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Global solvability of the determination convolutional
kernel in a hyperbolic system of integro-differential

equations
1Durdiev D.K., 2Turdiev H.H.

Abstract. In this paper we consider first-order hyperbolic system with memory,
the inverse problem of determining the convolutional kernel. The direct problem is
the initial-boundary value problem for this system on a finite segment [0, H]. Under
certain conditions of data matching, the inverse problem is reduced to solving a system
of Volterra-type integral equations for unknown functions. Further, the principle of
contracted mappings is applied to this system in the space of continuous functions
with a weighted norm, and a theorem on the global unique solvability of the problem
is proved for any fixed H.

Keywords: Hyperbolic system, convolutional kernel, weighted norm, integral
equation, contraction mapping principle.

Mathematics Subject Classification (2010): 41A15.

1 Introduction
Hyperbolic systems of partial differential equations of the first order are cover
many important mathematical models found in various questions of natural science.
As a rule, second-order equations are derived from them under some additional
assumptions. In this regard, it is desirable to study inverse problems directly in terms
of the system itself. For hyperbolic systems, inverse problems of determining the
coefficients and right-hand sides of equations began to be studied from the 70s of the
last century in the works of L.P. Nizhnik [1], S.P. Belinsky [2], V.G. Romanova and
L.I. Slinyucheva [3].

There are physical phenomena, where not only the present state of the system
is taken into account, but also all the previous positions that the given system
occupied, in other words, it depends on the entire previous history. An example of
such a phenomenon is the propagation of elastic waves in viscous media, in which the
deformation of a viscoelastic medium depends not only on the nature of the applied
forces, but also on the previous deformations to which the medium was subjected.
Such an environment is called a "memory"or "aftereffect"environment [4]. Other
phenomena of this kind are the propagation of electromagnetic waves in dispersive
media [5], the population of animals or plants of various species in mathematical
biology [6]. Mathematically, such phenomena are described mainly by a hyperbolic
system of integro-differential equations with partial derivatives of the first order with
an integral term of the convolution type with respect to a time variable. The problems
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of determining the kernel of integrals in these systems play an important role in
applied sciences and relate to inverse problems. By now, the problems of determining
kernels from a single integro-differential equation of the second order have been widely
studied (see, for example, [7] – [15] and ite referencess).

In this paper, we investigate the inverse problem of determining the kernel in a
hyperbolic system of integro-differential equations of the first order, which has the
form of a matrix of dimension n×n depending on the time variable t. Unique solution
in the global sense is proved, i.e. the existence and uniqueness of the solution take
place for any segment of the definition of unknown functions.

The article is organized as follows: in the first section, the problem statements are
given, the second section is devoted to the study of the direct problem in the third
section, the inverse problem is reduced to the study of an equivalent system of integral
equations; in the fourth section, the main result of the work is proved - the theorem
of the unique solvability of the inverse problem; at the end, a list of references.

2 Formulation of the problem
Let us investigate a system of n equations in the case of one spatial variable

∂u

∂t
+A

∂u

∂x
=

∫ t

0

B(τ)u(x, t− τ)dτ + f(x, t), (x, t) ∈ D, (2.1)

where D := {0 ≤ x ≤ H, t > 0} , u(x, t) is a vector function with components
u1, u2 . . . un. Here A, B are square matrices of dimension n, moreover

A = diag(λ1, λ2, . . . , λn); B(t) = (bij) (t), i, j = 1, n,

λi real, various constants and

λi > 0, i = 1, s; λi < 0, i = s+ 1, n; 0 ≤ s ≤ n; (2.2)

f(x, t) = (f1(x, t), f2(x, t), . . . , fn(x, t)) .

In what follows, the notation of vectors are understood as a column vector.
Statement of the direct problem: for given matrices A, B and a vector function

f , it is required to determine a vector function u(x, t) that satisfies (2.1) with the
following initial and boundary conditions

u(x, 0) = ϕ(x), 0 ≤ x ≤ H, (2.3)

ui(0, t) = gi(t), i = 1, s; ui(H, t) = gi(t), i = s+ 1, n, (2.4)

where ϕ(x) = (ϕ1, ϕ2, ..., ϕn) (x) and g(t) = (g1, g2, ..., gn) (t), i = 1, n given
smooth vector functions.
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Throughout this article, writing a vector of functions in a product with matrices
is understood as a string, if it is multiplied on the left and as a row if multiplication
is on the right.

Let now consider n problems of the form (2.1)–(2.4), each with its own set of
functions f, ϕ, gi, but with the same matrices A, B(

E
∂

∂t
+A

∂

∂x

)
ul =

∫ t

0

B(τ)ul (x, t− τ) dτ + f l(x, t),

ul|t=0 = ϕl(x), 0 ≤ x ≤ H, (2.5)

uli(0, t) = gli(t), i = 1, s, uli(H, t) = gli(t), i = s+ 1, n, l = 1, n,

where E− is the identity matrix of dimension n× n.
Inverse problem: find the matrix B(t), t > 0, if the following information is known

about direct to the problem (2.5):

uli(0, t) = hli(t), i = s+ 1, n, uli(H, t) = hli(t), i = 1, s, l = 1, n. (2.6)

Remark 1. In [16, pp. 164–171] and [17, pp. 76–86] the inverse problem of
determining the matrix function B(x) from the hyperbolic system of equations

∂u

∂t
+A

∂u

∂x
+B(x)u(x, t) = f(x, t)

according to (2.6).
Remark 2. Instead of system (2.1), a more general system of equations,

hyperbolic in the sense of I.G. Petrovsky [18] can be considered. But, then there
is a non-degenerate transformation of functions that such a system is reduced to the
form (2.1) [19] .

3 Investigation of the direct problem
Consider an arbitrary point (x, t) ∈ D on the plane of variables ξ, τ and draw through
it the characteristic of the i− th equation of system (2.1):

ξ = x+ λi(τ − t) (3.1)

before intersection in area τ ≤ t with edge D. The intersection point is denoted by
(xi0, t

i
0). For λi > 0 (i.e. i = 1, s), this point lies either on the segment [0, H] of the

t = 0 axis, either on the straight line x = 0, and for λi < 0, (i.e. i = s+ 1, n)
either on the segment [0, H] or on the line x = H. Integrating the i− th component
of equality (2.1) by characteristics (3.1) from the point (xi0, t

i
0) to the point (x, t), we

obtain
ui(x, t) = ui

(
xi0, t

i
0

)
+
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+

t∫
ti0

 τ∫
0

n∑
j=1

bij(α)uj(ξ, τ − α)dα+ fi(ξ, τ)


ξ=x+λi(τ−t)

dτ, i = 1, n. (3.2)

Let us first define the value ti0 in (3.2). It depends on the coordinates of the point
(x, t) and on what is a i. It is easy to see that ti0(x, t) has the form

ti0(x, t) =


t− x

λi
, t ≥ x

λi
,

0, 0 < t < x
λi
, i = 1, s;

ti0(x, t) =


t+ H−x

λi
, t ≥ x−H

λi
,

0, 0 < t < x−H
λi

, i = s+ 1, n.

(3.3)

Then, from the condition that the pair (xi0, t
i
0) satisfies equation (3.1) it follows

that

xi0(x, t) =

{
0, t ≥ x

λi
,

x− λit, 0 < t < x
λi
, i = 1, s;

xi0(x, t) =

{
H, t ≥ x−H

λi
,

x− λit, 0 < t < x−H
λi

, i = s+ 1, n.

(3.4)

The constant terms of integral equations (3.2) are determined through the initial
and boundary conditions (2.3) and (2.4) as follows:

ui(x
i
0, t

i
0) =


gi(t− x

λi
), t ≥ x

λi
,

ϕi(x− λit), 0 ≤ t < x
λi
, i = 1, s;

ui(x
i
0, t

i
0) =


gi(t+ H−x

λi
), t ≥ x−H

λi
,

ϕi(x− λit), 0 ≤ t < x−H
λi

, i = s+ 1, n.

(3.5)

Let the functions ui(xi0, ti0) be continuous in the domain D. Note that for these
conditions to be satisfied, the given functions ϕi(x) and gi(t) should be satisfy the
following matching conditions at the corner points of the domain D:

ϕi(0) = gi(0), i = 1, s; ϕi(H) = gi(0), i = s+ 1, n. (3.6)

Here and below, the values of functions gi at t = 0 and functions ϕi at x = 0 and
x = H are understood as the limit at these points when the argument tends from the
other side of the point, where these functions are defined.
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Suppose that the functions bij(t) and fi(x, t) are continuous functions of their
arguments in D. Then the system of equations (3.2) are closed system of integral
equations of the Volterra type of the second kind with continuous kernels and free
terms. As usual, such a system has a unique solution in any bounded subdomain
DT = {(x, t) : 0 ≤ x ≤ H, 0 ≤ t ≤ T} of the domain D, where T > 0 is some
fixed number.

In order to study the properties of the first derivatives of the functions ui(x, t),
we differentiate equation (3.2). We have

∂

∂x
ui(x, t) =

∂

∂x
ui
(
xi0, t

i
0

)
− fi

(
xi0, t

i
0

) ∂ti0
∂x

+

+

t∫
ti0

∂

∂x
fi(x+ λi(τ − t), τ)dτ −

ti0∫
0

n∑
j=1

bij(τ)uj
(
xi0, t

i
0 − τ

)
dτ
∂ti0
∂x

+

+

t∫
ti0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
uj(x+ λi(τ − t), τ − α)dαdτ, i = 1, n. (3.7)

For i = 1, s, (3.7) are equivalent to the following equations:

∂

∂x
ui(x, t) = − 1

λi

d

dt
gi

(
t− x

λi

)
+

1

λi
fi

(
0, t− x

λi

)
+

+

t∫
t− x

λi

∂

∂x
fi(x+ λi(τ − t), τ)dτ +

1

λi

t− x
λi∫

0

n∑
j=1

bij(τ)uj

(
0, t− x

λi
− τ
)
dτ +

+

t∫
t− x

λi

τ∫
0

n∑
j=1

bij(α)
∂

∂x
uj(ξ, τ − α)dαdτ, t ≥ x

λi
;

∂

∂x
ui(x, t) = −λi

d

dx
ϕi(x− λit) +

t∫
0

∂

∂x
fi(x+ λi(τ − t), τ)dτ +

+

t∫
0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
uj(ξ, τ − α)dαdτ, 0 ≤ t < x

λi
.

These equalities show that, possible discontinuities of the first kind of functions
∂ui
∂x

for i = 1, s are only characteristics x = λit.
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Requiring the fulfillment of the conditions of agreement

fi(0, 0)− λi
[ d
dx
ϕi
]
x=0

=
[ d
dt
gi(t)

]
t=0

, i = 1, s, (3.8)

we have that the functions ∂ui/∂x, defined as solutions of equations (3.7) for i = 1, s
to be continuous in the domain DT .

Proceeding in the same way for i = s+ 1, n, we obtain that if the matching
conditions are follow

fi(H, 0)− λi
d

dx
ϕli

∣∣∣∣∣
x=H

=
d

dt
gi(t)

∣∣∣∣∣
t=0

, i = s+ 1, n, (3.9)

then the functions ∂ui
∂x

for i = s+ 1, n will also be continuous in the domain DT .
Thus, under conditions (3.8), (3.9) equalities (3.7) are a system of integral

equations of Volterra type with continuous free terms (the first four terms on the
right-hand side of (3.7)) and kernels. According to the theory it is known that such a
system has a unique continuous solution.

Further, we denote the vector function v(x, t) := (∂/∂t)u(x, t). Let u(x, t) be a
solution of problem (2.1), (2.3), (2.4).

To obtain a problem for a function v(x, t) similar to (2.1), (2.3), (2.4), we
differentiate equation (2.1) and boundary conditions (2.4) with respect to the variable
t, and using be condition at t = 0 is found equation (2.1) and initial condition (2.3).
In this case, we get

(
E
∂

∂t
+A

∂

∂x

)
v = B(t)ϕ(x) +

t∫
0

B(τ)v(x, t− τ)dτ +
∂

∂t
f(x, t), (3.10)

v
∣∣
t=0

= f(x, 0)−A d

dx
ϕ(x), 0 ≤ x ≤ H, (3.11)

vi(0, t) =
d

dt
gi(t), i = 1, s; vi(H, t) =

d

dt
gi(t), i = s+ 1, n. (3.12)

Integration along the corresponding characteristics again leads to problem (3.10)-
(3.12) to the integral equations

vi(x, t) = vi
(
xi0, t

i
0

)
+

t∫
ti0

∂

∂τ
fi(x+λi(τ− t), τ)dτ+

t∫
ti0

n∑
j=1

bij(τ)ϕj(x+λi(τ− t))dτ+

+

t∫
ti0

τ∫
0

n∑
j=1

bij(α)vj(x+ λi(τ − t), τ − α)dαdτ, (3.13)
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where vi
(
xi0, t

i
0

)
are determined by the formulas:

vi(x
i
0, t

i
0) =


d
dt
gi(t− x

λi
), t ≥ x

λi
,

fi(x− λit, 0)− λi ddtϕi(x− λit), 0 ≤ t < x
λi
, i = 1, s;

vi(x
i
0, t

i
0) =


d
dt
gi(t+ H−x

λi
), t ≥ x−H

λi
,

fi(x− λit, 0)− λi ddtϕi(x− λit), 0 ≤ t < x−H
λi

, i = s+ 1, n.

It is easy to see that the conditions for matching the initial (3.11) and boundary
(3.12) data at the corner points of the domain D coincide with relations (3.8) and
(3.9). Hence, it is clear that if the same equalities (3.8) and (3.9) are satisfied, then
integral equations (3.13) have a unique continuous solutions vi(x, t), or the same
(∂/∂t)ui(x, t).

So, we have proved the following theorem:

Theorem 3.1. Let ϕ(x) ∈ C1 [0, H] , B(t) ∈ C1 [0, ∞) , g(t) ∈ C1 [0, ∞) , f(x, t) ∈
C1 (D) , and the matching conditions (3.6), (3.8), (3.9) are hold. Then, there is a
unique classical solution to the problem (2.1)-(2.3) in the domain D.

4 Investigation of the inverse problem.
Derivation of an equivalent system of integral
equations

Consider an arbitrary point (x, 0) ∈ D and draw characteristic (3.1) through it until
the lateral boundaries cross the domain D. Integrating the i−component of equations
(3.10) and using differentiated data (3.2) with respect to the variable t, we find

vli(x, 0)− d

dt
hli(ti(x)) =

ti(x)∫
0

n∑
j=1

bij(τ)ϕlj(x+ λiτ)dτ +

+

ti(x)∫
0

τ∫
0

n∑
j=1

bij(α)vl(x+ λiτ, τ − α)dαdτ +

ti(x)∫
0

∂

∂t
f l(x+ λiτ, τ)dτ, (4.1)

where

ti(x) =
1

|λi|

{
H − x, i = 1, s;
x, i = s+ 1, n.
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Taking into account (3.11), we rewrite (4.1) in the form

ti(x)∫
0

n∑
j=1

bij(τ)ϕlj(x+ λiτ)dτ +

ti(x)∫
0

τ∫
0

n∑
j=1

bij(α)vl(x+ λiτ, τ − α)dαdτ =

= f li (x, 0)− λi
d

dx
ϕli(x)− d

dt
hli(ti(x))−

ti(x)∫
0

∂

∂t
f l(x+ λiτ, τ)dτ.

Let us differentiate this equation with respect to the variables x. Then we have

− 1

λi

n∑
j=1

bij(ti(x))ϕlj(x+ λiti(x)) +

ti(x)∫
0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λiτ)dτ −

− 1

λi

ti(x)∫
0

n∑
j=1

bij(τ)vlj(x+ λiti(x), ti(x)− τ)dτ +

+

ti(x)∫
0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(x+ λiτ, τ − α)dαdτ =

∂

∂x
f li (x, 0)−

− λi
d2

dx2
ϕli(x)− 1

λi

d2

dt2
hli(ti(x)) +

1

λi

∂

∂t
f l(x+ λiti(x), ti(x)) +

+

ti(x)∫
0

∂2

∂t∂x
f li (x+ λiτ, τ)dτ, i, l = 1, n. (4.2)

Let us write equation (4.2) in the following form:

n∑
j=1

bij

(
H − x
λi

)
ϕlj(H) = F li (x)−

H−x
λi∫

0

n∑
j=1

bij(τ)Glj

(
H − x
λi

− τ
)
dτ +

+ λi

H−x
λi∫

0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λiτ)dτ +

+ λi

H−x
λi∫

0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(x+ λiτ, τ − α)dαdτ, i = 1, s; (4.3)
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n∑
j=1

bij

(
− x

λi

)
ϕlj(0) = F li (x)−

− x
λi∫

0

n∑
j=1

bij(τ)Glj

(
− x

λi
− τ
)
dτ +

+ λi

− x
λi∫

0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λiτ)dτ +

+ λi

− x
λi∫

0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(x+ λiτ, τ − α)dαdτ, i = s+ 1, n, (4.4)

where l = 1, n, Fi(x) denote by:

Fi(x) := −λi
∂

∂x
f li (x, 0) + λ2

i
d2

dx2
ϕli(x) +

d2

dt2
hli(ti(x))−

− ∂

∂t
f l(x+ λiti(x), ti(x))− λi

ti(x)∫
0

∂2

∂t∂x
f li (x+ λiτ, τ)dτ,

Glj(·) :=

{
d
dt
hlj(·), j = 1, s,

d
dt
glj(·), j = s+ 1, n, l = 1, n.

In what follows, in equations (4.3) and (4.4), we replace H−x
λi

and − x
λi

by t. Then
we get

n∑
j=1

bij(t)ϕ
l
j(H) = F li (H − λit)−

t∫
0

n∑
j=1

bij(τ)Glj (t− τ) dτ +

+ λi

t∫
0

n∑
j=1

bij(τ)
d

dx
ϕlj(H − λi(t− τ))dτ +

+ λi

t∫
0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(H − λi(t− τ), τ − α)dαdτ, i = 1, s; (4.5)
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n∑
j=1

bij(t)ϕ
l
j(0) = F li (−λit)−

t∫
0

n∑
j=1

bij(τ)Glj (t− τ) dτ +

+ λi

t∫
0

n∑
j=1

bij(τ)
d

dx
ϕlj(−λi(t− τ))dτ +

+ λi

t∫
0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(−λi(t− τ), τ − α)dαdτ, i = s+ 1, n,

where t ∈ [0, H
|λi|

], i = 1, n.

Let Φ(x) be the matrix function by columns ϕl(x), l = 1, n:

Φ(x) =
(
ϕ1, ϕ2, . . . , ϕn

)
(x).

In what follows, we will assume that the conditions

det Φ(0) 6= 0, det Φ(H) 6= 0. (4.6)

Solving the system of (4.5) with respect to bil(t), we obtain

bil(t) =
1

det Φ(νi)

n∑
j=1

[
F ji (ti(t))−

−
t∫

0

n∑
k=1

bik(τ)

(
Gjk (t− τ)− λi

d

dx
ϕjk(ti(t) + λiτ)

)
dτ

]
Ψl
j(νi)−

− λi
det Φ(νi)

∫ t

0

τ∫
0

n∑
j=1

n∑
k=1

bik(α)
∂

∂x
vjk(ti(t) + λiτ, τ − α)dαdτΨl

j(νi), (4.7)

i = 1, n, l = 1, n, where

νi =

{
H, i = 1, s,
0, i = s+ 1, n,

ti(t) =

{
H − λit, i = 1, s,
−λit, i = s+ 1, n.

Equations (4.7) include unknown functions (∂/∂x)vlj , j, l = 1, n. For them, we
obtain integral equations from (3.13) using differentiation with respect to the variable
x, having previously rewritten them for each problem with numbers l labeled with a
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superscript. Moreover, we have

∂

∂x
vli(x, t) =

∂

∂x
vli(x

i
0, t

i
0)−

−
n∑
j=1

bij(t
i
0)ϕlj(x

i
0)
∂

∂x
ti0 − f li (xi0, ti0)

∂

∂x
ti0 +

t∫
ti0

∂2

∂τ∂x
f li (x+ λi(τ − t), τ)dτ +

+

t∫
ti0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λi(τ − t))dτ +

ti0∫
0

n∑
j=1

bij(τ)G
(
ti0 − τ

) ∂

∂x
ti0dτ +

+

t∫
ti0

τ∫
0

n∑
j=1

bij(α)
∂

∂x
vlj(x+ λi(τ − t), τ − α)dαdτ, i, l = 1, n. (4.8)

In integral equations (4.8), the requirement of continuity of free terms in D entails
matching conditions, which would also include the values of the elements of matrix
B at the points t = 0, t = H, which is illogical from the point of view of the
inverse problem. Then integral equations (4.8) have piecewise continuous free terms
and continuous kernels in a domain D. Consequently, functions ∂vli/∂x, i = 1, s,
as solutions of these equations, are discontinuous at point (0, 0), functions ∂vli/∂x,
i = s+ 1, n, are discontinuous at point (0, H). These breaks will spread according
to characteristics into the area D. Thus, each component ∂vli/∂x of function ∂vl/∂x
turns out to be discontinuous along characteristic (3.1) outgoing either from the point
(0, 0) for i = 1, s or from the point (0, H) for i = s+ 1, n.

We transfer the second term on the right-hand side of (4.8), which contains the
elements of the matrix B, to the left-hand side and introduce into consideration the
new functions

pli(x, t) :=
∂

∂x
vli(x, t) +

n∑
j=1

bij(t
i
0)ϕlj(x

i
0)
∂

∂x
ti0.

Then from (4.1) follows

pli(x, t) =
∂

∂x
vli(x

i
0, t

i
0)− f li (xi0, ti0)

∂

∂x
ti0+

+

∫ t

ti0

∂2

∂τ∂x
f li (x+ λi(τ − t), τ)dτ +

ti0∫
0

n∑
j=1

bij(τ)G
(
ti0 − τ

) ∂

∂x
ti0dτ+

+

t∫
ti0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λi(τ − t))dτ +

t∫
ti0

τ∫
0

n∑
j=1

bij(α)

[
plj(ξ, τ − α)−
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−
n∑
k=1

bjk
(
ti0(ξ, τ − α)

)
ϕlk

(
xi0(ξ, τ − α)

) ∂

∂x
ti0

]
ξ=x+λi(τ−t)

dαdτ, (4.9)

i, l = 1, n.
Let i = 1, s, l = 1, n. Then equations (4.9) are equivalent to the following equations:

pli(x, t) = − 1

λi

d2

dt2
gli

(
t− x

λi

)
+

1

λi
f li

(
0, t− x

λi

)
+

∫ t

t− x
λi

∂2

∂τ∂x
f li (x+ λi(τ − t), τ)dτ +

t∫
t− x

λi

n∑
j=1

bij(τ)

[
d

dx
ϕlj(x+ λi(τ − t))+

+
1

λi
vlj

(
0, t− x

λi
− τ
)]

dτ +

t∫
t− x

λi

τ∫
0

n∑
j=1

bij(α)

[
plj(x+ λi(τ − t), τ − α)+

+
1

λi

n∑
k=1

bjk

(
τ − α− x

λi

)
ϕlk

(
τ − α− x

λi

)]
dαdτ, t ≥ x

λi
; (4.10)

pli(x, t) =
∂

∂x
f li (x− λit, 0)− λi

d2

dx2
ϕli(x− λit)+

+

∫ t

0

∂2

∂τ∂x
f li (x+ λi(τ − t), τ)dτ +

t∫
0

n∑
j=1

bij(τ)
d

dx
ϕlj(x+ λi(τ − t))dτ+

+

t∫
0

τ∫
0

n∑
j=1

bij(α)plj(x+ λi(τ − t), τ − α)dαdτ, 0 ≤ t < x

λi
. (4.11)

It can be seen from equalities (4.10) and (4.11) that possible discontinuities of the
first kind of functions pli(x, t) can occur only on characteristics x = λit.

Requiring the fulfillment of the matching conditions

− 1

λi

d2

dt2
gli(0) +

1

λi
f li (0, 0) =

∂

∂x
f li (0, 0)− λi

d2

dx2
ϕli(0), (4.12)

we have that functions pli(x, t), defined as solutions of integral equations (4.9) for
i = 1, s, l = 1, n will be continuous in the domain D. Proceeding in the same way for
i = s+ 1, n, l = 1, n, we obtain that if the matching conditions of the form

− 1

λi

d2

dt2
gli(0) +

1

λi
f li (H, 0) =

∂

∂x
f li (H, 0)− λi

d2

dx2
ϕli(H), (4.13)

then the functions pli(x, t) for i = s+ 1, n, l = 1, n will be continuous in the domain
D.
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5 Main result and its proof

The main result of this work is the following statement:

Theorem 5.1. Let ϕ(x) ∈ C2 [0, H] , g(t) ∈ C2 [0,∞) , f(x, t) ∈ C1 (D) , hli(t) ∈
C2(0,∞) and condition (4.6), matching conditions (3.6), (3.8), (3.9), equalities
(4.12),(4.13) are hold. Then, for all H > 0 on the segment

[
0, H

µ

]
, µ = min1≤i≤n |λi|

there exists a unique solution to the inverse problem (2.5),(2.6) in the class B(t) ∈
C
[
0, H

µ

]
, and each component bil(t) is determined by hli(t) for t ∈

[
0, H
|λi|

]
.

Equations (3.13), written for each ϑli(x, t) with numbers l = 1, n, together with
(4.7) and (4.9), form a closed system of integral equations of the Volterra type of the
second kind with respect to unknowns ϑli(x, t), bil(t), pli(x, t) i, l = 1, n. Consider now
a rectangular area

D(µ) :=

{
(x, t) : 0 ≤ x ≤ H, 0 ≤ t ≤ H

µ

}
.

Equations (3.13),(4.7) and (4.8) show that the values of the functions ϑli(x, t),
bil(t), p

l
i(x, t) at (x, t) ∈ D(µ) are expressed in terms of integrals of some combinations

of the same functions over the intervals lying in D(µ). Let us write them in the
form of an operator equation. For this, we introduce vector functions ψ(x, t) =(
ψ1
il, ψ

2
il, ψ

3
il, i, l = 1, n

)
, into consideration, specifying their components by the

equalities:

ψ1
il(x, t) = ϑli(x, t), ψ2

il(x, t) = ψ2
il(t) = bil(t), ψ3

il(x, t) = pli(x, t).

Then system of equations (3.13),(4.7) and (4.9) takes the operator-vector form

ψ = Uψ, (5.1)

where the operator U =
(
U1
il, U2

il, U3
il, i, l = 1, n

)
in accordance with the right-

hand sides of equations (3.13),(4.7) and (4.9) is defined by the relations

U1
ilψ = ψ10

il (x, t)+

+

t∫
ti0

n∑
j=1

ψ2
ij(τ)ϕlj(x+λi(τ−t))dτ+

t∫
ti0

τ∫
0

n∑
j=1

ψ2
ij(α)ψ1

jl(x+λi(τ−t), τ−α)dαdτ, (5.2)
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U2
ilψ = ψ20

il (x, t)− 1

det Φ(νi)

t∫
0

n∑
j=1

n∑
k=1

ψ2
ik(τ)

[
Gjk (t− τ)−

− λi
d

dx
ϕjk(ti(t) + λiτ)

]
dτΨl

j(νi)−
λi

det Φ(νi)

∫ t

0

n∑
j=1

n∑
k=1

∫ τ

0

ψ2
ik(α)

[
ψ3
kj(ξ, τ − α)−

−
n∑
p=1

ψ2
kp

(
ti0(ξ, τ − α)

)
ϕjp

(
xi0(ξ, τ − α)

)
× ∂

∂x
ti0

]
ξ=ti(t)+λiτ

dαdτΨl
j(νi), (5.3)

U3
ilψ = ψ30

il (x, t) +

t∫
ti0

n∑
j=1

ψ2
ij(τ)

d

dx
ϕlj(x+ λi(τ − t))dτ +

+

ti0∫
0

n∑
j=1

ψ2
ij(τ)G

(
ti0 − τ

) ∂

∂x
ti0dτ +

t∫
ti0

τ∫
0

n∑
j=1

ψ2
ij(α)

[
ψ3
jl(ξ, τ − α)−

−
n∑
k=1

ψ2
jk

(
ti0(ξ, τ − α)

)
ϕlk

(
ti0(ξ, τ − α)

) ∂

∂x
ti0

]
ξ=x+λi(τ−t)

dαdτ, (5.4)

i = 1, n. In these formulas, we have introduced the notation

ψ10
il (x, t) = vli

(
xi0, t

i
0

)
+

∫ t

ti0

f li (x+ λi(τ − t), τ)dτ,

ψ20
il (t) =

1

det Φ(νi)

n∑
j=1

F ji (ti(t))Ψ
l
j(νi),

ψ30
il (t) =

∂

∂x
vli(x

i
0, t

i
0)−

− f li (xi0, ti0)
∂

∂x
ti0 +

∫ t

ti0

∂2

∂τ∂x
f li (x+ λi(τ − t), τ)dτ. (5.5)

We define the Banach space Cσ (D(µ)) of continuous functions on the set D(µ)
generated by the family of weighted norms

‖ψ‖σ = max
i,l,s

sup
(x,t)∈D(µ)

∣∣ψsil(x, t)e−σt∣∣ ,
i, l = 1, n; s = 1, 2, 3, σ ≥ 0 is a number that will be chosen later. Obviously, for σ = 0
this space coincides with the space of continuous functions with the usual norm ‖ψ‖σ.
Due to the inequality

e
−σH

µ ‖ψ‖σ ≤ ‖ψ‖σ ≤ ‖ψ‖,
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norms ‖ψ‖σ and ‖ψ‖ are equivalent for any fixed H ∈ (0,∞).
Next, consider the set of functions S

(
ψ0, ρ

)
⊂ Cσ (D(µ)), satisfying the inequality

‖ψ − ψ0‖σ ≤ ρ, (5.6)

where the vector is a function ψ0(x, t) =
(
ψ10
il (x, t), ψ20

il (t), ψ30
il (x, t), i, l = 1, n

)
,

the components of which are defined by formulas (5.6). It is easy to see that for
ψ ∈ S

(
ψ0, ρ

)
the estimate ‖ψ‖σ ≤ ‖ψ0‖σ + ρ ≤ ‖ψ0‖ + ρ := ρ0 holds. So ρ0 is a

known number.
Let us introduce the following notation:

ϕ0 := max
1≤i,l≤n

∥∥∥ϕli∥∥∥
C2[0,H]

, g0 := max
1≤i,l≤n

∥∥∥gli∥∥∥
C2
[
0,H
µ

] , f0 := max
1≤i,l≤n

∥∥∥f li∥∥∥
C1[D(µ)]

,

h0 := max
1≤i,l≤n

∥∥∥hli∥∥∥
C2
[
0,H
µ

] , Γ0 := max {g0, f0} , Φ0 := min {|Φ(0)| , |Φ(H)|} ,

λ0 = max
1≤i≤n

|λi| , Ψ0 := max

{
max

1≤i,l≤n

∣∣∣Ψl
j(0)

∣∣∣ , max
1≤i,l≤n

∣∣∣Ψl
j(H)

∣∣∣} .
The operator U takes the space Cσ (D(µ)) into itself. Let us show that for a suitable
choice of σ (note that H > 0 is an arbitrary fixed number), it is a contraction operator
on the set S

(
ψ0, ρ

)
. First, let us verify that the operator U takes the set S

(
ψ0, ρ

)
into itself, that is, condition ψ(x, t) ∈ S

(
ψ0, ρ

)
implies that Uψ ∈ S

(
ψ0, ρ

)
, if σ

satisfies some restrictions. In fact, for any (x, t) ∈ D(µ) and any ψ ∈ S
(
ψ0, ρ

)
, the

following inequalities hold:

∣∣(U1
ilψ − ψ10

il

)
e−σt

∣∣ =

∣∣∣∣∣
t∫

ti0

n∑
j=1

ψ2
ij(τ)e−στϕlj(x+ λi(τ − t))e−σ(t−τ)dτ +

+

t∫
ti0

e−σ(t−τ)

τ∫
0

n∑
j=1

ψ2
ij(α)e−σαψ1

jl(x+ λi(τ − t), τ − α)e−σ(τ−α)dαdτ

∣∣∣∣∣ ≤
≤ n

[
ϕ0‖ψ‖σ + τ‖ψ‖2σ

] ∫ t

0

e−σ(t−τ)dτ ≤ 1

σ
n

(
ϕ0 +

H

µ
ρ0

)
ρ0 =:

1

σ
β1,

similarly, we obtain the following estimates

∣∣(U2
ilψ − ψ20

il

)
e−σt

∣∣ ≤ 1

σ

n2Ψ0

Φ0

[
Γ0 + λ0ϕ0 +

H

µ
(1 + nϕ0) ρ0

]
ρ0 =:

1

σ
β2,

∣∣(U3
ilψ − ψ30

il

)
e−σt

∣∣ ≤ 1

σ
n

[
Γ0 + ϕ0 +

H

µ

(
1 +

nϕ0

µ

)
ρ0

]
ρ0 =:

1

σ
β3.
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From this and formulas (5.2)–(5.6) it follows

‖Uψ − ψ0‖σ = max

{
max

1≤i,l≤n
sup

(x,t)∈D(µ)

∣∣(U1
ilψ − ψ10

il

)
e−σt

∣∣ ,
max

1≤i,l≤n
sup

t∈
[
0,H
µ

]
∣∣(U2

ilψ − ψ20
il

)
e−σt

∣∣ ,
max

1≤i,l≤n
sup

t∈
[
0,H
µ

]
∣∣(U3

ilψ − ψ30
il

)
e−σt

∣∣} ≤ 1

σ
β0,

where β0 := max (β1, β2, β3). Choosing σ > (1/ρ)β0, we see that the operator U
takes the set S

(
ψ0, ρ

)
into itself.

Now we take any two functions ψ, ψ̃ ∈ S
(
ψ0, ρ

)
and estimate the norm of the

difference Uψ − Uψ̃. Using the obvious inequality∣∣∣ψkilψsil − ψ̃kilψ̃sil∣∣∣ e−σt ≤ |ψsil| ∣∣∣ψkil − ψ̃kil∣∣∣ e−σt+∣∣∣ψ̃kil∣∣∣ ∣∣∣ψsil − ψ̃sil∣∣∣ e−σt ≤ 2ρ0‖ψ−ψ̃‖σ

and estimates for integrals similar to those given above, we obtain∣∣∣(U1
ilψ − U1

ilψ̃
)
e−σt

∣∣∣ =

=

∣∣∣∣∣
t∫

ti0

n∑
j=1

(
ψ2
ij(τ)− ψ̃2

ij(τ)
)
e−στϕlj(x+ λi(τ − t))e−σ(t−τ)dτ +

+

t∫
ti0

e−σ(t−τ)

τ∫
0

n∑
j=1

[
ψ2
ij(α)e−σαψ1

jl(x+ λi(τ − t), τ − α)e−σ(τ−α) −

− ψ̃2
ij(α)e−σαψ̃1

jl(x+ λi(τ − t), τ − α)e−σ(τ−α)

]
dαdτ

∣∣∣∣∣ ≤
≤ n

[
ϕ0‖ψ − ψ̃‖σ + 2τρ0‖ψ − ψ̃‖σ

] ∫ t

0

e−σ(t−τ)dτ ≤

≤ 1

σ
n

(
ϕ0 +

2H

µ
ρ0

)
‖ψ − ψ̃‖σ =:

1

σ
γ1‖ψ − ψ̃‖σ,

similarly, we obtain the following estimates∣∣∣(U2
ilψ − U2

ilψ̃
)
e−σt

∣∣∣ ≤
≤ 1

σ

n2Ψ0

Φ0

[
Γ0 + λ0ϕ0 +

2H

µ
(1 + nϕ0) ρ0

]
‖ψ − ψ̃‖σ =:

1

σ
γ2‖ψ − ψ̃‖σ,
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∣∣∣(U3
ilψ − U3

ilψ̃
)
e−σt

∣∣∣ ≤
≤ 1

σ
n

[
Γ0 + ϕ0 +

2H

µ

(
1 +

nϕ0

µ

)
ρ0

]
‖ψ − ψ̃‖σ =:

1

σ
γ3‖ψ − ψ̃‖σ.

Where we have the following

‖Uψ − Uψ̃‖σ = max

{
max

1≤i,l≤n
sup

(x,t)∈D(µ)

∣∣∣(U1
ilψ − U1

ilψ̃
)
e−σt

∣∣∣ ,
max

1≤i,l≤n
sup

t∈
[
0,H
µ

]
∣∣∣(U2

ilψ − U2
ilψ̃
)
e−σt

∣∣∣ ,
max

1≤i,l≤n
sup

t∈
[
0,H
µ

]
∣∣∣(U3

ilψ − U3
ilψ̃
)
e−σt

∣∣∣} ≤ 1

σ
γ0‖ψ − ψ̃‖σ,

here γ0 := max (γ1, γ2, γ3). Choosing now σ > γ0, we get that the operator U
contracts the distance between the elements ψ, ψ̃ by S

(
ψ0, ρ

)
.

As follows from the estimates made, if the number σ is chosen from the condition
σ > σ∗ := max{β0, γ0}, then the operator U is contracting on S

(
ψ0, ρ

)
. By the

Banach fixed-point theorem [[20], p. 87-97], Eq. (5.1) is then solvable and has a
unique solution in S

(
ψ0, ρ

)
for any fixed H > 0. Theorem 5.1 is proved.
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