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Abstract—This paper considers the inverse problem of determining the time-dependent coefficient in
the fractional wave equation with Hilfer derivative. In this case, the direct problem is initial-boundary
value problem for this equation with Cauchy type initial and nonlocal boundary conditions. As over-
determination condition nonlocal integral condition with respect to direct problem solution is given.
By the Fourier method, this problem is reduced to equivalent integral equations. Then, using the Mit-
tag—Leffler function and the generalized singular Gronwall inequality, we get apriori estimate for
solution via unknown coefficient which we will need to study of the inverse problem. The inverse prob-
lem is reduced to the equivalent integral of equation of Volterra type. The principle of contracted map-
ping is used to solve this equation. Local existence and global uniqueness results are proved.
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1. INTRODUCTION

Nowadays, a great attention has been focused on the study of initial and initial boundary value prob-
lems for fractional differential equations. Because fractional differential equations have been widely used
in engineering, physics, chemistry, biology, and other fields. The researcher can find many applications
in the work [1—4] and references therein.

The identification of the right hand side and the order of time fractional derivative equation in applied
fractional modeling plays an important role. In [5—8], an inverse problem for determining these
unknowns of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic
differential operator is considered. It is proved that the additional information about the solution at a fixed
time instant at a monitoring location, as the observation data, identified uniquely the order of the frac-
tional derivative.

In [9—12], the unique solvability of the nonlocal direct problems and inverse source problems for the
various fractional differential equations with Caputo and Riemann—Liouville integral-differential opera-
tors were investigated.

Inverse problems for classical integro-differential wave propagation equations have been extensively
studied. Nonlinear inverse coefficient problems with various types of overdetermination conditions are
often found in the literature (e.g., [13—18] and references therein). In [19—24], inverse problems of deter-
mining unknown coefficients in Cauchy problem for fractional diffusion-wave equation were investigated.
Local existence and uniqueness in whole are proved and estimates of conditional stability are obtained.
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INVERSE COEFFICIENT PROBLEMS FOR A TIME-FRACTIONAL WAVE EQUATION 15

2. FORMULATION OF THE PROBLEM

In this paper, we investigate the local existence and global uniqueness of an inverse problem of deter-
mining time-dependent coefficient in the generalized time fractional wave equation with initial, nonlocal
boundary and overdetermination integral conditions.

In the next section, we provide some necessary preliminaries are given.
Let T >0, / > 0 be fixed numbers and Q,; = {(x,7) : 0 < x < [,0 <t < T}. Consider the time-frac-
tional diffusion equation
DYEhuCx,t) = uy + qOux, 1) = pOf(x,1),  xe€(0,0), te (0T], (1)
the initial conditions of Cauchy type

2—0r)(1-]
157 Pue,n| = o),

%(}éi}“"“ﬁ)u) (0 =00, xe 0, @
the boundary conditions
w0,)=u(l,)=0, 0<¢r<T, 3)
and the nonlocal additional condition
/
Iwi(x)u(x, Ndx = h(t), i =12, te]0,T]. “4)
0

Here the generalized Riemann—Liouville (Hilfer) fractional differential operator Dg‘;g of the order
1 <o < 2andtype 0 < B <1 isdefined as follows ([1], pp. 112—118; [2], pp. 62—65):

2
Du(. 1) = (Ié‘f,‘“) %(Iét?“‘”u)jc,n,

. x) = | S ve o

is the Riemann—Liouville fractional integral of the function u(x, ) with respect to ¢ ([3]; [4], pp. 69—72),
T°(-) is the Euler’s gamma function. The functions f(x,?), w,(x), ¢,(x), #(t), i = 1,2 are known functions.

In ([1], pp. 112—118; [3], pp. 28—37), by R. Hilfer was introduced a generalized form of the Riemann—
Liouville fractional derivative of order o and a type B € [0,1], which coincides with the Riemann—Liou-
ville fractional derivative at B = 0 and with Gerasimov—Caputo fractional derivative at § = 1, and the case
B € (0,1) interpolates these both fractional derivatives.

Assume that throughout this article, given functions @, ,, f, w, and # satisfy the following assump-
tions:

(A1) ¢; € C[0,1], 9\” € L,]0,1], 0,(0) = ¢;(/) = 0, ;' (0) = (/) = 0,i = 1,2;

(A2) f(x,)e C[0,T] and for te[0,T), f(.t)e C[0,0], f(.HP e L0, f(0,5)=f({1)=0,
So(0,0) = [ (L,1) = 0;

(A3) w(x) € C[0,/]and w(0) = w(l) = 0 and w"(0) = w"(l) = 0;
(A4) (DEER) @) e Clo,T1,

h(t)| > hy > 0, hy is a given number,

!
[woeodx = 15,2 P
0

5
=0+

d

!
[ = (152 P o) 0
0

, i=12.

=0+

t
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16 TURDIEV

3. PRELIMINARIES
In this section, we present some useful definitions and results of fractional calculus.

Two parameter Mittag— Leffler (M—L) function. The two parameter M—L function £, 3(z) is defined by
the following series:

o

k
— <
%ﬂ@—}kﬂgzg,

k=0

where o, 3,z € C with R(a) > 0, R(a) denotes the real part of the complex number o.. The Mittag—Lef-
fler function has been studied by many authors who have proposed and studied various generalizations
and applications.

From the above, there exist some positive constants M,, i = 1,2,3, such that
,max

2 0
0<r<T Eaaspo-o (_7L ! )

B

Proposition 1. Let 0 <o <2 and Be R be arbitrary. We suppose that x is such that mo/2 < x <
min{r,to}. Then there exists a constant C = C(0.,3, ) > 0 such that

b

Eo14¢-102-0) (_7“2’ 0L)

M = max {max
0<t<T

max
0<s<t<T

Eqo (=Mt = $)%)

|Eyp(2)| < %M, K < |arg(z)| < ™

For the proof, we refer to ([4], pp. 40—45), for example.
We consider the weighted spaces of continuous functions ([4], pp. 4—5, 162—163).

C,la,b] = {g (a,b] > R:(1—a)' g(t)e Cla,b],0 <y < 1},
CrP@) ={e): Difgye CO.TI<a<20<B<1],
CrPQ) ={u(x,1)  u(tye C*(0,1);1 € [0,T] and
Difu(x,)e C(0.T);xe (01,1 <o <2,0<B<1},

Cyla,b] = C,la,b],

with the norms

n-1
_ (k) (n)
o= S+

Lemma 1 ([25], p. 188). Suppose b >0, o. > 0 and a(t) nonnegative function locally integrable on
0<t<T (someT < +o0) and suppose u(t) is nonnegative and locally integrable on 0 <t < T with

s

L, =l s, X
u(t) < at) + b I (t — )" u(s)ds
0
then

u(?) < a(t) + bT(0) j (t = ) Eqo (BT(0)(t = 9)) a(s)ds.
0
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INVERSE COEFFICIENT PROBLEMS FOR A TIME-FRACTIONAL WAVE EQUATION 17

Lemma 2 ([25], p. 189). Suppose b > 0, . > 0,y > 0, o + ¥ > 1 and a(t) nonnegative function locally inte-
grable on 0 <t < T and suppose tHu(t) is nonnegative and locally integrable on 0 < t < T with

u(t) < a(t) + bj(r — )% u(s)ds,
0

then

1

u(t) < a(t)E,, ((br(ot))_aw—l 1),
where
E. () = ic D Gt C(m(o+y—1)+7)
AR~ ’ "¢, Tma+y-D+o+y)
1o+y-1 1 o+y-1
Jorm>0. Ast — +oo E, (1) = 0| * °7 exp(mt o ] .
o

The proof of these assertions come from the definition of Caputo fractional derivative and differentia-
tion of the two-parameter M—L function.

Proposition 2 ([26], pp. 40—45). For 0 <o <1, t > 0, we have 0 < E, (-t) <1. Moreover, E (~t) is
completely monotonic, that is

(—1)”%%(—0 >0, VneN.
t

Proposition 3 ([26], pp. 42—45). For0 < o <1,m > 0, we have 0 < E, ,(-1) < % Moreover, E, ,(—N)
o

is a monotonic decreasing function with | > 0.

4. INVESTIGATION OF DIRECT PROBLEM (1)—(3)

By applying the Fourier method, the solution u(x;#) of the direct problem (1)—(3) can be expanded in
a uniformly convergent series in term of eigenfunctions of the form

ux,0) = 30X, 0, (5)
where "
X, (x) = \Esin(x,,x), A, = % n=123,... (6)
The coefficients u,(¢) for n > 1 are to be found by making use of the orthogonality of the eigenfunctions
!
X, (x). The scalar product in 1,[0,/] is defined by (£, g) = jf(x)g(x)dx. Let us note the expansion coeffi-
0

cients of @,;(x), i = 1,2 and f(x,?) in the eigenfunctions of (6) for » > 1 are definded respectively by
(f(-xat)aXn(-x)) = f;‘l(t)ﬂ ((pi(x):Xn(x)) = (pn,i! l = 1’2’ n =1’23""

/
We obtain in view of (1) and with (u(x,7), X, (x)) = ju(x, HX,(x)dx = u,(t), and we may write
0

(D85, ) (0 + Mo (6) = p(0) £,(0) — g0 (2), (7)

where
2 (! .
Mﬂ=f[ﬂnmmmww.
[ Jo
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18 TURDIEV
The initial condition (2) give:

(2-0)(1-P) d ( 72-0)(1-B)
15 Pu,@) =0 (1577 Pu,) 0

= . 8
dt (pn,Z ( )

=0

In view of ([27], pp. 61—114), we have that the initial problem (7)—(8) is equivalent in the space
C;x ’B[O, T'] to the Volterra integral equation of the second kind

B-H(2-0) 2
u,(t) = (e Eo1v¢-n0-o0) (_7” t(x)(pn,l

l+(|3*1)(2*0t)E

1 a,0+B(2-0t) (_7\'2f a) @

)

+ | (1= 1) Eqa(-Aa(t = D™ p(D (D

C— ~

(1 =" Euul =t = D)0, (0
0

We prove the following assertions for u,(7):

Lemma 3. Forfixed ne N we have the estimates

Y |”n| <M [tw(ﬁ—l)u—a) |(Pn,1|

1+y+(B-D(2-o)
+t |0,.0] +

”p”C[O,T] ||f;t||cy[0’7'] taB((X,’l - Y)
I'o+1)

1
X Eqy ((”q”cm,r] ty)aw_l tjv 1€ 0,71,

N 0650,) 0] < olgy Voo

+ M (A, + ||q||qo,n){f”(ﬁ'”‘z‘“) @]+ 1T g,

1Pleyo g 1l oy £ B0 T = ) i
0 I—-C(toc:]_ 1) E,, (("‘]"c[o,ﬂ ty)a”_l tj’ te[0,T],

wherel >y > (1-B)2- ).

Proof. Multiplying Eq. (9) by ¢, we have

tY|u | < M{tvﬂﬁ—l)e—a) |(P 1| + fHFB-DE-0) |(p 2|
n| — n, n,

(10)

+ ”p”qo,r] "fn”a,[o,r] tOLB(OL’l - Y)} n "q"cm,r] 1

o-1
T(o+1) (o)) ?[(t ~ )" |u, (D] dT.
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INVERSE COEFFICIENT PROBLEMS FOR A TIME-FRACTIONAL WAVE EQUATION 19

Further, via Lemma 2, we get

£ |U2n-|| < M{tw(ﬁlxza) |<Pn,1|

1+y+(B-1)(2-a)
+1 |0,.2| +

”p”C[O,T] ||-f;’||Cy[0,T] 1*B(a,1- )
I'ot+1)

i
X Eqy ((”q”cw,ﬂ tY)OWH tjv te [0,T].

Taking into account the first equation in (7) and the first estimate of Lemma 3, we have the second
part of the Lemma 3:

r ‘(D&,ﬁtun) 4 )‘ < 1Pleyo.r, "f””Cle,TJ

+ M (A, + IIQIIC[O,T])Lf HEEDg, [+ HEE g, )

1Pl i 1l oy 2 BT =) 1
T o (e

Lemma 3 is proven.

O
Formally, from (5) by term-by-term differentiation we compose the series
Difu(x,1) = " Dthu, (1) sin(h, ), (11)
n=1
U (5,1 = D hu, (D sin(h,x). (12)
n=1

In view of Lemma 3, the series (5), (11), and (12) for any (x,¢) € ﬁzr ,

M\E Z [TH(B—I)O—OO |(Pn,1|
n=l1

"p”C[O,Tj ”f””Cy[O,TJ TB(a,1 - 'Y)J

+T1+Y+<B—1)(2—a) |+
[0 T(o + 1)

5
\/; Z;l:”p”cmﬂ "f;l”CY[O,T]

+M (ki + ”q”qo,r])(TW(B_I)(Z_OO |(Pn,1| + e |(Pn,2|

+ "p”C[O,T] ”‘f;’”CY[O,T] T(XB((X;] - Y)
(o +1) ’
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20 TURDIEV

M\E z 7\5 {TYHB—I)Q—OL) |(Pn,1|
n=1

||p ”C[O,T] ”fn”cy[o,r] T°B(0o,1- )

+ T1+y+([3—1)(2—0c) +
9] (o + 1)

b

where Qir = {(x,):0<x <0<t <T).
We hold the following auxiliary lemma.
Lemma 4. If the conditions (A1)—(A2) then there are equalities

3 . 1 L0
@, = 73“’(”’)’ i=12, fn(t)—k—zf,f ), (13)

where

l
0, = \E jo 02 (x), cos(\,x)dx, =12,

120 = \Fj' S0y cos(h, x)dx,
1o

with the following estimates:

Z

If the functions ¢,(x), i = 1,2 and f(x,¢) satisfy the conditions of Lemma 3.2, then due to representa-

o)
(pn !

3
<[o?!

Lio.g’ L[0,/1xC[0,T']

Sl <o) . (14)
=1

tions (13) and (14) series (5), (11), and (12) converge uniformly in the rectangle ﬁ;r, therefore, function
u(x,t) satisfies relations (1)—(3).

Using the above results, we obtain the following assertion.

Lemma 5. Let p(¢),q(t) € C[0,T], (Al)—(A2) are satisfied, then there exists a unique solution of the direct
problem (1)—(3) u(x,1) € C;**(Qur).

Let us derive an estimate for the norm of the difference between the solution of the original integral
Eq. (9) and the solution of this equation with perturbed functions p q (pn Hi=12, f Let u,,(t) be solu-

tion of the integral Eq. (9) corresponding to the functions p, q, (pn,, =12, f

( DR2-a)
u,,(t) b “E, 1+(B-1)(2- (x)( At )(pn,l

fHPe a)E(x 0B~ a)( 7“2’“)([),,,2

+ [ (=) Eyo(0it = M) p(D ] (D (15)

— [t =" Epo(12(t = D )a(Dtn(vyd .

o'_.n O ey ~

Composmg the dlfference U= u with the help of Egs. (9), (15) and introducing the notations
U—U=Up, p— p p, q-— q q, f, — f fn,we obtain the integral equation

B-D(2-0) 2.0
Hn(f) =/® Eyii@-ne-o (_7" t )q)n,l

1+(ﬁ—1)(2—0c)E

+1 o,0+B(2—ar) (_7\'21‘0c ) 6n,2

1

+ (=" Eou Mt - D001, (DdT

0
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INVERSE COEFFICIENT PROBLEMS FOR A TIME-FRACTIONAL WAVE EQUATION 21

1

+ [0 =" Eqo( 25 = 0P (0t

0

— [t =) Epol 2t = DM, (1)d7

— [t =0 By oAt = DMa(Dun()dt

o'—.w O'—.N

from which we derive the following linear integral inequality for

un(t)

ZaB

Y+BR-DQ2-o) | 1+Y+(ﬁ H2-o) |
u’l(t) ZuB <M ! (pn (pn2

4 (H;Hclo,n "fn”c{[o,r] + ”; "C[O,T] 7“ )taB(Ot,l -7

T'(a+1)

C,0.T]

l+y+([3 DR-o) |-

(pn (pn 2

INa+1)

p f t*B(o,1—-1) 1
+ ” "CIO’T' ” ”CY[O’TJ ! ]Ea,y ((||4||cm,n ! Y)Oﬁrl t]

4 ”EHC[O,T] taM[tw(B DQ2-o) |-

T'(a+1)

-
e

Using Lemma 1 from last inequality, we arrive at the estimate:

Zn(t)‘ dr.

;n([) a8 <IM tY+(B DQ2-o) [~ O 1+y+([3 D2-a) [ s
Y
(HPHC[O 7] |f ”C 410,71 Hp“clo T] Cy[o,T])t(XB(OL’1 R
(o +1)
[,
" %M ! el (O (16)

p £ t*B(o,1—7) 1
N ” ”cm,r] " ”CY[O,T] it J E,, ((” q”C[O,T] ,Y)a+y—1 t]

TI'a+1)

1
X Eqy (("‘}”cm,ﬂ ty)w_l IJ‘

Indeed, the expression (16) is stability estimate for the solution to the problem (1)—(3). The uniqueness
of this solution follows from (16).
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22 TURDIEV

5. INVESTIGATION OF THE INVERSE PROBLEM (1)—(4)

In this section it is studied the inverse problem as the problem of determining of functions ¢(¢) from
relations (1)—(4), using the contraction mapping principle.

Let us multiply (1) by w;(x), (i = 1,2) and integrate over x from 0 to /:

! ! 1
J. o,(x) Dy, Jf’,u(x, tdx — J- o;(X)u, dx + q(t)j o; (X)u(x,)dx
0 0 0

= p(t)j(ju),-(x)f(x,t)a’x, i=12, xe(0,/), te(0,T].

After integrating by parts, in view of conditions (2)—(4), we obtain the equality

D h(t) — oD (1, 1) + 0,(0)uay (0,1) — j o, (ux, H)dx + qOh(?)
(17)
= p(t) IO @, () fCx, )dx, i=1,2.

Suppose that the condition ®,(0) = w;(/) = 0 are satisfied for (17). Solving the system (17) with respect
to the unknown functions p(¢) and ¢(¢), we obtain the following integral equations with respect to the
unknowns

p(t) = A()Z( 1)’h(r){0&%(r) Zu G p,q>>3m§?}, (18)
iJ 1
q(r) = A()Z( 1y’ {Zf(r)m,n (Do‘i (@) - Zu & ), f?ﬂ, (19)
iJ 1

where

A = h1(t)2f(t)032n (r)ana)mln;

\[ j o.(x)sin(L,)dx; o == \[ j o, (x)sin(h, x)dx.

Equations (18), (19) form a complete system of integral equations for the unknown functions p(¢), ¢(7).
We introduce this system in the form of the operator equation

g1 = Algl®), (20)

where g =(g,8,) = (p(t);q()) is vector function. A = (A, A,), defining it by the right hand sides
of (18), (19)

Algl®) = gm(’)‘mZ( 1)Jh<r>2u<t g: &),
i,j=1

i#j

Az[gl(r)=goz<r>—$2( 1’ Zf(r)w,,,Zu(t gigho)) |
i,j=1

l#j

Let gy = (o1, &), Where

go(0) = Z( 1 (O DS (0);

1/1
l¢j

o) = A()Z( 1)’Zf(r)w D).
i,j=1

l¢j
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INVERSE COEFFICIENT PROBLEMS FOR A TIME-FRACTIONAL WAVE EQUATION 23
Fix a number p > 0 and consider the ball

BT(gO, p) = {g : ”g - go”C[O,T] < p} .
Theorem. Let (A1)—(A4) are satisfied. Then there exists a number T* € (0,T), such that there exists a
unique solution p(t), q(t) € C|0,T*] of the inverse problem (1)—(4).
Proof. Let us first prove that for an enough small 7 > 0 the operator A maps the ball B" (gy,p) implies

that Alg](?) € BT(gO,p). Indeed, for any continuous function g(¢), the function A[g](¢) calculated using
formula (20) will be continuous. Moreover, estimating the norm of the differences, we find that

A Lg10) — gy, (0)] < 20l
AO

D u(T:g:8,)
n=1

< 2020% z M| Tre-ne-o 0n
0 n=l

||p ”Clo,Tl "f"”c,[o,rl T*B(o,1-7)
T+ 1)

.
X Eqy ((”q”qo,r] TY)WH T]’

I+y+(B-D(2-o)
+T || +

IALg10) — g0, < 220l
A,

D u,(Tig:8,)
n=1

2('0()f0 N Y+B-D(2-0)
< E M\ T
\ . = |(pn,1|

(12 "f"”c,[o,r] T°B(a,1-)
T+ 1)

_ 1
x@MWMMWW}

+y+(B-1)(2—a1)
+T || +

where 0, = max lox(x)).-

Here we have used the estimate (9). In view of Lemmas 3.1 and 3.2 last series is convergent series. Note
that the function occurring on the right-hand side in this inequality is monotone increasing with 7', and

the fact that the function g(¢) belongs to the ball BT(gO, p) implies the inequality

lell < o + ol - 1)
Therefore, we only strengthen the inequality if we replace ||g|| in this inequality with the expression
p+ ||g0|| Performing these replacements, we obtain the estimate

2 - —(2—0.
A1) = g0y (®)] < ‘Zi’“Z_ILM e |

0

(P +llgoD /ol o,y T B0t T =)
T(o + 1)

1+y+(B-D)(2-o)
+T |0,.0| +

_1
x%wwmwwwﬂ,
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24 TURDIEV

2 S -0
1A,[g1(®) — g2 (0] < "Z—Ofoz M (T”“‘ VDo, |

0 n=l

I+y+(B-D(2-a)
+T |0,.2| +

(p+ ”g()”)”f;l”Cv[O,T] T“B(o,1-7)
T'la+1)

1
<[ (ol 7T |
These together with (18)—(20) imply the estimates
|ALg] () — go()]| = max{|A,[g]() — g0 (D)].[|A2lg](®) — gor ()}

< max {2030/10 ,20301’0}2 M| preve-o o]
A0 A0 n=l1

I+y+(B-DH(2-a)
+T |0,.2| +

(0 + gDy, 7Bl =1
T(o+ 1)

an,y[(<p+||go||>TY)ﬁv—l rj.

Let 7; be a positive root of the equation

max {20)0}10 ’2@01%}5: M| pr@-De-0 |(Pn,1|
Ay Ay oS

I+7+(B-1)(2-0)
+T |0,.0| +

(p+ ||g0||)||f;1”CY[0,T] T"B(o,1-7)
o +1)

_1
< E,. [(m e T T] .

Then for T € (0,7}) we have Alg](#) € BT(gO, p).

Now consider two functions g(f) and é(t) belonging to the ball BT(gO,p) and estimate the distance
between their images A[g](#) and A[:g;] (?) in the space C[0,7]. The function ;ln(t) corresponding to Zg(t)
satisfies the integral Eq. (15) with the functions ¢,; = (~an., i=12and f, = 7,,. Composing the difference
Algl(@) — A[gr] (¢) with the help of Eq. (9), (15) and then estimating its norm, we obtain

A1) — Ajlgl@)| < 2(2_0%5‘
0 n=l

2030/102 M| pre-ne-o
A0 n=1

N T°B(o,1—7)
T'(a+1)

u,(T; 2;8,) = (T3 2,:8,)

(pn,l

< + Tl+y+([3—l)(2—(x) (P” ,

(”gl - él"c[o)ﬂ ”fn"cy[o,r]

0.7} )]
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n,l

”g2 & 2||C[o T gl prB-ve-o 6
(o +1)

+ T1+y+([3—l)(2—0c) (P

n2

N ”gl"qo,r] ”fn”C.{[O,T] T"B(o,1- )
T'(a+1)

—L - 1
o (el B (77

||A2[g] ®) - Az[g] ([)” < % -
0

(T 21582 — un(T3 2158,

+ T1+’Y+(B DR-o) |-

(pn (pn 2

0 n=l1

200/y % +B-1)(2-0) [~
SN M| TY

T*B(o,1 -
TR LIt N 2
+ ||§1||C[0,T] - ~n C«,IO,TJ)]

e

n,l

Clo, T] M T7+(B—1>(2—0t) 6
T'(a+1)

+ T1+y+([3—1)(2—0c) ¢

n2

N ”gl"qo,r] ”fn”cy[o,r] T"B(o,1-)
T'(a+1)

- — B 1
ol TP B [l 7T |

Using inequality (10) and the estimate (16) with ¢,; = (pn,, =L2and f, = f we continue the pre-
vious inequality in following form:

|AiLg1@) - A1)

2 T B(o,1— ~
COOhO ’Z{ ﬁ{"gl -8 1||C[0,T| ”f””C,lO,TJ

+ M ||g2 - gz”c[o,]‘] T(X ”gl”C[O,T] ”'f"”"Cy[O,TJ TOLB((X’I - Y)
T(o +1) T(o + 1)

(22)

—L - i
 Fu U"gz”C[O»T] TY)MY_I Tj} X Eoy (("g 2||C[0,T] TY)MY_I T].
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|AsLg1 ) = Aslel@)]

20 /o~ |y, TBl0,1 - p
< _(ZOO : Z{ F(((;x+ 1) s (” —& 1||C10,TJ I ”Cv‘m

n=1

(23)

N M||g2 g2||c[0 7 |g1||C[0 7] "f ”c 0.7 T"B(o,1-7)
(o, + 1) (o +1)

- - L
 Fo (<"g2”q0’71 TY)MY—] T]} X Eoy [("g 2||C[O,T] TY)MY_I T].

The functions g(¢) and §(t) belong to the ball BT(gO, p), and hence for each of these functions one has
inequality (21). Note that the function on the right-hand side in inequality (22), (23) at the factor ] — [¢]

is monotone increasing with ||g||,||§||, and T. Consequently, replacing |g| gl| in inequality (22), (23)

with p +||g| will only strengthen the inequality. This, we have

[Ailg10) ~ ALg10)]

2wk < T°B(o,1—7y) MT*
<=3 M———"U L
AO ;{ F(OC + 1) [”fn"Cy[O,T] F(OC + 1)

Mo+ D) oy (”g2||c[0,T] TY)MH T

y ”gl”qo,n ”f"”CV[O,TJ TQB(OL’I - Y)J B ( 1 j}

e
y E(w ((||g2||ClO,TJ TY)(X+Y—I Tj
[Aslel o) - Adlgl o)

20, fy T°B(o,1—7) MT*
< 2050 M——"
A, Z{ (o + 1) [”f””CﬂOﬂ i (o +1)

n=1

g fn T°B(0,1— ) L
Bleon Vil ! JE (O Tj}

(o + 1)

—L_ ~
< o (ol =1

Hence,

[Alg1@) - Alg10)] < max {22% zoioojz}

- T°B(o,1—7) MT®
M—=" U
XZ%: e+ 1) @ﬂkm”+na+n
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leilleyory 1 olle 0.0y T Bl 1 = ) 1
S llet(;T-:- 1) Y((HgZHC[O,T] T Y)MY—I Tj

1
< o [l T =

Let 7, be a positive root of the equation

[Alg1@) - Alg10)] < max {2%% 2(Dofo}

A A,
oo TOLB(O( 1— ’Y) MT(X
M2 0 MT*
X Z F(OC + 1) ” "C 410, T] F((X n 1)
”gl”C[o,T] ”f””C [0.7] T“B(o,1 - ) L
§ FEOL +1) oy ((||g2||qoﬂ TY)OHY—I Tj

1
< o [l T | 1.

Then for T € (0,75) the operator A contracts the distance between the elements g(), é(t) € BT(gO,p).

Consequently, if we choose 7* < min(7;,7,) then the operator A is a contraction in the ball BT(go,p).
However, in accordance with the Banach theorem ([28], pp. 87—97), the operator A has unique fixed

point in the ball BT(gO, p); i.e., there exists a unique solution of Eq. (21).
O

6. CONCLUSIONS

In this work, the solvability of a nonlinear inverse problem for a time-fractional wave equation with ini-
tial-boundary conditions and integral type overdetermination conditions was studied. Firstly we investi-
gated solvability direct problem. The (1)—(3) problem replaced by an equivalent of Volterra integral equa-
tions of the second kind. Existence and uniqueness of direct problem solution was proven. The inverse
problem was considered for determining pair functions p(7), ¢(¢) included in Eq. (1) with additional con-
ditions (4) of the solution of this system with the initial and boundary conditions (2), (3). Conditions for
given functions are obtained, under which the inverse problem has unique solutions for a sufficiently small
interval.
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