3+
√

a2

4c14
0 0 0

a3+
√

a2

4c14

a3−√
a2

4c14
0

1 0 0 0 0 0 0 0 1
− c13

λ1

c25
λ2

c25
λ3

1 0 1 − c25
λ3

− c25
λ2

c13
λ1− c13

λ1
− c25

λ2
− c25

λ3
1 0 1

c25
λ3

c25
λ2

c13
λ1−λ1ρ 0 0 0 0 0 0 0 λ1ρ

0 − c25
λ2

· a3−√
a2

4c14
− c25

λ3
· a3+

√
a2

4c14
0 0 1

c25
λ3

a3+
√

a2

4c14

c25
λ2

· a3−√
a2

4c14
0

0 −λ2ρ −λ3ρ 0 0 0 λ3ρ λ2ρ 0

0 −λ2ρ a3−√
a2

4c14
−λ3ρ a3+

√
a2

4c14
0 0 0 λ3ρ a3+

√
a2

4c14
λ2ρ a3−√

a2

4c14
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where a3 = c11 − c12 −2c44.
We introduce a new function in equation (5) using the equality

U = T ϑ .
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and multiply this equation on the left by the matrix T . Then, for the function ϑ , after obvious transformations, we
obtain the equation (

I
∂
∂ t

+Λ
∂
∂ z

+B1
∂

∂x1
+D1

∂
∂x2

+F1

)
ϑ(x, t) =

t∫
0

R(z, t − τ)ϑ(x,τ)dτ, (10)

where, B1 = T−1BT = (bi j) , D1 = T−1CT = (di j) , F1 = T−1D ∂T
∂ z +T−1FT = (pi j) , R1(t) = T−1RT = (r̃i j) .

The (10) system is convenient in the sense that it splits with respect to the derivatives with respect to t and x3, and is

only linked through ∂ϑ
∂x and ϑ . The components ϑi, i = 1,2,3,7,8,9 of the vector function ϑ are called Riemannian

invariants of the system (5).

SET UP PROBLEMS AND INVESTIGATION OF THE DIRECT PROBLEM

Consider the system of equations (10) in the domain

Ω =
{
(x, t) : (x1,x2) ∈ R

2,z ∈ (0,H), t > 0
}
, H = const.

The purpose of this article is to study the direct and inverse problems for the system (10). Moreover, the direct
problem is an initial-boundary value problem for this system in domain Ω and in the inverse problem, the elements
of the matrix R are assumed to be unknown, which are included in the definition of the matrix R1.

In the direct problem, given matrices B1, D1, F1, and R1 it is required, in the domain Ω find a vector-function ϑ(x, t)
satisfying equation (10) for the following initial and boundary conditions:

ϑi
∣∣
t=0

= ϕi(x), (x1,x2) ∈ R
2, z = [0,H], i = 1,9, (11)

ϑi
∣∣
z=H = gi(x1,x2, t), i = 1,3, ϑi

∣∣
z=0

= gi(x1,x2, t), i = 7,9, (12)

here ϕi(x), i = 1,9, gi(x1,x2, t), i = 1,2,3,7,8,9 are given functions. It is known that [1] the problem (10), (11), (12)
is posed well.

The defined of the elements r̃i j(z, t), i, j = 1,9 of the matrix R(z, t) includes functions ri j(t), i, j = 1,9, ci j(z) on the
module of elasticity and ρ(z) on the density of the medium.

The inverse problem is to determine the nonzero components of the matrix kernel R(z, t), that is ri j(t), i, j = 1,3
(where ci j(z) and ρ(z) are given functions) in (10)− (12) if the following conditions are known:

ϑi
∣∣
z=0

= hi(x1,x2, t), i = 1,6, (13)

where hi(x1,x2, t), i = 1,6, are the given functions. In the inverse problem, the numbers ri j(0), i, j = 1,3 are also
considered to be given.

Let functions ϕ(x), g(x1,x2, t) included in the right-hand side of (10) and the data (11), (12) are compact support
in x1, x2 for each fixed z, t. From the existence for the system (10) of a compact support domain of dependence and
compact support with respect to x1, x2 of the right-hand side (10) and data (11), (12) implies the compact support in
x1, x2 solutions to the problem (10)–(12).

Let us study the property of solution to this problem. More precisely, we restrict ourselves to studying the Fourier
transform in the variables x1, x2 of the solution. Introduce the notation

ϑ̂ (η1,η2,z, t) =
∫
R2

ϑ(x1,x2,z, t)ei[η1x1+η2x2]dx1dx2,

where η1,η2 are transformation parameters. We fix η1, η2 and for convenience, we introduce the notation ϑ̂(η1,η2,z, t)=
ϑ̂(z, t).

In terms of the function ϑ̂ we write the problem (10)-(12) as(
∂
∂ t

+λ j
∂
∂ z

)
ϑ̂ j(z, t) =

9

∑
k=1

p̂ jk(z)ϑ̂k(z, t)+
t∫

0

9

∑
k=1

r̃ jk(z,τ)ϑ̂k(η1,η2,z, t − τ)dτ, j = 1,9, (14)
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where p̂ jk(z) = p̂ jk =−iη1b jk − iη2d jk − p jk.
We will use a similar notations for the Fourier images of functions included in the initial, boundary and additional

conditions (11)–(13):

ϑ̂i
∣∣
t=0

= ϕ̂i(z), i = 1,9, (15)

ϑ̂i
∣∣
z=H = ĝi(t), i = 1,3, ϑ̂i

∣∣
z=0

= ĝi(t), i = 7,9, (16)

ϑ̂i
∣∣
z=0

= ĥi(t), i = 1,6, (17)

where ϕ̂i(z), i = 1,9, ĝi(t), i = 1,2,3,7,8,9 are the Fourier images of the corresponding functions from (11), (12)
for ξ = 0. We also denote by ΩH the projection of Ω onto the plane z, t.

For the purpose of further research let us introduce the vector function ω(z, t) = ∂ ϑ̂
∂ t (z, t). To obtain a problem for

a function ω(z, t) similar to (14) – (17) differentiate equations (14) and the boundary conditions (16) with respect to
the variable t, and the condition for t = 0 is found using equations (14) and the initial conditions (15). In this case,
we get(

∂
∂ t

+λi
∂
∂ z

)
ωi(z, t) =

9

∑
k=1

p̂ik(z)ωk(z, t)+
9

∑
k=1

r̃ik(z, t)ϕ̂i(z)+
t∫

0

9

∑
k=1

r̃ik(z,τ)ωk(z, t − τ)dτ, i = 1,9, (18)

ωi
∣∣
t=0

=−λi
∂ ϕ̂i(z)

∂ z
+

9

∑
j=1

p̂ jiϕ̂i(z) =: Φi(z), i = 1,9, (19)

ωi
∣∣
z=H =

d
dt

ĝi(t), i = 1,3, ωi
∣∣
z=0

=
d
dt

ĝi(t), i = 7,9. (20)

For functions ωi additional conditions (17) gets

ωi
∣∣
z=0

=
d
dt

ĥi(t), i = 1,6. (21)

Let us pass from equalities (14)–(17) to the integral relations for the components of the vector ϑ̂ with integration
flux along the corresponding characteristics of the equations of the system (14). We denote

μi(z) =
z∫

0

1

λi(β )
dβ , i = 1,2,3,7,8,9, μ j(z) = 0, j = 4,5,6.

Inverse functions to μi(z), i = 1,9, will be denoted by z = μ−1
i (t), i = 1,9. Using the introduced functions, the

equations of characteristics passing through the points (z, t) on the plane of variables ξ ,τ can be written in the form

τ = t +μi(ξ )−μi(z), i = 1,9. (22)

Consider an arbitrary point (z, t) ∈ ΩH on the plane of variables ξ ,τ and draw through it the characteristic of the
i th of the system (14) equation tell to intersection in the domain τ ≤ t. The intersection point is denoted by (zi

0, t
i
0).

Integrating the equations of the system (14) along the corresponding characteristics from the point (zi
0, t

i
0) to the point

(z, t) we find

ωi(z, t) = ωi(zi
0, t

i
0)

+

t∫
ti
0

⎡⎣ 9

∑
k=1

p̂ik(z)ωk(ξ ,τ)+
9

∑
k=1

r̃ik(ξ ,τ)ϕ̂i(ξ )+
τ∫

0

9

∑
k=1

r̃ik(ξ ,τ −α)ωk(ξ ,α)dα

⎤⎦∣∣∣∣∣
ξ=μ−1

i [τ−t+μi(z)]

dτ, i = 1,9. (23)

We define in (23) ti
0. It depends on the coordinates of the point (z, t). It is not difficult to see that ti

0(z, t) has the
form
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ti
0(z, t) =

{
t −μi(z)+μi(H), t ≥ μi(z)−μi(H),
0, 0 < t < μi(z)−μi(H),

i = 1,2,3,

ti
0(z, t) = 0, i = 4,5,6, ti

0(z, t) =
{

t −μi(z), t ≥ μi(z),
0, 0 < t < μi(z),

i = 7,8,9.

Then, from the condition that the pair (zi
0, t

i
0) satisfies equation (22) it follows

zi
0(z, t) =

{
H, t ≥ μi(z)−μi(H),
μ−1

i (μi(z)− t) , 0 < t < μi(z)−μi(H),
i = 1,2,3,

zi
0(z, t) = z, i = 4,5,6, zi

0(z, t) =
{

0, t ≥ μi(z),
μ−1

i (μi(z)− t) , 0 < t < μi(z),
i = 7,8,9.

The free terms of the integral equations (23) are defined through the initial and boundary conditions (19) and (20)
as follows:

ωi(zi
0, t

i
0) =

{ ∂
∂ t ĝi (t −μi(z)+μi(H)) , t ≥ μi(z)−μi(H),

Φi
(
μ−1

i (μi(z)− t)
)
, 0 < t < μi(z)−μi(H),

i = 1,2,3,

ωi(zi
0, t

i
0) = Φi(z), i = 4,5,6, ωi(zi

0, t
i
0) =

{ ∂
∂ t ĝi (t −μi(z)) , t ≥ μi(z),
Φi

(
μ−1

i (μi(z)− t)
)
, 0 < t < μi(z),

i = 7,8,9.

Let the following conditions hold

ϕ̂i(H) = ĝi(0), and
∂ ĝi(t)

∂ t

∣∣∣∣
t=0

=−λ j
∂ ϕ̂i(z)

∂ z

∣∣∣∣
z=H

+
9

∑
j=1

pi j(H)ϕ̂ j(H), i = 1,3, (24)

ϕ̂i(0) = ĝi(0), and
∂ ĝi(t)

∂ t

∣∣∣∣
t=0

=−λ j
∂ ϕ̂i(z)

∂ z

∣∣∣∣
z=0

+
9

∑
j=1

pi j(0)ϕ̂ j(0), i = 7,9. (25)

It is easy to see that the conditions for matching the initial and boundary data (15), (16), (19), (20) in corner points
of the domain ΩH coincide with the relations (24) and (25). Hence it is clear that at the fulfillment of the same

equalities (24) and (25) equations then (23) will have unique continuous solutions ωi(z, t), or the same ∂
∂ t ϑ̂i(z, t).

Thus, the following statement holds:
Theorem 1. Assume functions ϕ(x), g(x1,x2, t) have compact supports in x1, x2 for each fixed z, t. Let

ρ(z), c33(z), c44(z), c66(z), ϕ̂(z) ∈ C1[0,H], ĝ(t) ∈ C1 [0,T ] , ρ(z) > 0, c33(z) > 0, c44(z) > 0, c66(z) > 0, ri j(t) ∈
C1 [0,T ] , i, j = 1,2, and conditions (24),(25) be satisfied. Then there is a unique solution to the problem (18)-(20) in
the domain ΩHT = {(z, t) : 0 ≤ z ≤ H, 0 ≤ t ≤ T}, .

The problem (18)-(20) in the domain ΩHT is equivalent to a linear integral equation of the second kind of Volterra
type with respect to ω(z, t). As follows from the theory of linear integral equations, it has a unique solutions [38],
[39]. So we drop it.

DERIVATION OF EQUIVALENT INTEGRAL EQUATIONS

Consider an arbitrary point (z,0) ∈ ΩHT and draw through it the characteristics (22) for i = 1,6, up to the intersection
with the boundary of the domain ΩH . Integrating the first six components of equation (18), we obtain

ωi(z,0) = ωi(0, ti
1)−

ti
1∫

0

9

∑
k=1

p̂ik(ξ )ωk(ξ ,τ)

∣∣∣∣∣
ξ=μ−1

i [τ+μi(z)]

dτ

−
ti
1∫

0

⎡⎣ 9

∑
k=1

r̃ik(ξ ,τ)ϕ̂i(ξ )+
τ∫

0

9

∑
k=1

r̃ik(ξ ,τ −α)ωk(ξ ,α)dα

⎤⎦∣∣∣∣∣
ξ=μ−1

i [τ+μi(z)]

dτ, i = 1,6, (26)
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where ti
1 =−μi(z), i = 1,2,3, ti

1 = 0, i = 4,5,6.
Consider (26) the initial conditions (19), we differentiate (26) with respect to z for i= 1,2,3 and for t for i= 4,5,6.

After simple calculations, taking into account (38)-(42), we pass to integral equations.

r′11(t) = α9P4(t)+α9α11P1(t)+α9

t∫
0

α3

(
r′11 − r′33

)
(τ)

d
dt

(
ĝ9 − ĥ1

)
(t − τ)dτ

+α9

t∫
0

[
α4r′11(τ)

d
t

(
ĝ8 − ĥ2

)
(t − τ)+α6r′11(τ)

d
t

(
ĝ7 − ĥ3

)
(t − τ)+ r′11(τ)

d
t

(
ĥ4 + ĥ5

)
(t − τ)

]
dτ

+α9α11

t∫
0

[
∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)+
1

2λ1
r′33(τ)

∂
∂ z

(ϕ̂1 − ϕ̂9)(ξ )

]∣∣∣∣∣
ξ=μ−1

1 [t−τ]

dτ

+α9α11

t∫
0

⎡⎣ 1

2λ1
r′33(τ)

d
dt

(
ĥ1 − ĝ9

)
(t − τ)+

τ∫
0

r′33(α)
∂
∂ z

(ω1 −ω9)(ξ ,τ −α)dα

∣∣∣∣∣
ξ=μ−1

1 [t−τ]

⎤⎦dτ, (27)

r′22(t) = α2P5(t)+α10α11P1(t)+α10

t∫
0

α7

(
r′22 − r′33

)
(τ)

d
dt

(
ĝ9 − ĥ1

)
(t − τ)dτ

+α10

t∫
0

[
α4r′22(τ)

(
ĥ2 − ĝ8

)
(t − τ)+α6r′22(τ)

(
ĥ3 − ĝ7

)
(t − τ)+ r′22(τ)ĥ5(t − τ)

]
dτ

+α10α11

t∫
0

[
∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)+
1

2λ1
r′33(τ)

∂
∂ z

(ϕ̂1 − ϕ̂9)(ξ )

]∣∣∣∣∣
ξ=μ−1

1 [t−τ]

dτ

+α10α11

t∫
0

⎡⎣ 1

2λ1
r′33(τ)

d
dt

(
ĥ1 − ĝ9

)
(t − τ)+

τ∫
0

r′33(α)
∂
∂ z

(ω1 −ω9)(ξ ,τ −α)dα

∣∣∣∣∣
ξ=μ−1

1 [t−τ]

⎤⎦dτ, (28)

r′33(t) = α11P1(t)+α11

t∫
0

[
∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)+
1

2λ1
r′33(τ)

∂
∂ z

(ϕ̂1 − ϕ̂9)(ξ )

]∣∣∣∣∣
ξ=μ−1

1 [t−τ]

dτ

+α11

t∫
0

⎡⎣ 1

2λ1
r′33(τ)

d
dt

(
ĥ1 − ĝ9

)
(t − τ)+

τ∫
0

r′33(α)
∂
∂ z

(ω1 −ω9)(ξ ,τ −α)dα

∣∣∣∣∣
ξ=μ−1

1 [t−τ]

⎤⎦dτ, (29)

r′12(t) = α12P6(t)+α14 (P2 +P3)(t)+α13α14

t∫
0

∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ
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+α12

t∫
0

[(
α7r′13 −α5r′12

)
(τ)

(
ĥ2 − ĝ8

)
(t − τ)+ ĝ6(t − τ)+

(
α8r′13 −α6r′12

)
(τ)

(
ĥ3 − ĝ7

)
(t − τ)

]
dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α13α15 (ϕ̂2 − ϕ̂8)(ξ )+α13α16 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

τ∫
0

(
r′23 − r′13

)
(α)

[
α13α15

∂
∂ z

(ω2 −ω8)(ξ ,τ −α)+α13α16
∂
∂ z

(ω3 −ω7)(ξ ,τ −α)

]∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α13α15 (ϕ̂2 − ϕ̂8)(ξ )+α13α16 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ, (30)

r′13(t) = α11 (P2 +P3)(t)+α11

t∫
0

∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α15 (ϕ̂2 − ϕ̂8)(ξ )+α16 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

τ∫
0

(
r′23 − r′13

)
(α)

[
α15

∂
∂ z

(ω2 −ω8)(ξ ,τ −α)+α16
∂
∂ z

(ω3 −ω7)(ξ ,τ −α)

]∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α15 (ϕ̂2 − ϕ̂8)(ξ )+α16 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ, (31)

r′23(t) = α17 (P2 −P3)(t)+α17

t∫
0

∂
∂ z

9

∑
j=1

p̂1 j(ξ )ω j(ξ ,τ)

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α18 (ϕ̂2 − ϕ̂8)(ξ )+α19 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

τ∫
0

(
r′23 − r′13

)
(α)

[
α18

∂
∂ z

(ω2 −ω8)(ξ ,τ −α)+α19
∂
∂ z

(ω3 −ω7)(ξ ,τ −α)

]∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ

+

t∫
0

(
r′23 − r′13

)
(τ) [α18 (ϕ̂2 − ϕ̂8)(ξ )+α19 (ϕ̂3 − ϕ̂7)(ξ )]

∣∣∣∣∣
ξ=μ−1

2 [t−τ]

dτ, (32)
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where Pi(t) = d2

dt2 ĥi(ti
1)− ∂

∂ z Φi(0)− 1
λi(0)

9

∑
j=1

p̂i j(0)ω j(0, t), i = 1,6 and the coefficients are determined by the follow-

ing equalities:

α1 =
a3 +

√
a2

4
√

a2
, α2 =

λ3

(
a3 −√

a2

)
4λ2

√
a2

, α3 =−c13

λ1
, α4 =

c25

λ2
, α5 =

c25

(
a3 −√

a2

)
4c14λ2

,

α6 =
c25

λ3
, α7 =−c25

(
a2

3 −a2

)
2c14

√
a2λ3

[
λ2

λ3
− λ3

λ2

]
, α8 =−c25

(
a2

3 −a2

)
2c14

√
a2λ3

[
λ2

λ3
+

λ3

λ2

]
,

α9 = [α3(ϕ̂1 − ϕ̂9)(0)+α4(ϕ̂2 − ϕ̂8)(0)+α6(ϕ̂3 − ϕ̂7)(0)+(ϕ̂4 + ϕ̂6)(0)]
−1 ,

α10 = [α3(ϕ̂1 − ϕ̂9)(0)+α4(ϕ̂2 − ϕ̂8)(0)+α6(ϕ̂3 − ϕ̂7)(0)+ ϕ̂6(0)]
−1 ,α11 = [(ϕ̂9 − ϕ̂1)(0)]

−1 ,

α12 = [α5(ϕ̂8 − ϕ̂2)(0)+α6(ϕ̂3 − ϕ̂7)(0)+ ϕ̂6(0)]
−1 ,α13 = [α7(ϕ̂2 − ϕ̂8)(0)+α8(ϕ̂3 − ϕ̂7)(0)]α12,

αi =
λ2

2(α1(ϕ̂2 − ϕ̂8)(0)+α2(ϕ̂3 − ϕ̂7)(0))
+(−1)i λ3

2(α2(ϕ̂2 − ϕ̂8)(0)+α1(ϕ̂3 − ϕ̂7)(0))
, i = 14,17,

αi =
λ2α1

2(α1(ϕ̂2 − ϕ̂8)(0)+α2(ϕ̂3 − ϕ̂7)(0))
+(−1)i+1 λ3α2

2(α2(ϕ̂2 − ϕ̂8)(0)+α1(ϕ̂3 − ϕ̂7)(0))
, i = 15,18,

αi =
λ2α2

2(α1(ϕ̂2 − ϕ̂8)(0)+α2(ϕ̂3 − ϕ̂7)(0))
+(−1)i λ3α1

2(α2(ϕ̂2 − ϕ̂8)(0)+α1(ϕ̂3 − ϕ̂7)(0))
, i = 16,19.

In order for our r′i j(t), i, j = 1,3 kernels to exist, these relations must be fulfilled:

λi �= 0, ai �= 0, i = 1,2,3, α3(ϕ̂1 − ϕ̂9)(0)+α4(ϕ̂2 − ϕ̂8)(0)+α6(ϕ̂3 − ϕ̂7)(0)+(ϕ̂4 + ϕ̂6)(0) �= 0, (33)

α3(ϕ̂1 − ϕ̂9)(0)+α4(ϕ̂2 − ϕ̂8)(0)+α6(ϕ̂3 − ϕ̂7)(0)+ ϕ̂6(0) �= 0, α2(ϕ̂2 − ϕ̂8)(0)+α1(ϕ̂3 − ϕ̂7)(0), (34)

α5(ϕ̂8 − ϕ̂2)(0)+α6(ϕ̂3 − ϕ̂7)(0)+ ϕ̂6(0) �= 0, α1(ϕ̂2 − ϕ̂8)(0)+α2(ϕ̂3 − ϕ̂7)(0) �= 0, (ϕ̂9 − ϕ̂1)(0) �= 0. (35)

Equation (27)− (32) contains unknown functions
∂ω j
∂ z , j = 1,9. For them we will receive integral equations from

(23) by differentiating them with respect to the variable z. Moreover, we have

∂
∂ z

ωi(z, t) =
∂
∂ z

ωi(zi
0, t

i
0)−

∂
∂ z

ti
0

[
9

∑
k=1

p̂ik(zi
0)ωk(zi

0, t
i
0)+

9

∑
k=1

r̃ik(zi
0, t

i
0)ϕ̂i(zi

0)

]

+

t∫
ti
0

∂
∂ z

⎡⎣ 9

∑
k=1

p̂ik(ξ )ωk(ξ ,τ)+
9

∑
k=1

r̃ik(ξ ,τ)ϕ̂i(ξ )+
τ∫

0

9

∑
k=1

r̃ik(ξ ,τ −α)ωk(ξ ,α)dα

⎤⎦∣∣∣∣∣
ξ=μ−1

i [τ−t+μi(z)]

dτ

+
∂
∂ z

ti
0

ti
0∫

0

9

∑
k=1

r̃ik(ξ , ti
0 − τ)ωk(ξ ,τ)

∣∣∣∣∣
ξ=μ−1

i [ti
0−t+μi(z)]

dτ, i = 1,9. (36)

We require the fulfillment of the matching conditions

−λ j
∂ ϕ̂i(z)

∂ z

∣∣∣∣
z=0

+
9

∑
j=1

p̂i jϕ̂ j(0) =
d
dt

ĥi

∣∣∣∣
t=0

, i = 1,6. (37)
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MAIN RESULT AND ITS PROOF

The main result of this work is the following theorem:
Theorem 2: Let the conditions of Theorem 1 be satisfied, besides function h(x1,x2, t) have compact support in x1,

x2 for each fixed t, ϕi(z) ∈ C2 [0, H] , i = 1,9, gi(t) ∈ C2 [0, H] , i = 1,2,3,7,8,9, hi(t) ∈ C2[0,H], i = 1,6, equality
(33), (34) and matching condition (37) hold. Then for any H > 0 on the segment

[
0,H

]
there is a unique solution to

the inverse problems (10)− (13).
Proof. We introduce the following notation for the unknowns:

υ1
i (z, t) = ωi(z, t), i = 1,9, υ2

1 (t) = r′11(t), υ2
2 (t) = r′12(t), υ2

3 (t) = r′13(t), (38)

υ2
4 (t) = r′22(t), υ2

5 (t) = r′23(t), υ2
6 (t) = r′33(t), υ3

i (z, t) =
∂
∂ z

ωi(z, t), i = 4,6, (39)

υ3
i (z, t) =

∂
∂ z

ωi(z, t)− r′33(t
i
0)

2

(
ϕ̂1(zi

0)− ϕ̂9(zi
0)
) ∂

∂ z
ti
0, i = 1,9, (40)

υ3
i (z, t) =

∂
∂ z

ωi(z, t)− r′23(t
i
0)

2

(
ϕ̂2(zi

0)− ϕ̂8(zi
0)
) ∂

∂ z
ti
0, i = 2,7, (41)

υ3
i (z, t) =

∂
∂ z

ωi(z, t)− r′13(t
i
0)

2

(
ϕ̂3(zi

0)− ϕ̂7(zi
0)
) ∂

∂ z
ti
0, i = 3,8. (42)

The system of equations (23), (27)–(32) and (36) form a complete system of equalities for unknown functions
in the domain D0 := {(z, t) : 0 ≤ z ≤ H, 0 ≤ t ≤ H} . According to the introduced notation for the vector function

υ(x, t) =
(

υ1
i (x, t),υ2

j (t),υ3
i (x, t)

)
, i = 1,9, j = 1,6, we write this system in the operator form

υ = Aυ , (43)

where the operator A = (A1
i , A2

j , A3
i ), i = 1,9, j = 1,6, the components of the operator A are determined by the

right-hand sides of equations (23), (27)–(32) and (36), respectively.
Let Cs(D0), (s ≥ 0) be the Banach space of continuous functions with the ordinary norm, denoted by ‖·‖s ,

‖υ‖s = max

{
max

1≤i≤9, (z,t)∈D0

∣∣υ1
i (z, t)e

−st ∣∣ ,
max

1≤i≤6, t∈
[

0,H
]∣∣υ2

i (t)e
−st ∣∣ , max

1≤i≤9, (z,t)∈D0

∣∣υ3
i (z, t)e

−st ∣∣}.

Obviously, Cs with s = 0 is the usual space of continuous functions with the ordinary norm, denoted by ‖·‖ in what
follows, because

e−sH‖υ‖ ≤ ‖υ‖s ≤ ‖υ‖.
The norms ‖υ‖s and ‖υ‖ are equivalent for any H ∈ (0,∞), where s ∈ (0,1) and we choose that number later.

Next, consider the set of functions S(υ0,r)⊂Cs(D0), satisfying the inequality∥∥υ −υ0
∥∥

s ≤ r, (44)

where r is a known number, the vector function υ0(z, t) =
(
υ01

i (z, t), i = 1,9, υ02
i (t), i = 1,6, υ03

i (z, t), i = 1,9
)
,

defined by the free terms of the operator equation (43). It is easy to see that for υ ∈ S(υ0,r) the estimate ‖υ‖s ≤
‖υ0‖s + r ≤ ‖υ0‖+ r := r0. Thus, r0 is known.
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Note that the operator A maps the space Cs(D0) into itself. Let us show that for a suitable choice of s (recall that
H > 0 is an arbitrary fixed number) it is on the set S(υ0,r) a contraction operator. First, let us make sure that the
operator A takes the set S(υ0,r) into itself, that is, it follows from the condition υ(z, t) ∈ S(υ0,r) that Aυ ∈ S(υ0,r),
if s satisfies some constraints. In fact, for any (z, t) ∈ D0 and υ ∈ S(υ0,r) the following inequalities hold:

∥∥Aυ −υ0
∥∥

s ≤
r0

s
βi, i = 1,24,

where, ϕ0 := max
i=1,9

∥∥ϕ̂i
∥∥

C2[0,H]
, g0 := max

i=1,2,3,7,8,9

∥∥ĝi
∥∥

C2[0,H]
, h0 := max

i=1,6

∥∥hi
∥∥

C2[0,H]
, α0 := max

i=1,19

∥∥αi
∥∥

C[0,H]
,

p0 := max
i, j=1,9

∥∥p̂i j
∥∥

C1[0,H]
, M0 = max

{
α0;

∥∥∥ 1
2λi

∥∥∥ ;
∥∥∥ ∂ ti

1
∂ z

∥∥∥}
and

βi := 9M0 +9ϕ0 +9M0r0, i = 1,9, β10 := 5M2
0 (g0 +h0)+M3

0 (g0 +h0)+18M3
0 +2M3

0 ϕ0 +2M2
0 r0,

β11 := 5M2
0(g0 +h0)+18M3

0 +2M3
0 ϕ0 +M3

0(g0 +h0)+2r0,

β12 := M2
0(g0 +h0)+18M2

0 +2M2
0 ϕ0 +2M0r0, β13 := 18M3

0 +2M2
0(h0 +g0)+2M2

0 +12M2
0 ϕ0 +8M2

0 r0,

βi := 18M2
0 +16M0ϕ0 +8M0r0, i = 14,15, βi := 18M0 +18M0ϕ0 +18M0r0, i = 16,24.

Choosing s > (1/r)β0,
(
β0 = max

{
βi, i = 1,24

})
we get that the operator A maps the set S

(
υ0,r

)
into itself.

Now, let υ and υ̃ be two arbitrary elements in S(υ0,r). Using the obvious inequality∣∣∣υk
i υ l

i − υ̃k
i υ̃ l

i

∣∣∣e−st ≤
∣∣∣υk

i − υ̃k
i

∣∣∣ ∣∣∣υ l
i

∣∣∣e−st +
∣∣∣υ̃k

i

∣∣∣ ∣∣∣υ l
i − υ̃ l

i

∣∣∣e−st ≤ 2r0‖υ − υ̃‖s, (z, t) ∈ D0,

after some easy estimations, we find that for (z, t) ∈ D0,

‖Aυ −Aυ̃‖s ≤
‖υ − υ̃‖

s
γi, i = 1,24,

where,

γi := 9M0 +9ϕ0 +18M0r0, i = 1,9, γ10 := 5M2
0 (g0 +h0)+M3

0 (g0 +h0)+18M3
0 +2M3

0 ϕ0 +4M2
0 r0,

γ11 := 5M2
0(g0 +h0)+18M3

0 +2M3
0 ϕ0 +M3

0(g0 +h0)+4r0,

γ12 := M2
0(g0 +h0)+18M2

0 +2M2
0 ϕ0 +8M0r0, γ13 := 18M3

0 +2M2
0(h0 +g0)+2M2

0 +12M2
0 ϕ0 +16M2

0 r0,

γi := 18M2
0 +16M0ϕ0 +16M0r0, i = 14,15, γi := 18M0 +18M0ϕ0 +54M0r0, i = 16,24.

Choosing now s > γ0,
(
γ0 = max

{
γi, i = 1,24

})
we get, that the operator A compresses the distance between the

elements υ , υ̃ to S
(
υ0,r

)
.

As follows from the performed estimates, if the number s is chosen from conditions s > s∗ := max{β0,γ0}, then the
operator A is contracting on S

(
υ0,r

)
. In this case, according to the Banach principle [40] equation (43) has the only

solution in S
(
υ0,r

)
for any fixed H > 0. Theorem 2 is proved.

By the found functions r′i j(t), i, j = 1,3 the functions ri j(t), i, j = 1,3 are found by the formulas

ri j(t) = ri j(0)+

t∫
0

r′i j(τ)dτ, i, j = 1,3.

Note that by the function ri j(t), i, j = 1,3 the functions Ki j(t), i, j = 1,3 are defined as solutions of integral equations
(4).

CONCLUSION

In this work, inverse problem was considered for determining the kernel R(t) included in the equation (10) with
by using additional condition (13) of the solution of problem with the initial and boundary conditions (11), (12).
Sufficient conditions for given functions are obtained, under which the inverse problem has unique solutions for a
sufficiently small interval.
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