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Global solvability of the determination convolutional
kernel in a hyperbolic system of integro-differential
equations
'Durdiev D. K., *Turdiev H. H.

Abstract. In this paper we consider first-order hyperbolic system with memory,
the inverse problem of determining the convolutional kernel. The direct problem is
the initial-boundary value problem for this system on a finite segment [0, H]. Under
certain conditions of data matching, the inverse problem is reduced to solving a system
of Volterra-type integral equations for unknown functions. Further, the principle of
contracted mappings is applied to this system in the space of continuous functions
with a weighted norm, and a theorem on the global unique solvability of the problem
is proved for any fixed H.

Keywords: Hyperbolic system, convolutional kernel, weighted norm, integral
equation, contraction mapping principle.

Mathematics Subject Classification (2010): 41A15.

1 Introduction

Hyperbolic systems of partial differential equations of the first order are cover
many important mathematical models found in various questions of natural science.
As a rule, second-order equations are derived from them under some additional
assumptions. In this regard, it is desirable to study inverse problems directly in terms
of the system itself. For hyperbolic systems, inverse problems of determining the
coefficients and right-hand sides of equations began to be studied from the 70s of the
last century in the works of L.P. Nizhnik [I], S.P. Belinsky [2], V.G. Romanova and
L.I. Slinyucheva [3].

There are physical phenomena, where not only the present state of the system
is taken into account, but also all the previous positions that the given system
occupied, in other words, it depends on the entire previous history. An example of
such a phenomenon is the propagation of elastic waves in viscous media, in which the
deformation of a viscoelastic medium depends not only on the nature of the applied
forces, but also on the previous deformations to which the medium was subjected.
Such an environment is called a "memory"or "aftereffect"environment [4]. Other
phenomena of this kind are the propagation of electromagnetic waves in dispersive
media [5], the population of animals or plants of various species in mathematical
biology [6]. Mathematically, such phenomena are described mainly by a hyperbolic
system of integro-differential equations with partial derivatives of the first order with
an integral term of the convolution type with respect to a time variable. The problems
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of determining the kernel of integrals in these systems play an important role in
applied sciences and relate to inverse problems. By now, the problems of determining
kernels from a single integro-differential equation of the second order have been widely
studied (see, for example, [7] — [I5] and ite referencess).

In this paper, we investigate the inverse problem of determining the kernel in a
hyperbolic system of integro-differential equations of the first order, which has the
form of a matrix of dimension n x n depending on the time variable t. Unique solution
in the global sense is proved, i.e. the existence and uniqueness of the solution take
place for any segment of the definition of unknown functions.

The article is organized as follows: in the first section, the problem statements are
given, the second section is devoted to the study of the direct problem in the third
section, the inverse problem is reduced to the study of an equivalent system of integral
equations; in the fourth section, the main result of the work is proved - the theorem
of the unique solvability of the inverse problem; at the end, a list of references.

2 Formulation of the problem

Let us investigate a system of n equations in the case of one spatial variable

t
% * A% - /0 B(r)u(z,t = T)dr + f(z,1), (2,t) € D, (2.1)
where D = {0<z < H, t>0},u(z,t) is a vector function with components

U1, U2 ...Uy. Here A, B are square matrices of dimension n, moreover

A =diaghi e, Aa)i B() = (biy) (1), 3,5 = Tom,

A; real, various constants and

Ai>0, i=1,8 <0, i=s+1,n 0<s<my (2.2)

f(l‘7t) = (fl(xvt)a fQ('Tvt)v <. 7f’ﬂ(mat)) .
In what follows, the notation of vectors are understood as a column vector.
Statement of the direct problem: for given matrices A, B and a vector function
f, it is required to determine a vector function u(z,t) that satisfies (2.1) with the
following initial and boundary conditions

u(z,0) = p(x), 0 < < H, (2.3)

ui(0,t) = gi(t), i=1,8 wi(H,t) = gi(t), i=s+1,n, (2.4)

where @(x) = (9017 @27'“790") (l’) and g(t) = (917 927“'79") (t)7 1= 1,7 given
smooth vector functions.
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Throughout this article, writing a vector of functions in a product with matrices
is understood as a string, if it is multiplied on the left and as a row if multiplication
is on the right.

Let now consider n problems of the form 7, each with its own set of
functions f, ¢, gi, but with the same matrices A, B

(Egt+A )u—/B Uyt — 1) dr+ o, t),

u'i=0 = ¢'(z), 0 <z < H, (2.5)

ub(0,8) = gi(t), i =1,s, ub(H,t)=gi(t), i=s+1L,n, |=1,n,
where FE— is the identity matrix of dimension n x n.

Inverse problem: find the matrix B(t), t > 0, if the following information is known
about direct to the problem (2.5)):

ub(0,8) = hi(t), i=s+1,n, ul(H,t)=hi(t), i=1,s l=1,n. (2.6)
Remark 1. In [16, pp. 164-171] and [17, pp. 76-86] the inverse problem of
determining the matrix function B(z) from the hyperbolic system of equations
Ou Ou

S+ AZ 4 B@u(n,1) = f(o,1)

according to .

Remark 2. Instead of system 7 a more general system of equations,
hyperbolic in the sense of I.G. Petrovsky [18] can be considered. But, then there
is a non-degenerate transformation of functions that such a system is reduced to the

form [19] .

3 Investigation of the direct problem

Consider an arbitrary point (z,t) € D on the plane of variables &, 7 and draw through
it the characteristic of the i— th equation of system (2.1):

E=xz+ N(T—1) (3.1)

before intersection in area 7 < t with edge D. The intersection point is denoted by
(xf,th). For X\; > 0 (i.e. i =1,s), this point lies either on the segment [0, H] of the
t = 0 axis, either on the straight line z = 0, and for \; < 0, (i.e. i =s+1,n)
either on the segment [0, H] or on the line x = H. Integrating the i— th component
of equality by characteristics from the point (zf, t}) to the point (z,t), we
obtain

ui(z,t) = us (mﬁ, té) +
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+/ /; bij(@)u; (&7 — a)da + fi(§, 7) dr,i=T,n.  (3.2)
o’ E=z+N;(T—1)

Let us first define the value ¢ in (3.2). It depends on the coordinates of the point
(z,t) and on what is a i. It is easy to see that t4(z,t) has the form

i
tO

A A
th(x,t) =
0, 0<t<E, i=1,s;
(3.3)
A e vt
th(z,t) =

0, 0<t<zZH i=s+1n.

Then, from the condition that the pair (z, t)) satisfies equation (3.1)) it follows
that

. 0 t>x
% _ ’ = A’
:"’O(x’t){ T—XNt, 0<t< £, i=T1,s;

I H, t>=H
wo(T:t) =9 .\t O<t<z j=5+1,n

(3.4)

The constant terms of integral equations (3.2)) are determined through the initial

and boundary conditions (2.3)) and (2.4]) as follows:

o gl(t - )%)7 t> )%a
ui (20, to) =

wilx —Ait), 0<t< +, i =1,

wi(zh, th) =
pilz—Ait), 0<t< I i=s+T1n.
Let the functions wu;(z}, t)) be continuous in the domain D. Note that for these
conditions to be satisfied, the given functions ¢;(x) and g¢;(¢) should be satisfy the
following matching conditions at the corner points of the domain D:

0i(0) = g:(0), i =1,s; @i(H)=g:i(0), i=s+1,n. (3.6)

Here and below, the values of functions g; at ¢ = 0 and functions ¢; at z = 0 and
x = H are understood as the limit at these points when the argument tends from the
other side of the point, where these functions are defined.
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Suppose that the functions b;;(t) and f;(z,t) are continuous functions of their
arguments in D. Then the system of equations are closed system of integral
equations of the Volterra type of the second kind with continuous kernels and free
terms. As usual, such a system has a unique solution in any bounded subdomain
Dr = {(z,t):0<xz<H, 0<t<T} of the domain D, where 7T > 0 is some
fixed number.

In order to study the properties of the first derivatives of the functions w;(z,t),
we differentiate equation (3.2)). We have

%ui(x,t) = %ui (xé, té) — fi (xé, té) %i) +

/ — filz + Xi(T — 1), dT—/Zb” T)u; 5”0, th— ) (3?50

//Zb” wj(x 4+ Ni(7—t), 7 — a)dadr, i =1,n. (3.7)
For i = 1, s, (3.7) are equivalent to the following equations:
0 1d T 1 x

+ %fi(xﬂi(f_t), Ai O/A

t T
7]
+ / / bij(a)%uj(fﬁ—a)dadﬂ t>
0

=

0 d
%ui(:c,t) = —Aiﬁ%‘(iﬂ — Ait) + / 8xfi(m+ Ai(T —t), T)dT +
0

0 T
+0/0/ bij(« ) u; (&, 7 — a)dadr, 0§t<>\—.

These equalities show that, possible discontinuities of the first kind of functions
% for i = 1, s are only characteristics = = \;t.
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Requiring the fulfillment of the conditions of agreement

£(0,0) — /\i[%w} = [%gi(t)]tzo, i=T,3, (3.8)

we have that the functions du;/0x, defined as solutions of equations fori=1,s
to be continuous in the domain Dr.

Proceeding in the same way for i = s+ 1,n, we obtain that if the matching
conditions are follow

d d
fi(H:O)*/\i%SDé = agi(t)

x=H

t=0

then the functions 881;1' for i = s + 1,n will also be continuous in the domain Dr.

Thus, under conditions 7 equalities are a system of integral
equations of Volterra type with continuous free terms (the first four terms on the
right-hand side of ) and kernels. According to the theory it is known that such a
system has a unique continuous solution.

Further, we denote the vector function v(z,t) := (9/0t)u(z,t). Let u(x,t) be a
solution of problem 7 7 .

To obtain a problem for a function v(z,t) similar to (2.1), (2.3), (2.4), we
differentiate equation (2.1) and boundary conditions ([2.4)) with respect to the variable

t, and using be condition at ¢t = 0 is found equation ([2.1)) and initial condition (2.3).
In this case, we get

<E% + A%) v = B(t)p(z) + / B(r)v(z,t — 7)dT + %f(x,t), (3.10)
0
U|t=0 = f(x70) - A%W(‘T), 0 <z < H7 (311)
d N — d R —
vi(0,8) = 29i(t), i =L, s; vi(H,t) = —9it), i=s+1n. (3.12)

Integration along the corresponding characteristics again leads to problem ({3.10])-
(3.12) to the integral equations

t t
i i 0 S
vi(z,t) = v (mo, to)—i—/gfi(w—i—)\i(r—t), T)dT+/Zbij(r)gpj(a:—&—)\i(r—t))dr—i—
: =1
ti i 7

t

+ / / Z bij(@)vj(z + Xi(T — t), T — a)dadr, (3.13)
o J=t

7
tO
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where v; (xf), té) are determined by the formulas:

o %gi(ti)%)a t> )%7
’Ul(z(l)yt’(b)) =

fi(;r—kit,O)—Ai%w(x—)\it), 0<t< )%, i=1,s;

o Ggi(t+ A=), > e
'Uz(xlOatE)) =
fi(m—)\it,O)—)\iﬁcpi(w—)\,-t), 0<t< z;H, i=s+1,n.

i

It is easy to see that the conditions for matching the initial and boundary
3.12)) data at the corner points of the domain D coincide with relations and
QHence, it is clear that if the same equalities and are satisfied, then
integral equations have a unique continuous solutions v;(z,t), or the same
(0/0t)ui(z,t).

So, we have proved the following theorem:

Theorem 3.1. Let p(z) € C' [0, H], B(t) € C'[0, 00), g(t) € C* [0, o), f(z,t) €
C' (D), and the matching conditions , are hold. Then, there is a
unique classical solution to the problem -0 in the domain D.

4 Investigation of the inverse problem.
Derivation of an equivalent system of integral

equations
Consider an arbitrary point (z,0) € D and draw characteristic (3.1) through it until

the lateral boundaries cross the domain D. Integrating the i—component of equations
(3.10) and using differentiated data (3.2)) with respect to the variable ¢, we find

vﬁ(x, 0) — ihi(tl(x)) = / Z bij(T)QOé (z+ XiT)dT +

dt ,
o =1
ti(z) = n ti(z) P
+ / /le bij(a)v' (z + N, T — @)dadT + / afl(x + N7, T)dT,  (4.1)
0o 0 J= A

where
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Taking into account (3.11)), we rewrite (4.1]) in the form

ti(x)

ti(z) 7 "

/me T)@g(ﬂ?‘f')\TdT-&-//me Yo + N, 7 — @)dadr =
0

j=1 00.71

ti ()
= 1.0 = Mgl - i) - [ 4

n ti(z)
1
Y b At + [ Db )l e+ Am)dr -
=1 o a=1
1 ti(z)
- > bii (M) (@ + Aiti (), ta(x) — T)dr +
1 5 =1
ti(z) = 5
!
+ / bij (oz)a vi(x + X7, T — a)dadT = e Hx,0) —
o o J=t
d2 1 1 d2 1 l
e pi(z) — N a2 i(ti(z)) + T*f (z + Aiti(z), ti(z)) +
ti (@)
+ / BT ——flx+ N7, T)dr, il =T, (4.2)
0

Let us write equation (4.2]) in the following form:

H x
Zbij (u>gﬁé(H): / bij ( _:C—T)dT-l-
) )\7, )\z
j=1 0o J=1
H—x
A n
d
+ X / ; bi; (T)%ij (x 4+ \iT)dT +
0 a=

H—

/Z i ( U] T+ N7, 7T —a)dadr, i =1,s; (4.3)
=1
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x x
St (-5 ) A0 = - [ b (5 - ) ar+
j=1 ‘ o =1 i
_A% .
d
+ A / bj(T)d x4+ NT)dT +
o J=1
7}\17 - N
+ A / / bij (a)aﬁvé(x + N7, T — a@)dadr, i =s+1,n, (4.4)
o o =1 v
where [ = 1,n, F;(z) denote by:
oy y O 2 & o,
Fila) = —Ai o 1w, 0) + 02 gty 4+ (e
5 t; (@)
(%f (z + Aiti(), ts(x)) — N\ / ETE —— fi(x 4+ N7, 7)d,
0
dpl
Loy . Ehj(')7 J=45Ls,
G]() { %gé(),jzs—i-l,n, lIl,n‘
In what follows, in equations 1) and 1) we replac HA:I
we get '
n t n
> b0 (1) = FIUT = At) = [ Sobiy(r)Gh (¢ = m)dr +
=1 0 =1
d
+/\/Zb” cpJH Ai(t —7))dr +
—&—)\//Zb,] U]H Xi(t —7),7 — a)dadr, i =1,s; (4.5)
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t
n

Xn: bij (t)©5(0) = Fl(—=Nit) — /Z bij (T)GY (t — 7) dr +

j=1 o =1

t
- d
o Db g N i+
/ &

t T n
+Ai//jzlbij(a)§rvé'(—)\i(t—T),T —a)dadr, i =s+1,n,
0o 0 I=

where t € [0, ‘/\—HZ‘], i=1,n.

Let ®(z) be the matrix function by columns ¢'(x), | = T, n:

o) = (¢,¢% .., ¢") (@)
In what follows, we will assume that the conditions
det ®(0) #0, det®(H) #O0.

Solving the system of (4.5)) with respect to b;;(t), we obtain

balt) = gorgy O | FE0)-

Jj=1

(4.7)

Equations 1} include unknown functions (3/5&%)05, 4,1 = 1,n. For them, we
obtain integral equations from (3.13]) using differentiation with respect to the variable
x, having previously rewritten them for each problem with numbers [ labeled with a
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superscript. Moreover, we have

0ty = Doliah ) -

ox ox

t
- i N i iy O i 0

_Zbij(to)@(xo)%to—fz‘l(xo»to)afwt()‘f' mfil(m‘f')\i(T_t)ﬂ')dT'f‘
i=1

i
to

/me e — bz + Ni(T — 1)) dr+/zb” T)%tédwr

tljl

//sz] vj(a:+/\ (t—t),7 —a)dadr, i, l=Tn. (4.8)

In integral equations , the requirement of continuity of free terms in D entails
matching conditions, which would also include the values of the elements of matrix
B at the points t = 0, t = H, which is illogical from the point of view of the
inverse problem. Then integral equations (4.8)) have piecewise continuous free terms
and continuous kernels in a domain D. Consequently, functions Av! i/0x, i = 1,s,
as solutions of these equations, are discontinuous at point (0,0), functions dv!/dz,
i = s+ 1,n, are discontinuous at point (0, H). These breaks will spread according
to characteristics into the area D. Thus, each component dv! /0z of function '/ ox
turns out to be discontinuous along characteristic outgoing either from the point
(0,0) for ¢ =1, s or from the point (0, H) for i = s+ 1, n.

We transfer the second term on the right-hand side of , which contains the
elements of the matrix B, to the left-hand side and introduce into consideration the
new functions

) 9 = iy 1 iy O i
pi(w,t) == %Ui(%t) + ;:1 bij(to)%(xo)%to
Then from (4.1) follows
0 i i i iy O
pi(z,t) = %’Ué(%yto) - fz‘l(x(),to)%tmL

t

t oT0x

+

to
n . a .
l i i
(x4 Ni(T—1t),7)dr + / ]221 bij (T)G (to — 7') —axtodr—k

/Zb” %xH(r—t»dw//zbl, {ms,r—a)
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—§:%k@aar—a0¢z@aaf_agéi%] dadr,  (4.9)
k=1 E=x+; (T—1)

Let i =1,s, I = 1,n. Then equations (4.9)) are equivalent to the following equations:

) 1 d2 l .T 1 1 x

/tii A Filx + Xi(r =), m)dr + / wa {dci:goé-($+)\i(Tft))+

0T0x
1
—&—)\—v](Ot " T>}dr+//2bu p]x—&—)\( t), T —a)+
t=x; O
1 & T ! x x
_ . — - — - >7. .
+/\i;b]k (7’ a /\i><pk<7' e )\i>:|dozd7', ti/\f (4.10)

o) = 2 P e,
pi(zat) - 8{1)fz (:]3 - A7~t70) - Ai dr2 (PZ(IE - Alt)+

Ha 4+ Mi(r —t), 7 dT-‘r/sz] gojm—i—)\(r—t))d‘r—&—

88

//Zb” )P (x + Ni(T — t),7 — a)dadr, O§t<%. (4.11)
It can be seen from equalities (4.10) and ( that possible discontinuities of the
first kind of functions p(z,t) can occur only on characteristics x = \;t.
Requiring the fulfillment of the matching conditions
1 &, . d
- —fi —Xi—;(0), 4.12
A0 + 10,0 = £L70,0) Al (0) (4.12)
we have that functions pi(a:, t), defined as solutions of integral equations (4.9) for
i=1,s, | =1,n will be continuous in the domain D. Proceeding in the same way for
i=s+1,n, | =1,n, we obtain that if the matching conditions of the form
1 d2 1 1 1 6 1 d2 1
———g; —fi(H,0) = —f;{(H,0) — \i=—¢;(H), 4.1
S Oh0) + A, 0) = S I, 0) — Al () (113)
then the functions pﬁ(ac7 t) for i = s+ 1,n, | = 1,n will be continuous in the domain
D.
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5 Main result and its proof

The main result of this work is the following statement:

Theorem 5.1. Let p(z) € C*[0,H], g(t) € C?[0,00), f(z,t) € C* (D), hi(t) €

C?(0,00) and condition , matching conditions , s , equalities
s are hold. Then, for all H > 0 on the segment [O, —], 0= mini<i<n | Al
there extsts a unique solution to the inverse problem ; in the class B(t) €

clo, %], and each component by (t) is determined by hi(t) for t € [0, I/I\{I]

Equations , written for each ﬁé(x, t) with numbers | = 1,n, together with
and , form a closed system of integral equations of the Volterra type of the
second kind with respect to unknowns 9 (x,t), by (t), pi(z,t) i,! = 1, n. Consider now
a rectangular area

D(u)::{(m,t):OSxSH,OStS;}.

Equations , and show that the values of the functions 9 (z, 1),
bi(t), pi(z,t)at (x,t) € D(u) are expressed in terms of integrals of some combinations
of the same functions over the intervals lying in D(u). Let us write them in the
form of an operator equation. For this, we introduce vector functions ¥(z,t) =

(zp}l, Wi 3, il = 1,771)7 into consideration, specifying their components by the
equalities:
1 1 2 2 3 1
Ya(z,t) =Vi(z,t), Yalz,t) =vat) =ba(t), valz,t)=pi(z,1).
Then system of equations (3.13)),(4.7) and (4.9)) takes the operator-vector form

¥ =Uy, (5.1)

where the operator U = Um U2, Uua i,l =1,n) in accordance with the right-
hand sides of equations (3.13 7- ) and ( is defined by the relations

Uip = i) (z, t)+

/Z% Db (@A (r—1)) dr+//2w,j Yol (@A (r—t), T—a)dadr, (5.2)

ﬂjl
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Uit = it (,1) - detq) / >3 vk r){Gi(t—r)

Jj=1k=1

’rL

— A ddx@ (tz()+M)}dT\P ) = v a0 t<1> () /

0]711@1 0

wzk(a) |:wa (57 )

- Zd;,%p (té(ﬁ,r - a)) o (xé(g,r - a)) X (,%tf) dadr¥l(v;), (5.3)
p=1

:|€—t'i(t)+)\i7

Ul = i) + [ S uh ) b il = )dr +

+/i¢fj(7)G( tOdT—l—//Z%J [%l §T—a)—
0

- fjﬁ-k e —a)) o (e —a)) La dadr, (5.4)
ox
k=1 E=z+;(T—1)

i = 1,n. In these formulas, we have introduced the notation

Pz, t) = (wo,to /fzac—k/\(T—t) T)dr,
TPELO() mzf‘ﬂ ))‘I’é(’/z)u

0 i i
Y (t) = %Uﬁ(mmto) -
0 ¢

_fil(x&té)%to—i— p 570 fz(m—i—/\ (r—=1t),7)dr. (5.5)
We define the Banach space C, (D(n)) of continuous functions on the set D(u)

generated by the family of weighted norms

e =max  sup i 0],
S (ot ED(

i,l =1,n;5s=1,2,3, 0 > 0is a number that will be chosen later. Obviously, for & = 0
this space coincides with the space of continuous functions with the usual norm |||
Due to the inequality

py: 4
e T llgllo < lelle < NIl
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norms ||¢||, and ||¢|| are equivalent for any fixed H € (0,00).

Next, consider the set of functions S (w ) ) Co (D(u)), satisfying the inequality
lv —4°lls < p, (5.6)
where the vector is a function ¥°(z,t) = (¥} (x, t) 20(75)7 P (x,t), 4,1 = 1,n),

the components of which are defined by formulas . It is easy to see that for
¥ € S (¢¥° p) the estimate [|¢]lo < [[¥%0 +p < ||77/1 || + p := po holds. So po is a
known number.

Let us introduce the following notation:

= - ! — !
o= max | ‘Cz 0.1 » 90 = max |gi c2[o.2]’ fo: ax fz‘ PRI
pp— l pp— pp— 1
ho := max hz‘ c2fon]” Lo :=max{go, fo}, o := min {|®(0)[, [2(H)|},
Ao = max [N\, ¥o ::max{ max \115(0)‘, max \I’g(H)‘}
1<i<n 1<i,1<n 1<i,1<n

The operator U takes the space C, (D(u)) into itself. Let us show that for a suitable
choice of o (note that H > 0 is an arbitrary fixed number), it is a contraction operator
on the set S (1/107/;). First, let us verify that the operator U takes the set S (w07p)
into itself, that is, condition ¢ (z,t) € S (¢°,p) implies that Uy € S (¢°,p), if o
satisfies some restrictions. In fact, for any (z,t) € D(u) and any ¢ € S (wo,p), the
following inequalities hold:

[( Uiy — i) e =

/Z% )e TGk (@ 4+ Ni(r — £))e 7T dr 4

tljl

/ —o(t=) / wa T Y@+ Mi(r — ), 7 — a)e T dadr| <

i
)

¢ —O —T 1 H
< n [poll¥llo + 7llel3] / e 7 dr < =n (900 + *Po) po =: —=f,
0 o I o
similarly, we obtain the following estimates

Y 1 n%¥ H
Uiy —vi) e ] < = g [FoJr)\otPoJr *(1+n<P0)P0} po =1 =P,
o ®g m o

. 1 H 1
|(Ufiw —¥)e 7 < =n {Fo +wo+ — <1 + mpo) Po} po =1  —Ps.
o n m o
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From this and formulas (5.2))—(5.6)) it follows

U —4°||« —max{ max  sup |(Ug — i) e 7",

LSHISR (4,6)€D (1)

 max supH ‘(Uflq/; _ 1/)2_210) e_ﬂ't| 7
te[o,—

I

max sup | (U — o) e | } < ~fo,

1<i,l<n ‘e [Oy%}

where By := max (81, B2, B3). Choosing o > (1/p)Bo, we see that the operator U
takes the set S (wo, p) into itself.

Now we take any two functions 1/),7:5 e s (wo,p) and estimate the norm of the
difference Uy — U "J Using the obvious inequality

Vs — | e 7 < il |l — vl e T k| |vi — vl e < 2p0llY =10

and estimates for integrals similar to those given above, we obtain

(Ui — Ul ) e

/Z (%2]-(7') v (T)) e 7Tk (@ 4 Ni(T —t)e 7 dr +

t
+ [ [ [ uhte + e = 07 = a)e )

— 1;,2] (oz)e_aazz;l(x +Ni(T —t), T — a)e_U(T_a)} dadr| <

. - t
< ol = Bllo + 2rpolls = 0l [ e 0 ar <

1 2H ~ 1 ~
<Ly (<ﬂo T —po) 16— Bllo = Ll = Bl
o 1 o

similarly, we obtain the following estimates

)(Uflz/; - UfﬂZ) e <

2
n\I/O

<
= oo

Q=

2H ~ 1 ~
[P0+ Xoo -+ 2L (1-41g0) o 16 = Tl = Sl = Tl
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(Vi - Ui) e

<

1 2H n ~ 1 ~
SAnbb+w+4f(L+J@)mhw—¢m=vﬁﬂ¢—WM
o 1 I o

Where we have the following

(v - Uld) e

’

||UwUJ||g=maX{ max sup

LSHIST (,6)€D (1)

’

max  sup ‘(Uflw = Ufl{/;) et
1<4,l<n H
te[o,r]

max  sup ‘ (USQ/) - UZ?}J) e 7

1<4,1<
=v *nte[o,%}

}si%w—%m

here 9 := max (v1, 72, 73). Choosing now o > 79, we get that the operator U
contracts the distance between the elements 1, J by S (wo, p).

As follows from the estimates made, if the number o is chosen from the condition
o > 0" := maxz{Bo, 0}, then the operator U is contracting on S (¢°,p). By the
Banach fixed-point theorem [|20], p. 87-97], Eq. is then solvable and has a
unique solution in S (1/}0,p) for any fixed H > 0. Theorem is proved.
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