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Abstract. We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for
a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-
type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the
unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the
space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given
problems.

INTRODUCTION

Hyperbolic systems of equations of the first order describe many physical processes associated with the propagation
of waves of various nature. For example, we can point out the systems of equations of acoustics, electromagnetic
oscillations, and the theory of elasticity.

Recently, there has been an increased interest in hyperbolic systems of integro-differential equations with a
convolution-type integral. Such equations describe processes with memory (with aftereffect) or, as they are also
called, eridite processes (see [1], pp. 180-189). Such processes are characterized by the fact that the change in their
state at each moment of time depends on the history of the process. Examples of such processes are the deformation
of a viscoelastic medium (see [2], pp. 449-453), the processes of propagation of electromagnetic waves in media with
dispersion (see [3], pp. 357-392) and dynamics of coexistence and development of animal and plant populations of
various species (see [1], pp. 193-195).An analysis of the dynamic equations describing such processes shows that
Volterra operators are added to the right-hand side of the systems of hyperbolic equations operators of the convolution
type of some function, depending on the time and the elliptic part of the corresponding hyperbolic operators on the
left side.

The theory of inverse problems for hyperbolic systems was developed in the works of L.P. Nizhnik [4], S.P. Belen-
sky [5, 6], V.G. Romanov [7, 8] and others. The study of inverse problems of determining the kernel or coefficient of
an integral operator in hyperbolic integrodifferential equations is the object of study by many authors [9, 10, 11, 12,
13].

At present, the inverse problems of determining the kernel from one hyperbolic integro-differential equation of
the second order are well studied A. Lorenzi [14], V.G. Romanov [15], Zh. Sh. Safarov [16], J. Janno and L. Von
Wolfersdorf [17], V. G. Romanov [18], D. K. Durdiev [19, 20, 21]. In D. K. Durdiev [22, 23], V.G. Romanov [24,
25] results were obtained on the existence and uniqueness of some multidimensional inverse problems for second-
order hyperbolic integro-differential equations. The papers [26, 27, 28] discuss the issues of global solvability of
one-dimensional memory problems.

The system describing the propagation of acoustic waves in the two-dimensional case is written as follows [29]:



∂ p
∂ t +ρ0c2

0

(
∂u1
∂x + ∂u2

∂y

)
=

t∫
0

ϕ1(t− τ)p(x,y,τ)dτ,

∂u
∂ t +

1
ρ0

∂ p
∂x =

t∫
0

ϕ2(t− τ)u(x,y,τ)dτ,

∂v
∂ t +

1
ρ0

∂ p
∂y =

t∫
0

ϕ3(t− τ)v(x,y,τ)dτ.

(1)
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We write it in the matrix form of this system:

A0
∂

∂ t
U +A1

∂

∂x
U +A2

∂

∂y
U =

t∫
0

Φ(t− τ)U (x,y,τ)dτ, (2)

where U = (p,u,v)∗− is a column vector; A j, j = 0,2 are symmetric matrices, and A0 is positive definite; Φ =
diag(ϕ1,ϕ2,ϕ3). The matrices A j have a cellular structure:

A0 =

1 0 0
0 1 0
0 0 1

 , A1 =

 0 ρ0c2
0 0

1
ρ0

0 0
0 0 0

 , A2 =

 0 0 ρ0c2
0

0 0 0
1

ρ0
0 0

 .

Let us reduce system (2) to the canonical form. As is known from linear algebra (see [30], pp. 149-153), in the case
under consideration there exists a nonsingular matrix T , such that T−1A1T = Λ, where Λ− is a diagonal matrix with
eigenvalues of the matrix B3 on its diagonal.

Some matrix T , with the above properties was constructed in (see ( [31], pp. 5-20)). It looks as

T (y) =

ρ0c0 −ρ0c0 0
1 1 0
0 0 1

 . (3)

Note that T is defined not uniquely.
The inverse matrix to T is defined by the formula

T−1(y) =

 1
2ρ0c0

1
2 0

− 1
2ρ0c0

1
2 0

0 0 1

 . (4)

In (2), introduce the new function by the equality

U = TU (5)

and multiply by T−1 from the left. Then for U we obtain the equation

I3
∂

∂ t
U +Λ

∂

∂x
U +B1

∂

∂y
U +B2U =

t∫
0

Φ̄(t− τ)U(x,y,τ)dτ, (6)

where

B1 = T−1A2T, B2 = T−1A2
∂

∂y
T, Λ = diag(c0,−c0,0) ,

Φ̄(t) =

ϕ1(t)+ϕ2(t)
2

ϕ2(t)−ϕ1(t)
2 0

ϕ2(t)−ϕ1(t)
2

ϕ1(t)+ϕ2(t)
2 0

0 0 ϕ3(t)

=
(
Φ̄i j
)3

i, j=1 .

In the next section, we consider direct and inverse problems.

STATEMENT OF THE PROBLEM

In the direct problem, given matrices Λ, B1, B2, Φ̄, it is required, in the domain D= {(x,y, t) : 0 < x < L, t > 0, y ∈ R}
find a vector-function U(x,y, t) satisfying equation (6) for the following initial and boundary conditions:

Ui(x,y, t)
∣∣
t=0 = ψi(x,y), i = 1,3, (7)
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U1(x,y, t)|x=0 = g1(y, t), U2(x,y, t)|x=L = g2(y, t), (8)

where ψi(x,y) = (ψ1,ψ2,ψ3)(x,y), g(y, t) = (g1,g2,g3)(y, t) are some given functions.
We pose the inverse problem as follows: find the functions ϕi(t), t > 0, i = 1,2,3 that are involved in the matrix Φ̄

if the extra conditions

U1(x,y, t)|x=L = h1(y, t), U2(x,y, t)|x=0 = h2(y, t), (9)

are given for a solution to problem (6)-(8). Moreover, we assume that ϕi(0), i = 1,2,3 are given as well.
The inverse problem of finding the kernels of the integral terms from a system of first-order integrodifferential

equations of general form with two independent variables was studied in [32, 33]. Some theorem of local existence
and global uniqueness was obtained.

Suppose that functions ψi(x,y), i = 1,2,3, g j(y, t), j = 1,2 occurring on the right-hand side of (6) and the data (7),
(8) have some compact support with respect to y for every fixed x and t. The existence for (6) of a finite dependence
domain and the property of having compact support with respect to y of the right-hand side of (6) and the data (7), (8)
imply that solutions to problem (6)-(8) have the compact support with respect to y.

We investigate the properties of solutions to this problem. More exactly, we will confine ourselves to the study of
the Fourier transform of a solution with respect to y. Put

Û(x,η , t) =
∫
R

U(x,y, t)eiηydy, (10)

where η is the parameters of the transform. Fix η and for convenience introduce the notation Û(x,η , t) = Û(x, t).
In terms of the function Û , we write problem (6)-(9) as(

I3
∂

∂ t
+Λ

∂

∂x
+B
)

Û =

t∫
0

Φ̄(τ)Û(x, t− τ)dτ, (11)

Ûi(x, t)
∣∣
t=0 = ψ̂i(x), i = 1,3, (12)

Û1(x, t)|x=0 = ĝ1(t), Û2(x, t)|x=L = ĝ2(t), (13)

Û1(x, t)|x=L = ĥ1(t), Û2(x, t)|x=0 = ĥ2(t), (14)

where B = B1− iηB0.

EXAMINATION OF THE DIRECT PROBLEM

Let Π = {(x, t) : 0 < x < L, t > 0} be the projection of the domain D to the plane of the variables x, t. Consider an
arbitrary point (x, t) ∈ Π on the plane of the variables ξ ,τ a characteristic of the i− equation of system (11) through
(x, t) till the intersection with the boundary of Π in the domain τ < t. The equation looks as

τ = t +λi(φ(ξ )−φ(x)), (15)

where φ(x) =
x∫

0

dα

c0(α) .

For λ1 = 1 this point lies either on the interval [0,L] of the axis t = 0 or on the straight line x = 0, and for λ2 =−1
either on the interval [0,L] or on the straight line x = L.

Integrating the i− component of equations (11) over characteristic (15) from (xi
0, t

i
0) to (x, t), we find

Ûi(x, t) = Ûi(xi
0, t

i
0)−

t∫
t i
0

3

∑
j=1

bi j(ξ )Û j(ξ ,τ)

∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ
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+

t∫
t i
0

τ∫
0

3

∑
j=1

Φ̄i j(α)Û j(ξ ,τ−α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ. (16)

Find t i
0 in (16). It depends on the coordinates of (x, t). It is easy to observe that t i

0(x, t) has the form

t i
0(x, t) =



 t−φ(x), t ≥ φ(x),

0, 0 < t < φ(x), i = 1; t−φ(x)+φ(L), t ≥ φ(x),

0, 0 < t < φ(x), i = 2;

0, i = 3.

Then the condition that the pair (xi
0, t

i
0) enjoys (15) implies

xi
0(x, t) =



 0, t ≥ φ(x),

φ−1 (φ(x)− t) , 0 < t < φ(x), i = 1; L, t ≥ φ(x),

φ−1 (φ(x)+ t) , 0 < t < φ(x), i = 2;

x, i = 3.

The free terms of the integral equations (15) are defined through the initial and boundary conditions (12) and (13)
as follows:

Ûi(xi
0, t

i
0) =



 ĝ1(t−φ(x)), t ≥ φ(x),

ψ̂1(φ
−1 (φ(x)− t)), 0 < t < φ(x), i = 1; ĝ2(t +φ(x)−φ(L)), t ≥ φ(L)−φ(x),

ψ̂2(φ
−1 (φ(x)+ t)), 0 < t < φ(L)−φ(x), i = 2;

ψ̂3(x), i = 3.

It is required that Ûi(xi
0, t

i
0) be continuous in Π. Note that, for these conditions to be fulfilled, the given functions

ψ̂i and ĝi must satisfy the fitting conditions at the angular points of Π:

ψ̂1(0) = ĝ1(0), ψ̂2(L) = ĝ2(0). (17)

Here and below, the values of ĝi for t = 0 and ψ̂i for x = 0 and x = L are understood as the limit values at these
points as the argument tends from the side of the point where these functions are defined.

Suppose that all given functions in (16) are continuous functions of their arguments in Π. Then we have a closed
system of Volterra-type integral equations with continuous kernels and free terms. As usual, such a system has a
unique solution in the bounded subdomain

ΠT =
{
(x, t) : 0≤ x≤ L, 0≤ t ≤ T

}
,

of Π, where T > 0 is some fixed number.
Theorem 1. Suppose that ρ(x), c0(x), ψ̂(x) ∈ C[0,∞), g̃(t) ∈ C [0,∞) , Φ̄(t) ∈ C [0,∞) and conditions (17) are

fulfilled. Then there is a unique solution to problem (11)-(13) in ΠT .
Problem (18)-(20) in the field of ΠT is equivalent to a linear integral equation of the second kind of Volterra type

with respect to Û . Based on the theory of linear integral equations, it has unique solutions [34, 35]. So we throw it
away.
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EXAMINATION OF THE INVERSE PROBLEM. DEDUCTION OF AN EQUIVALENT
SYSTEM OF INTEGRAL EQUATIONS

Let us introduce the vector function V (x, t) = ∂

∂ t Û(x, t). To obtain a problem for a function V (x, t) similar to (11)-
(13), we differentiate equations (11) and boundary conditions (13) with respect to the variable t, and the condition at
t = 0 can be found using equations (11) and initial conditions (12). In doing so, we get following problem(

I3
∂

∂ t
+Λ

∂

∂x
+B
)

V = Φ̄(t)ψ̂(x)+
t∫

0

Φ̄(τ)V (x, t− τ)dτ, (18)

V (x, t)
∣∣∣∣
t=0

=−λ
∂

∂x
ψ̂(x)−B(x)ψ̂(x) := Ψ(x), (19)

V1(z, t)
∣∣∣∣
x=0

=
d
dt

ĝ1(t), V2(z, t)
∣∣∣∣
x=L

=
d
dt

ĝ2(t), (20)

V1(x, t)
∣∣∣∣
x=L

=
d
dt

ĥ1(t), V2(x, t)
∣∣∣∣
x=0

=
d
dt

ĥ2(t), (21)

where Ψ(x) = (Ψ1,Ψ2,Ψ3)(x).
Again, integration along the corresponding characteristics will lead problem (18)-(20) to the integral equations

Vi(x, t) =Vi(xi
0, t

i
0)+

t∫
t i
0

[ 3

∑
j=1

Φ̄i j(τ)ψ̂ j(ξ )−
3

∑
j=1

bi j(ξ )Vj(ξ ,τ)

]∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ+

+

t∫
t i
0

τ∫
0

3

∑
j=1

Φ̄i j(α)Vj(ξ ,τ−α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, i = 1,2,3. (22)

In equations (22), Vi(xi
0, t

i
0) are defined as follows:

Vi(xi
0, t

i
0) =




d
dt g̃1(t−φ(x)), t ≥ φ(x),

Ψ1(φ
−1 (φ(x)− t)), 0 < t < φ(x), i = 1;

d
dt g̃2(t +φ(x)−φ(L)), t ≥ φ(L)−φ(x),

Ψ2(φ
−1 (φ(x)+ t)), 0 < t < φ(L)−φ(x), i = 2;

Ψ3(z), i = 3.

Let the following conditions be fulfilled

−c0(0)
∂

∂x
ψ̂1(0)−

3

∑
j=1

b1 j(0)ψ̂ j(0) =
[

d
dt

ĝ1(t)
]

t=0
,

c0(L)
∂

∂x
ψ̂1(L)−

3

∑
j=1

b1 j(L)ψ̂ j(L) =
[

d
dt

ĝ2(t)
]

t=0
. (23)
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Consider an arbitrary point (x,0) ∈ Π and draw the characteristic (15) through (x,0) till the intersection with the
lateral boundaries of Π. Integrating the i th component of equation (18), using the data (21), we get

Vi(x,0) =
d
dt

ĥi(ti(x))+

(ti(x))∫
0

[ 3

∑
j=1

Φ̄i j(τ)ψ̂ j(ξ )−
3

∑
j=1

bi j(ξ )Vj(ξ ,τ)

]∣∣∣∣
ξ=φ−1[λiτ+φ(x)]

dτ+

+

(ti(x))∫
0

τ∫
0

3

∑
j=1

Φ̄i j(α)Vj(ξ ,τ−α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, (24)

where ti(x) =
{
−φ(x), i = 1,
−φ(x)+φ(L), i = 2.

Integrating the 3rd component of equation (18), will lead to the following integral equations

V3(x, t) = Ψ3(x)+
t∫

0

[
ψ̂3(x)ϕ3(τ)−

3

∑
j=1

b3 j(x)Vj(x,τ)+
τ∫

0

ϕ3(α)V3(x,τ−α)dα

]
dτ. (25)

Reckoning with the initial data (19) and additional conditions (21) rewrite (24), (25) as

(ti(x))∫
0

3

∑
j=1

Φ̄i j(τ)ψ̂ j(φ
−1 [λiτ +φ(x)])dτ = Ψi(x)+

(ti(x))∫
0

3

∑
j=1

bi j(ξ )Vj(ξ ,τ)

∣∣∣∣
ξ=φ−1[λiτ+φ(x)]

dτ

− d
dt

ĥi(ti(x))−
(ti(x))∫
0

τ∫
0

3

∑
j=1

Φ̄i j(α)Vj(φ
−1 [λi (α− τ)+φ(x)] ,τ−α)dαdτ, i = 1,2;

t∫
0

ψ̂3(x)ϕ3(τ)dτ =V3(x, t)−Ψ3(x)+
t∫

0

3

∑
j=1

b3 j(x)Vj(x,τ)dτ−
t∫

0

τ∫
0

ϕ3(α)V3(x,τ−α)dαdτ.

Differentiate the first equations with respect to x, and the second, with respect to t. Then

∂ ti(x)
∂x

3

∑
j=1

Φ̄i j(ti(x))ψ̂ j(φ
−1 [λiti(x)+φ(x)])+

(ti(x))∫
0

3

∑
j=1

Φ̄i j(τ)
d
dx

ψ̂ j(φ
−1 [λiτ +φ(x)])dτ

=
d
dx

Ψi(x)+
∂ ti(x)

∂x

3

∑
j=1

bi j(φ
−1 [λiti(x)+φ(x)])Vj(φ

−1 [λiti(x)+φ(x)] , ti(x))−
∂ ti(x)

∂x
d2

dt2 ĥi(ti(x))

+

(ti(x))∫
0

3

∑
j=1

∂

∂x

(
bi j(φ

−1 [λiτ +φ(x)])Vj(φ
−1 [λiτ +φ(x)] ,τ)

)
dτ

−∂ ti(x)
∂x

(ti(x))∫
0

3

∑
j=1

Φ̄i j(τ)Vj(φ
−1 [λi (τ− ti(x))+φ(x)] , ti(x)− τ)dτ
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−
(ti(x))∫
0

τ∫
0

3

∑
j=1

Φ̄i j(α)
∂

∂x
Vj(φ

−1 [λi (α− τ)+φ(x)] ,τ−α)dαdτ, i = 1,2; (26)

ψ̂3(x)ϕ3(t) =
∂

∂ t
V3(x, t)+

3

∑
j=1

b3 j(x)Vj(x, t)−
t∫

0

3

∑
j=1

Φ̄i j(τ)Vj(x, t− τ)dτ. (27)

Now, replace ti(z) by t in (26). We infer

3

∑
j=1

Φ̄1 j(t)ψ̂ j(0)− c0(x)
t∫

0

3

∑
j=1

Φ̄1 j(τ)
d
dx

ψ̂ j(t− τ)dτ =−c0(x)
t∫

0

3

∑
j=1

∂

∂x

(
b1 j(0)Vj(0, t− τ)

)
dτ

−c0(x)P(t)−
t∫

0

3

∑
j=1

Φ̄1 j(τ)Vj(0, t− τ)dτ + c0(x)
t∫

0

τ∫
0

3

∑
j=1

Φ̄1 j(α)
∂

∂x
Vj(−(t− τ),τ−α)dαdτ, (28)

3

∑
j=1

Φ̄2 j(t)ψ̂ j(L)+ c0(x)
t∫

0

3

∑
j=1

Φ̄2 j(τ)
d
dx

ψ̂ j(L− (t− τ))dτ = c0(x)
t∫

0

3

∑
j=1

∂

∂x

(
b2 j(L)Vj(L,L− t + τ)

)
dτ

+c0(x)P(L− t)−
t∫

0

3

∑
j=1

Φ̄2 j(τ)Vj(L,L− t + τ)dτ− c0(x)
t∫

0

τ∫
0

3

∑
j=1

Φ̄2 j(α)
∂

∂x
Vj(L− (t− τ),τ−α)dαdτ, (29)

where Pi(z) are defined by the formulas

Pi(z) =
d
dx

Ψi(x)−
∂ ti(x)

∂x
d2

dt2 h̃i(ti(z))

.

+
∂ ti(x)

∂x

3

∑
j=1

bi j(φ
−1 [λiti(x)+φ(x)])Vj(φ

−1 [λiti(x)+φ(x)] , ti(x)), i = 1,2.

Let us introduce the following notation:

Q(νi, ψ̂(νi)) :=
( 1

2 (ψ̂1(0)− ψ̂2(0)) 1
2 (ψ̂1(0)+ ψ̂2(0))

1
2 (−ψ̂1(L)+ ψ̂2(L)) 1

2 (ψ̂1(L)+ ψ̂2(L))

)
= (Qi j(νi, ψ̂(νi)))

3
i, j=1 , (30)

where νi :=
{

0, i = 1
L, i = 2

Reckoning with (30), rewrite (22) as follows:

Vi(x, t) =Vi(xi
0, t

i
0)+

t∫
t i
0

[ 2

∑
j=1

Qi j(ξ , ψ̂)ϕ j(τ)−
3

∑
j=1

bi j(ξ )Vj(ξ ,τ)

]∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ

+

t∫
t i
0

τ∫
0

2

∑
j=1

Qi j(ξ ,V (ξ ,τ−α))ϕ j(α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, i = 1,2. (31)
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Using (30), we can also rewrite (28), (29) so that:

2

∑
j=1

Qi j(νi; ψ̂(νi))ϕ j(t) =−λic0(x)Pi(t i(t))−λic0(x)
t∫

0

3

∑
j=1

∂

∂x

(
bi j(νi)Vj(νi,νi +λi(t− τ))

)
dτ

+λic0(x)
t∫

0

2

∑
j=1

Qi j(νi;
d
dx

ψ̂ j(νi +λi(t− τ)))ϕ j(τ)dτ−
t∫

0

2

∑
j=1

Qi j(νi;Vj(νi,νi +λi(t− τ)))ϕ j(τ)dτ

+λic0(x)
t∫

0

τ∫
0

2

∑
j=1

Qi j(νi;
∂

∂x
Vj(νi,νi +λi(t− τ),τ−α)))ϕ j(α)dαdτ, (32)

where

t i(t) =
{

t, i = 1,
L− t, i = 2.

Let ϕ(t) = (ϕ1(t),ϕ2(t),ϕ3(t)) be the vector-function composed of the derivatives of the unknown functions of the
inverse problem, where ϕi(t) are the entries of this vector-function.

ψ̂1(0)ψ̂2(L) 6= ψ̂1(L)ψ̂2(0). (33)

Now, solving (32) with respect to ϕi(t), we obtain

ϕi(t) =
1

detQ(νi; φ̃)

2

∑
j=1

[
−λi jc0(x)Pj(t j(t))−λ jc0(x)

t∫
0

3

∑
l=1

∂

∂x

(
b jl(ν j)Vl(ν j,ν j +λ j(t− τ))

)
dτ

+λ jc0(x)
t∫

0

2

∑
l=1

Q jl(ν j;
d
dx

ψ̂l(ν j +λ j(t− τ)))ϕl(τ)dτ−
t∫

0

2

∑
l=1

Q jl(ν j;Vl(ν j,ν j +λ j(t− τ)))ϕl(τ)dτ

+λ jc0(x)
t∫

0

τ∫
0

2

∑
l=1

Q jl(ν j;
∂

∂x
Vl(ν j,ν j +λ j(t− τ),τ−α)))ϕl(α)dαdτ

]
Q ji(νi; φ̃), (34)

where Q ji− are the algebraic complements to the entries Q ji of Q, i, j = 1,2.
Equations (34) contain the unknown functions ∂

∂xVj, j = 1,3. For them we obtain integral equations from (25) and
(31) by differentiating in x. Moreover,

∂

∂x
Vi(x, t) =

∂

∂x
Vi(xi

0, t
i
0)−

∂

∂x
t i
0

[ 3

∑
j=1

Qi j(xi
0; ψ̂(xi

0))ϕ j(t i
0)−

3

∑
j=1

bi j(xi
0)Vj(xi

0, t
i
0)

]

+

t∫
t i
0

[ 3

∑
j=1

∂

∂x
Qi j(ξ ; ψ̂)ϕ j(τ)−

3

∑
j=1

∂

∂x
bi j(ξ )Vj(ξ ,τ)−

3

∑
j=1

bi j(ξ )
∂

∂x
Vj(ξ ,τ)

]∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ

− ∂

∂x
t i
0

t i
0∫

0

3

∑
j=1

Qi j(xi
0;H j(xi

0, t
i
0− τ))ϕ j(α)dα
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+

t∫
t i
0

τ∫
0

2

∑
j=1

∂

∂x
Qi j(ξ ,V (ξ ,τ−α))ϕ j(α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, i = 1,2, (35)

∂

∂x
V3(x, t) =

∂

∂x
Ψ3(x)+

t∫
0

[
∂

∂x
ψ̂3(x)ϕ3(τ)

−
3

∑
j=1

∂

∂x
b3 j(x)Vj(x,τ)−

3

∑
j=1

b3 j(x)
∂

∂x
Vj(x,τ)+

τ∫
0

∂

∂x
V3(x,τ−α)ϕ3(α)dα

]
dτ, (36)

where

H j
(
xi

0, t
i
0− τ

)
=

{ d
dt h j (t +λ j(φ(ξ )−φ(x))) , j = 1,
d
dt g j (t +λ j(φ(ξ )−φ(x))) , j = 2.

THE MAIN RESULT AND THE PROOF

The main result of the present article is as follows:
Theorem 2. Suppose the fulfillment of the conditions of Theorem 1 and also the conditions ψ̂(z) ∈ C2 [0, L] ,

ĝ(t) ∈C2 [0, ∞) , ĥ(t) ∈C2(0,∞), condition (33), and the fitting conditions (17), (23). Then, for every L > 0, on the
interval

[
0,L
]
, there exists a unique solution to the inverse problem (18)-(21) of the class ϕ(t) ∈C1

[
0,L
]
.

Proof. Equations (25), (31), (34), (35)-(36), supplemented with the initial and boundary value conditions from (18)
constitute the closed system of equations on the unknown Vi(x, t), ϕ j(t), ∂

∂xVi(x, t), i, j = 1,2,3. Now, consider the
square

ΠL := {(x, t) : 0≤ x≤ L, 0≤ t ≤ L} .

Equations (25), (31), (34)-(36) show that the values of Vi(x, t), ϕ j(t), ∂

∂xVi(x, t) for (x, t) ∈ ΠL are expressed in
terms of the integrals of some combinations of these functions over segments lying in ΠL.

Write (25), (31), (34)-(36) as a closed system of Volterra-type integral equations. For this introduce the vector-
functions ϑ(x, t) =

(
ϑ 1

i ,ϑ
2
j ,ϑ

3
i

)
, i = 1,2,3, j = 1,2,3 by defining their components by the equalities

ϑ
1
i (x, t) =Vi(x, t), ϑ

2
i (x, t) = ϕi(t),

ϑ
3
i (x, t) =

∂

∂x
Vi(x, t)+βi

∂

∂x
t i
0

3

∑
j=1

Qi j(xi
0; ψ̂(xi

0))ϕ j(t i
0),

where βi =

{
1, i = 1,2,
0, i = 3.

Then the system (25), (31), (34)-(36) takes the operator form

ϑ = Aϑ , (37)

where A is the operator A =
(

A1
i , A2

j , A3
i

)
, i = 1,2,3, j = 1,2,3 that is defined in accordance with the right-hand

sides of (25),(31), (34) -(36) by the equalities

A1
i ϑ(x, t) = ϑ

01
i (x, t)+

t∫
t i
0

[ 2

∑
j=1

Qi j(ξ , ψ̂)ϑ 2
j (τ)−

3

∑
j=1

bi j(ξ )ϑ
1
j (ξ ,τ)

]∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ

040010-9

 13 M
arch 2024 06:59:58



+

t∫
t i
0

τ∫
0

2

∑
j=1

Qi j(ξ ,ϑ
1
j (ξ ,τ−α))ϑ 2

j (α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, i = 1,2, (38)

A1
3ϑ(x, t) = ϑ

01
3 (x, t)+

t∫
0

[
ψ̂3(x)ϑ 2

3 (τ)−
3

∑
j=1

b3 j(x)ϑ 1
j (x,τ)+

τ∫
0

ϑ
2
3 (α)ϑ 1

3 (x,τ−α)dα

]
dτ, (39)

A2
i ϑ(x, t) =

1

detQ(νi; φ̃)

2

∑
j=1

[
−λ jc0(x)

t∫
0

3

∑
l=1

∂

∂x

(
b jl(ν j)ϑ

1
l (ν j,ν j +λ j(t− τ))

)
dτ

+λ jc0(x)
t∫

0

2

∑
l=1

Q jl(ν j;
d
dx

ψ̂l(ν j +λ j(t− τ)))ϑ 2
l (τ)dτ−

t∫
0

2

∑
l=1

Q jl(ν j;ϑ
1
l (ν j,ν j +λ j(t− τ)))ϑ 2

l (τ)dτ

+λ jc0(x)
t∫

0

τ∫
0

2

∑
l=1

Q jl(ν j;ϑ
3
l (ν j,ν j +λ j(t− τ),τ−α)))ϑ 2

l (α)dαdτ

]
Q ji(νi; φ̃), i = 1,2, (40)

A3
i ϑ(x, t) =

t∫
t i
0

[ 3

∑
j=1

∂

∂x
Qi j(ξ ; ψ̂)ϑ 2

j (τ)−
3

∑
j=1

∂

∂x
bi j(ξ )ϑ

1
j (ξ ,τ)−

3

∑
j=1

bi j(ξ )ϑ
3
j (ξ ,τ)

]∣∣∣∣
ξ=φ−1[λi(τ−t)+φ(x)]

dτ

− ∂

∂x
t i
0

t i
0∫

0

3

∑
j=1

Qi j(xi
0;H j(xi

0, t
i
0− τ))ϑ 2

j (α)dα

+

t∫
t i
0

τ∫
0

2

∑
j=1

∂

∂x
Qi j(ξ ,ϑ

1(ξ ,τ−α))ϑ 2
j (α)dα

∣∣∣∣
ξ=φ−1[λi(α−τ)+φ(x)]

dτ, i = 1,2, (41)

A3
3ϑ(x, t) =

t∫
0

[
∂

∂x
ψ̂3(x)ϑ 2

3 (τ)−
3

∑
j=1

∂

∂x
b3 j(x)ϑ 1

j (x,τ)−
3

∑
j=1

b3 j(x)ϑ 3
j (x,τ)+

τ∫
0

ϑ
3
3 (x,τ−α)ϑ 2

3 (α)dα

]
dτ. (42)

In these formulas, we used the notations

ϑ
01
i (z, t) =Vi(xi

0, t
i
0), i = 1,2, ϑ

01
3 (z, t) = Ψ3(x), ϑ

02
i (z, t) =

1

detQ(νi; φ̃)

2

∑
j=1
−λ jc0(x)Pj(t j(t)), i = 1,2,

ϑ
03
i (z, t) =

∂

∂x
Vi(xi

0, t
i
0)−

∂

∂x
t i
0

[ 3

∑
j=1

Qi j(xi
0; ψ̂(xi

0))ϕ j(t i
0)−

3

∑
j=1

bi j(xi
0)Vj(xi

0, t
i
0)

]
, i = 1,2, ϑ

03
3 (z, t) =

∂

∂x
Ψ3(x).

Endow the set of continuous functions C(ΠL) with the norm

‖ϑ‖s = max
1≤i≤3, 1≤l≤3

sup
(x,t)∈ΠL

∣∣∣ϑ l
i (x, t)e

−st
∣∣∣ ,
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where s ≥ 0− is a number to be chosen below. Obviously, for s = 0 this space coincides with the set of continuous
functions with the norm ‖ϑ‖s. By the inequality,

e−sL‖ϑ‖ ≤ ‖ϑ‖s ≤ ‖ϑ‖,

the norms ‖ϑ‖s and ‖ϑ‖ are equivalent for any fixed L ∈ (0,∞).
Further, consider the set of functions S

(
ϑ 0,r

)
⊂Cs (Π0) , satisfying the inequality

‖ϑ −ϑ
0‖s ≤ r, (43)

where the vector-function ϑ 0(z, t) =
(
ϑ 01

i (x, t), ϑ 02
i (t), ϑ 03

i (x, t), i = 1,6
)

is defined by the free terms of the operator
equation (37). It is not hard to observe that the following estimate holds for ϑ ∈ S

(
ϑ 0,r

)
‖ϑ‖s ≤ ‖ϑ 0‖s + r ≤

‖ϑ 0‖+ r := r0.
Thus, r0-is known.
Introduce the notations

φ̃0 := max
1≤i≤3

∥∥∥φ̃i

∥∥∥
C2[0,L]

, g0 := max
1≤i≤3

‖gi‖C2[0,L] ,h0 := max
1≤i≤3

‖hi‖C2[0,L] ,

Γ0 := max
{

g0, φ̃0

}
, P0 := min{|Q(0)| , |Q(L)|} ,

ϒ0φ̃0 = max
1≤i≤3

∥∥∥Qi j(z+ γi(τ− t); φ̃)
∥∥∥

C1[0,L]
, Q0 := max

{
max

1≤i≤3
|Qi(0)| , max

1≤i≤3
|Qi(L)|

}
.

The operator A takes Cs (ΠL) into itself. Show that for a suitable choice of s (note that L > 0 is an arbitrary fixed
number) it is a contraction operator on S

(
ϑ 0,r

)
. Let us first verify that A takes the set S

(
ϑ 0,r

)
into itself; i.e., the

condition ϑ(z, t) ∈ S
(
ϑ 0,r

)
implies that Aϑ ∈ S

(
ϑ 0,r

)
, if s satisfies some constraints. Indeed, given (z, t) ∈ΠL and

ϑ ∈ S
(
ϑ 0,r

)
, we have

∣∣(A1
i ϑ −ϑ

01
i
)

e−st ∣∣≤ [(ϒ0φ̃0 +b0)‖ϑ‖s +ϒ0‖ϑ‖2
s τ

]∫ t

0
e−s(t−τ)dτ ≤ 1

s

(
(ϒ0φ̃0 +b0)+ϒ0Lr0

)
r0 :=

1
s

α1.

∣∣(A2
i ϑ −ϑ

02
i
)

e−st ∣∣≤ Q0

sP0

(
c0

(
6b0 +2ϒ0φ̃0

)
+ϒ0Γ0 +ϒ0Lr0

)
r0 :=

1
s

α2,

∣∣(A3
i ϑ −ϑ

03
i
)

e−st ∣∣≤ 1
s
[6b0 +3ϒ0Γ0 +ϒ0h0 +ϒ0Lr0]r0 :=

1
s

α3.

These together with (37) and (38)–(42) imply the estimates

‖Aϑ −ϑ
0‖s = max

{
max

1≤i≤3
sup

(x,t)∈ΠL

∣∣(A1
i ϑ −ϑ

01
i
)

e−st ∣∣ , max
1≤i≤2

sup
t∈[0,L]

∣∣(A2
i ϑ −ϑ

02
i
)

e−st ∣∣ ,

max
1≤i≤3

sup
(x,t)∈ΠL

∣∣(A3
i ϑ −ϑ

03
i
)

e−st ∣∣}≤ 1
s

α0,

where α0 := max(α1,α2, α3) . Choosing s > (1/r)α0, we obtain that A takes S
(
ϑ 0,ρ

)
into itself.

Now, take ϑ , ϑ̃ ∈ S
(
ϑ 0,r

)
and estimate the norm of the difference Uϑ −Uϑ̃ . Using the obvious inequality∣∣∣ϑ k

i ϑ
l
i − ϑ̃

k
i ϑ̃

l
i

∣∣∣e−st ≤
∣∣∣ϑ k

i − ϑ̃
k
i

∣∣∣ ∣∣∣ϑ l
i

∣∣∣e−st +
∣∣∣ϑ̃ k

i

∣∣∣ ∣∣∣ϑ l
i − ϑ̃

l
i

∣∣∣e−st ≤ 2r0‖ϑ − ϑ̃‖s
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and estimates for the integrals analogous to those above, we arrive at∣∣∣(A1
i ϑ −A1

i ϑ̃

)
e−st

∣∣∣≤ 1
s

(
(ϒ0φ̃0 +b0)+2ϒ0Lr0

)
‖ϑ − ϑ̃‖s :=

1
s

β1‖ϑ − ϑ̃‖s,

∣∣∣(A2
i ϑ −A2

i ϑ̃

)
e−st

∣∣∣≤ Q0

sP0

(
c0

(
6b0 +2ϒ0φ̃0

)
+ϒ0Γ0 +2ϒ0Lr0

)
‖ϑ − ϑ̃‖s :=

1
s

β2‖ϑ − ϑ̃‖s,

∣∣∣(A3
i ϑ −A3

i ϑ̃

)
e−st

∣∣∣≤ 1
s
[6b0 +3ϒ0Γ0 +ϒ0h0 +2ϒ0Lr0)‖ϑ − ϑ̃‖s :=

1
s

β3‖ϑ − ϑ̃‖s.

Hence,

‖Aϑ −Aϑ̃‖s = max
{

max
1≤i≤3

sup
(x,t)∈ΠL

∣∣∣(A1
i ϑ −A1

i ϑ̃

)
e−st

∣∣∣ , max
1≤i≤2

sup
t∈[0,L]

∣∣∣(A2
i ϑ −A2

i ϑ̃

)
e−st

∣∣∣ ,

max
1≤i≤3

sup
(x,t)∈ΠL

∣∣∣(A3
i ϑ −A3

i ϑ̃

)
e−st

∣∣∣}≤ 1
s

β0‖ϑ − ϑ̃‖s,

where β0 := max(β1, β2, β3) .

Now, choosing s > β0, we conclude that A contracts the distance between ϑ , ϑ̃ by S
(
ϑ 0,ρ

)
.

As follows from the estimates above, if s is chosen so that s > s∗ := max{α0,β0}, then A is a contraction on
S
(
ϑ 0,ρ

)
. In this event, by the Banach Principle (see [36], pp. 87–97), equation (37) has a unique solution in S

(
ϑ 0,ρ

)
for every fixed L > 0. Theorem 2 is proved.

Knowing ϕ
′
i (t), i = 1,2 we can find the functions ϕi(t), i = 1,2:

ϕi(t) = ϕi(0)+
t∫

0

ϕ
′
i (τ)dτ, i = 1,2.

CONCLUSION

The system of two-dimensional integro-differential acoustic equations is reduced to normal form, the inverse problem
of determining the kernels for the system of two-dimensional integro-differential acoustic equations in normal form
is posed and studied, and existence and uniqueness theorems for the solution of the inverse problem are also proved
in the class of continuous functions with exponential weight.

ACKNOWLEDGMENTS

We would like to thank our colleagues at Bukhara State University and the V.I.Romanovskiy Institute of Mathematics
for making convenient research facilities.

REFERENCES

1. V. Volterra, Theory of functionals and of integral and integro-differential equations (London, Dover publication, 1959).
2. M. Toshio, Micromechanics of defects in solids, Second, Revised Edition (IL, USA, Northwestern University, Evanston, 1987).
3. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (New York, Pergamon Press, 1984).
4. L. P. Nizhnik and V. G. Tarasov, “The inverse nonstationary scattering problem for a hyperbolic system of equations,” Dokl. Akad. Nauk SSSR

233:3, 300–303 (1977).
5. S. P. Belinskii, “A certain inverse problem for linear symmetric t-hyperbolicsystems with n+1 independent variables,” Differential Equations

12:1, 15–23 (1976).

040010-12

 13 M
arch 2024 06:59:58



6. S. P. Belinskii and V. Romanov, “Determination of the coefficients of a t-hyperbolic system,” Math. Notess 28:4, 723–727 (1980).
7. V. G. Romanov, “Uniqueness of the solution of an inverse problem for first-order hyperbolic systems,” Math. Notes 24:3, 692–695 (1978).
8. V. G. Romanov, “On the problem of determining the right hand side of a hyperbolic system,” Math. Notes 13:3, 343–348 (1977).
9. Z. Totieva, “The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system,” Vladikavkaz Math. Jour. 21:2,

58–66 (2019).
10. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelas- ticity equation,” Sib. Zh. Ind. Mat.

16:2, 72–82 (2013).
11. D. K. Durdiev and A. A. Rakhmonov, “Inverse problem for a system of integro-differential equations for sh waves in a visco-elastic porous

medium: Global solvability,” Theoret. and Math. Phys. 195:3, 923–937 (2018).
12. U. Durdiev, “Problem of determining the reaction coefficient in a fractional diffusion equation,” Differential Equations 59, 1195–1204 (2021).
13. U. Durdiev, “Inverse problem of determining an unknown coefficient in the beam vibration equation,” Differential Equations 58, 36–43 (2022).
14. A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integrodifferential equation,” Nonlinear Anal., Theory, Methods Appl.

22:1, 21–44 (1994).
15. V. Romanov, “Problem of determining the permittivity in the stationary system of maxwell equations,” Dokl. Math. 95:3, 230–234 (2017).
16. Z. S. Safarov and D. K. Durdiev, “Inverse problem for an integro-differential equation of acoustics,” Differential Equations 54:1, 134–142

(2018).
17. J. Janno and L. V. Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity,” Math. Methods Appl. Sci. 20:4,

291–314 (1997).
18. V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation,” Journal of Applied

and Industrial Mathematics 6:3, 60–370 (2012).
19. D. K. Durdiev and Z. D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations,”

Mathematical Methods in the Applied Sciences 41:17, 8019–8032 (2018).
20. Z. D. Totieva and D. K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation,” Mathematical

Methods in the Applied Sciences 103:1-2, 118–132 (2018).
21. D. K. Durdiev and Z. S. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded

domain,” Math. Notes 97:6, 867–877 (2015).
22. D. K. Durdiev and Z. D. Totieva, “The problem of determining the multidimensional kernel of the viscoelasticity equation,” Vladikavkaz. Mat.

Zh. 17:4, 18–43 (2015).
23. D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations,” Journal of Applied and Industrial

Mathematics 3:4, 411–423 (2007).
24. V. G. Romanov, “Problem of kernel recovering for the viscoelasticity equation,” Doklady Mathematics 86:2, 608–610 (2012).
25. V. Romanov, “Inverse problems for equation with a memory,” Eurasian Jour. of Math. and Computer Applications V. 2, 4, 51 – 80 (2014).
26. D. K. Durdiev and Z. R. Bozorov, “A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties,”

Dal’nevost. Mat.Zh. 13:2, 209–221 (2013).
27. D. K. Durdiev and A. A. Rahmonov, “A 2d kernel determination problem in a visco-elastic porous medium with a weakly horizontally

inhomogeneity,” Mathematical Methods in the Applied Sciences 43:15, 8776–8796 (2020).
28. D. K. Durdiev and A. A. Rakhmonov, “The problem of determining the 2d-kernel in a system of integro-differential equations of a viscoelastic

porous medium,” J. Appl. Industr. Math. 14:2, 281–295 (2020).
29. S. Godunov, Equations of Mathematical Physics (Moscow:Nauka, 1979).
30. F. Gantmacher, Theory of Matrices (Nauka, Moscow, 1988).
31. V. Romanov, Inverse problems of mathematical physics (Utrecht, The Netherlands, 1987).
32. D. K. Durdiev and K. K. Turdiev, “The problem of finding the kernels in the system of integro-differential maxwell’s equations,” J. Appl.

Industr. Math. 15:2, 190–211 (2021).
33. D. K. Durdiev and K. K. Turdiev, “Inverse problem for a first-order hyperbolic system with memory,” Differential Equations 56, 1634–1643

(2020).
34. A. Kilbas, Integral Equations: Course of Lectures (Minsk, Belarusian State University, 2005).
35. A. Bukhgeym, Volterra equations and inverse problems (DeGruyter, 1999).
36. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1989).

040010-13

 13 M
arch 2024 06:59:58

https://doi.org/10.1007/BF01140130
https://doi.org/10.1007/BF01097758
https://doi.org/10.1134/S0040577918060090
https://doi.org/10.1134/S0012266121090081
https://doi.org/10.1134/S0012266122010050
https://doi.org/10.1016/0362-546X(94)90003-5
https://doi.org/10.1134/S1064562417030164
https://doi.org/10.1134/S0012266118010111
https://doi.org/10.1002/(SICI)1099-1476(19970310)20:4%3C291::AID-MMA860%3E3.0.CO;2-W
https://doi.org/10.1002/mma.5267
https://doi.org/10.1134/S0001434615050223
https://doi.org/10.1134/S1064562412050067
https://doi.org/10.32523/2306-6172-2014-2-4-51-80
https://doi.org/10.1002/mma.6544
https://doi.org/10.1134/S1990478920020076
https://doi.org/10.1134/S1990478921020022
https://doi.org/10.1134/S1990478921020022
https://doi.org/10.1134/S00122661200120125

