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Abstract—This paper presents a calculation method and algorithm, as well as numerical results of
studying chemically reacting turbulent jets based on three-dimensional parabolic systems of Navier–
Stokes equations for multicomponent gas mixtures. Continuity equations are used to calculate the
mass imbalance when solving with constant pressure, and with variable pressures, with the equations
of motion and continuity. Diffusion combustion of a propane–butane mixture f lowing from a square-
shaped nozzle in a submerged flow of an air oxidizer is numerically studied. Pressure variability sig-
nificantly affects the velocity (temperature) profiles in the initial sections of the jet, and, when moving
away from the nozzle exit, the pressure effect can be considered imperceptible, but the plume length
is longer than that at constant pressure, but it does not significantly affect the shape of the plume. The
saddle-shaped behavior of the longitudinal velocity in the direction of the major axis is numerically
obtained for large initial values of the turbulence kinetic energy of the main jet. The presented method
allows studying nonreacting and reactive turbulent jets f lowing from a rectangular nozzle.
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INTRODUCTION
Flow processes such as combustion theory, gas dynamics of lasers, chemical technology in internal

combustion engines, rocket engines, and a number of other processes are described by a complex system
of nonlinear second-order partial differential equations that take into account the interaction of gas f low
and chemical processes. Currently, it is impossible to imagine the development of modern science without
the widespread use of mathematical modeling.

An indispensable effective method for theoretical study of f lows of chemically reacting media is
numerical modeling. This method is currently being intensively developed by improving efficient compu-
tational algorithms and conducting numerous computational experiments [1–4].

The most common method of building models is to apply the fundamental laws of nature to a specific
situation, such as energy conservation and conservation of matter and momentum [1, 2].

Especially, three-dimensional boundary jet f lows have become the subject of experimental and theo-
retical studies in recent years [5]. The study of methods for calculating three-dimensional turbulent f lows
is difficult due to the lack of any satisfactory turbulence model for three-dimensional f lows. Therefore,
progress in various fields of technology and science requires the development of effective methods for cal-
culating a three-dimensional turbulent boundary layer and a jet with chemical reactions [1, 2].

In the applied gas dynamics of reacting jet f lows, studies of the propagation of jets f lowing from a rect-
angular channel are of considerable interest. Firstly, such flows are very widely used in technology, such
as combustion chambers of gas turbines, the creation of combustion units, the spread of air from a venti-
lation pipe, and the emission of harmful substances in the atmosphere. Secondly, they represent a solution
to the scientific-theoretical problem of a f low moving in a cocurrent f low, which does not belong to the
class of problems in the boundary layer theory. In [6–11] and other experimental works, free jets f lowing
from a rectangular nozzle were considered. The main studies are devoted to finding the trajectory of the
jet using various assumptions and do not provide data on the initial distribution of the velocity component
34
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and dynamic characteristics of the f low at the nozzle exit, which significantly affect the propagation of the
jet and the parameters of the plume during combustion.

To analyze combustion processes in cocurrent f lows numerically, we need the dependences between
the geometric characteristics of the f low and the physical parameters of the f lows at the inlet and the chan-
nel geometry.

Of particular interest is the area of parameters of the outflow of reacting gas mixtures from a rectangu-
lar nozzle with a finite aspect ratio into a cocurrent f low, which has great practical application, but has
been little studied. The complexity of solving such a problem is associated with a number of difficulties:
three-dimensionality, incompleteness of the theory of turbulence and a mathematical model based on the
peculiarities of the hydroaerodynamic equations, such as nonlinearity, high order (especially in relation to
three-dimensional problems), as well as the insufficiency of effective computational methods.

The final analysis of a symposium held in West Berlin in 1982 by the International Union of Pure
and Applied Mechanics on the current state of the problem of three-dimensional boundary layer
research provides conclusions about the difficulties of experimental and computational studies of three-
dimensional f lows.

An important conclusion of the research is that turbulence models based on the concept of isotropic tur-
bulent viscosity require significant improvement in the calculation of three-dimensional turbulent flow.

All participants in the discussion agreed that there is no universal model of turbulence, and over the
next ten years, turbulence researchers will have to abandon currently known algorithms, since by then they
will have access to new generation computers [5]. There is a need for a better theoretical justification of
the mathematical side of this problem and a wider use of simple calculation methods and modern power-
ful computing tools [12].

1. GOAL AND PROBLEM FORMULATIONS

This work is aimed at selecting a mathematical model to describe three-dimensional turbulent jets of
reacting gas mixtures f lowing from a rectangular nozzle with a finite ratio of side lengths 2a and 2b into a
cocurrent jet during diffusion combustion and at developing effective numerical methods for studying the
process.

Note that, in order to calculate turbulent f lows, it is necessary to accept the closure hypothesis for
apparent turbulent stresses and heat f lows [13]. It is important to remember that turbulence models must
be validated by comparing calculations based on them with experimental data.

The initial stage of jet f lows, including combustion, is directly related to algebraic models of turbu-
lence, which are built on the basis of the Boussinesq hypothesis about turbulence. One of the most suc-
cessful models of this type is the Prandtl model.

For three-dimensional shear layers, the Prandtl formula usually has the form [5, 13]

where  is the mixing path length.
This model gives qualitatively correct results for near-wall f lows. Algebraic models have proven them-

selves well for relatively simple f luid f lows, but require modification to calculate more complex f lows, such
as reacting jets with combustion.

To date, numerous turbulence models have been proposed, both with one ordinary differential equa-
tion, with one partial differential equation and one ordinary differential equation, and models with two
partial differential equations, as well as higher order ones, etc. One of the most often used models with two
equations is (k–ε)-model.

In this work, as the first option for calculating turbulent viscosity, we use a modified algebraic model
that takes into account molecular transport, three-dimensionality, and temperature inhomogeneity of the
jet in the form [14]
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36 KHODZHIEV
Here,  is the dynamic coefficient of laminar viscosity,  is the empirical turbulence constant,  is
the displacement path length,  is the parameter taking into account temperature heterogeneity, and  is
the temperature on the axis of the main jet.

In the second option, we use the equations of kinetic and dissipation of kinetic energy of turbulence to
calculate turbulent viscosity, having the following form [14, 15]:

(2)

(3)

where  and the dependence of  on  and  is given by the relation

(4)

In (2)–(4)  and  are the kinetic and dissipation of kinetic energy of turbulence, respectively, and
 are the constants for (k–ε)-models that require further clarification for chemically react-

ing gases during the combustion of gas mixtures.
Let us choose the origin of the Cartesian coordinate system at the center of the initial section of the jet:

the  axis is directed along the stream, and the  and  axes are parallel to the sides of a rectangular nozzle
with side sizes 2a and 2b, respectively.

In numerical modeling of f lows, the so-called simplified or parabolic Navier–Stokes equations are
currently used, which are justified only in cases where the f low has a certain prevailing direction of
motion, which includes jet f lows. Parabolic models of f lows of gas mixtures are based on the assumption
of the presence of spatial anisotropy in the f low, expressed in a significant difference in the characteristic
linear dimensions and velocities for different spatial directions [2].

To model the stated problem, we use parabolic systems of Navier–Stokes equations for multicompo-
nent chemically reacting gas mixtures [2, 15, 16]. For the convenience of numerical solution, we reduce
the system of equations to dimensionless form, choosing the following as the scale: for lengths we take the
width of the nozzle side b; for speed,  (hereinafter, index 2 refers to the initial values of combustible
(main)); for density, ; for pressure, ; for the total enthalpy and heat of formation of th components,

; for effective turbulent viscosity, ; for heat capacity at constant pressure, ; for molecular
weight,  (  is the molecular weight of the oxidizer) and also transform the inlet cross-section of the
nozzle into a square area using the formula   (in what follows we omit the tilde over the
dimensionless variable). We get
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(9)

(10)

(11)

(12)

Formulas (1)–(3) are also given in dimensionless form, choosing  to be the scales for the kinetic
energy of turbulence and its dissipation and  for the temperature. In equations (1)–(12) all
notations are generally accepted, and laminar viscosity is calculated as , where const is
calculated taking into account the collision diameter, characteristic temperature, parameter of the poten-
tial function of intermolecular interaction, as well as the collision integral for momentum transfer [2], and

 is the mixing path length, defined as .
The equation for the concentration (10) is written in the form of a conservative Schwab–Zeldovich

function with respect to mass concentration of the th terms to one for a four-component mixture [4].

The conservative function  at the nozzle exit of the combustible is equal to one, and that in the oxi-
dizer zone is zero.

2. BOUNDARY AND INITIAL CONDITIONS
For this formulation, the system of equations (1), (5)–(12), or (2)–(12) can be solved using the follow-

ing dimensionless boundary conditions:
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Here, the subscripts 1, 2, and ∞ denote the dimensionless quantities of the oxidizer and the combustible
jet, respectively, as well as their values at infinity.

3. SOLUTION METHOD

The system of parabolic Navier–Stokes equations (5)–(9) is obtained by simply removing from the sta-
tionary Navier–Stokes equations all terms containing partial derivatives in the longitudinal direction.

Methods and algorithms for solving three-dimensional parabolic equations known from the literature
were obtained according to the segregated method proposed in [15, 17] and implemented in the SIMPLE
procedure.

In [17], parabolic procedures for three-dimensional internal f lows are generalized in detail.
The main feature of the three-dimensional parabolic model is the separation of terms with pressure

gradients in the longitudinal and transverse directions. In the case of internal f lows, the pressure gradient
in the direction of the main f low is determined from the condition of constant mass f low in each section
plane.

The basic elements of this procedure can be used in the calculation of three-dimensional free jet f lows,
the pressure gradient in the longitudinal direction can be neglected or is known in advance. This situation
occurs when a subsonic free jet f lows through a rectangular nozzle with a finite aspect ratio into a cocur-
rent or submerged f low. As is known, the shape of such a jet in the cross section gradually changes in the
longitudinal direction and finally becomes circular [7, 10]. In such flows, the assumption of neglecting the
longitudinal pressure gradient and its small changes in the transverse plane is justified, which sometimes
makes it possible to carry out calculations without taking into account pressure, i.e., a given pressure.

Next, we present a method and algorithm for calculating the problem posed with a given and variable
pressure using spatial coordinates.

To numerically solve the system of equations (1), (5)–(12), and (2)–(12) with initial and boundary
conditions (13), (14), we use a spatial two-layer decimal implicit finite-difference scheme. The region
under consideration is covered with a grid , , . Indices  denote the node
numbers along the coordinate axes ;  are the numbers of points along the  axes,
respectively;  is the coefficient of condensation of the calculated point along the axis . Individual
terms of the differentials were approximated with an order of accuracy . The solution to dif-
ference equations is sought by moving from the plane corresponding to the th step, in the plane cor-
responding to th step along the marching coordinate.

Equation (2)–(10) are perfectly parabolic and their solution can be obtained using the marching pro-

cedure along the  axes for determining  .
Solution for the th plane should be found starting from the value  (usually, this value  corre-

sponds to the plane of symmetry), which determines the solution for all . As a result, for given  and 
we find a solution on a line normal to the symmetry surface, with . After this the index  increases
by one and the solutions are obtained in another column by . In general, in the difference relations used,
the values of the sought quantities on the th and th layers are known if, when using a parabolic
system of equations, the values of some flow parameters at the cross section  are known. For jet
streams as values of the th cross section, we can take oxidizer data (f looded or slipstream).

4. CALCULATION METHOD AND ALGORITHM WITH A GIVEN PRESSURE

(1) On each design plane , along the directional axis  we set the accepted pressure distribution;
initially, we prescribe the values of the unknowns from the previous plane as first approximations of the
unknowns of -iterations (index  corresponds to the inlet conditions (12)): the difference equation
of motion along the  axis is solved and  is determined (on each new calculation plane along the 
axis, the solution to the system of equations begins with , while  corresponds to the plane of
symmetry); the difference equation of motion along the  axis is solved and  is determined using the
value ; the difference equation of motion along the z axis is solved and  is found using the val-
ues  and  (the solution uses an implicit variable direction scheme).
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(2) The obtained preliminary solutions  do not satisfy the continuity equation [1, 15, 17] writ-
ten in the difference form. Therefore, the supposedly redundant continuity equation (5) is used to calcu-
late the mass imbalance at each calculated grid point . The obtained solutions  at the th
iteration are expressed as calculated estimates  and corrections :

(15)

The following question arises: how can we define , and  at each design point ? The corrected
velocities (15) must satisfy the continuity equation (5):

(16)

The potential  can be defined as follows:

(17)

We substitute (17) into (16) and obtain the Poisson equation

(18)

where  is the source term. The necessary corrections to velocity (15) can be numerically calculated from
the distribution , obtained from the difference equation (18) in the transverse plane. The difference alge-
braic equation can be written for the potential  at each grid point across the f low in the plane along .
Thus, we have a tridiagonal system of equations, provided that the values are known

The Poisson difference equation (18) is solved under the following basic assumptions.

(a) , , where velocity corrections are zero both in the th plane and in the
th cross-section; here, conservation of mass is already ensured.

(b) , , where velocity corrections are zero both in the th plane and in the
th cross-section, when their convergence is achieved in this plane and in the th cross-sec-

tion, respectively. These assumptions make it possible to reduce the system of algebraic equations to the
tridiagonal system for :
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The boundary conditions necessary to solve system (19) are chosen so that they are compatible with the
specified boundary conditions for velocity (14). From the last line of the boundary condition (14) it is
known that, if the velocities of the external f low are known in advance, then the function  at this bound-
ary are zero:
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After this, by virtue of (21) and (20), using a scalar sweep [13] over all   we find . Using
the obtained , we determine the velocity corrections using the difference approximations of expres-
sion (17) in the form

(22)

Now, the adjusted velocities satisfy the continuity equation at each point in the section  plane , but
do not exactly satisfy the equation of motion and other equations of the system.

(3) Next, by the energy equation (9) we can find , from relation (12) we find , from the equa-

tion of state we determine , and from the equation of concentration of functions we find . If we con-

sider a variant of the algebraic model, then from (1) we calculate the viscosity . In other words, using

new solutions  from the finite-difference solution of equations (2), (3), we calculate  and

, and from relation (4) we determine the turbulent viscosity . When calculating the effective viscos-
ity using formula (1), the values  and  are defined as , . The values
of individual concentration components  are also calculated.

(4) Because it is not possible to simultaneously satisfy the equation of motion and continuity and other
equations of the system, steps (1)–(3) are usually repeated with iteration in each cross-section before
moving on to the next one.

The convergence of the iteration to find a solution to the system of equations for a fixed ith plane of the
kth cross-section at  is checked by the condition
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propagation of the jet boundary along the  axis, and, again, the calculations continue from the first step.
If conditions (24) are not met, then it is considered that the solution to the system of equations on the ith
plane in the kth cross-section has been found.

The condition for growing the calculation area along the  axis is checked
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to the th cross-section and, again, continue the calculations from the first step. If condition (25) is
not satisfied, then the solution on the ith plane is found and it is necessary to move to the next plane along
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the longitudinal coordinate . Before moving to the next calculation plane along the  axis, the closure
of the plume shape on the axis of symmetry is checked for the combustion problem, and, to calculate the
free air jet, the tendency of the longitudinal velocity to the velocity of the cocurrent f low is tested. If these
conditions are violated, the iteration process continues from the first step.

5. CALCULATION METHOD AND ALGORITHM WITH VARIABLE PRESSURE

The system of equations (5)–(10) is partially parabolic, so their elliptical effects manifest themselves
through the pressure field.

The latter requires that the solution, which is obtained by sequentially moving from one cross-section
to another in the longitudinal direction, is refined by iteration. The need to carry out calculations taking
into account pressure for three-dimensional turbulent jets of reacting gases lies in the fact that in the area
of contact of the jets they are accompanied by sharp changes in temperature (combustion), and this, as is
known, significantly changes the pressure value.

On the other hand, numerical solutions of partially parabolic equations require the development of
new effective methods, which is what this part of the work is devoted to.

In Eqs. (6)–(8), the pressure terms are approximated as follows:

(26)

Next, we present modifications of the SIMPLE method, a semi-implicit method for pressure-coupled
equations [17, 18] for solving subsonic three-dimensional parabolic Navier–Stokes equations.

The proposed method is based on a cyclic sequence of prediction–correction operations for solving the
equations.

The question is how to use the equations of motion and continuity to find the correct pressure distri-
bution.

5.1. Method and Algorithm

(1) The first step is similar to the method in Section 4.
(2) We express true solutions , and , accordingly, as the found calculated (or intermediate)

 plus corrections  as

(27)

(28)

where  is the relaxation parameter.
The velocity corrections are assumed to be determined by the pressure corrections according to very

approximate three equations of motion in which the longitudinal convective terms are counterbalanced
only by the pressure terms:

(29)

(30)

(31)

Here,  can be considered some potential function (similar to ), which is used to generate velocity cor-
rections that satisfy the continuity equation.
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Applying difference analogs of differentials in the left-hand side of Eqs. (29)–(31), we obtain

and, under the assumption that the velocity corrections are zero in the th plane along the longitudi-
nal coordinate (conservation of mass is already ensured), the following can easily be obtained:

(32)

The corrected velocities (28) must satisfy the continuity equation (5), taking into account (32) and assum-
ing that  is a locally constant at each calculated grid point, we obtain the Poisson equation for :

(33)

Here,  is the source term. To solve Eq. (33) numerically, we proceed to the difference equations; the
algebraic equation can be written for the potential  at each grid point across the f low, these equations
can be easily solved by introducing an educated guess as in assumptions (a) and (b) in Section 4.

These assumptions allow us to present a system of algebraic equations

(34)

to solving a tridiagonal system for .
The boundary conditions required to solve the system of equations (34) are chosen so that they are

compatible with the specified boundary conditions for velocity and pressure.
As can be seen from the last line in (14), the velocity values  and the pressures are specified or

they are known in advance (from the external concurrent f low); in this case , and  are zero on
this boundary:

(35)

On the plane of symmetry, i.e., at , , in order for the second line of condition (14) to be
fulfilled, the condition must hold:

(36)

Now, according to (35) and (36), using a scalar sweep over all j , we find . After
finding , we determine velocity and pressure corrections using difference approximations of
expressions (32) taking into account assumptions (a) and (b) of Section 4 (  as ) and have

(37)

Using (37) and the values  and employing expressions (27) and (28), we calculate the corrected
pressure and velocities. These corrected velocities satisfy the continuity equation at each point in the
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kth section in the ith plane, but do not exactly satisfy the equation of motion and other equations of the
system (5)–(10), (2)–(3) until convergence is achieved.

The remaining calculation steps are similar to steps (3) and (4) given in Section 4.

5.2. Methodical Calculations

The described method and solution algorithm were implemented in the form of programs for modern
personal computers. Using this program, calculations can be carried out for both laminar and turbulent
three-dimensional jet f lows, as well as internal f lows.

To check the reliability of the numerical results using the developed method, the outflow of an air jet
flowing from a rectangular nozzle with aspect ratios (1; 1), (1; 2), (1; 3), and (1; 4), borrowed from work [6].

First, convergence over spatial steps was checked in the following variants:

Serial numerical calculations have shown that it is better to carry out calculations with the second option,
the results of which differ from the third by 2–3%, and at the same time saving computer calculation time.
It turns out that computer calculation time is saved much more if you perform calculations with a variable
step (with selection ). Here and further, in all calculations  varied from 0.01 to 0.25, and at the same
time in the initial participation the step did not exceed the value of 0.05.

The second methodological study was the growing (propagation) of the boundary of the computational
domain using two approaches:

(1) according to conditions (24) and (25) (small numbers );

(2) carrying out calculations for a sufficiently large number of design points along the longitudinal sec-
tion, i.e., .

Numerical experiments carried out in two versions showed that the expansion of the jet is only three to
four points greater compared to the first approach, but the first is much more acceptable due to the savings
in computational time.

It is necessary to emphasize the usefulness of the sequence of using intermediate (iterative) solutions
for solving spatial problems of aerohydrodynamics of heat and mass transfer. For these purposes, numer-
ical experiments were carried out:

—with prescribed first approximations   we determined ;

—the approach given in the method of Section 4, i.e., for each global iteration, each new value of the
unknown is used to find the next one, showed its advantages over the first in that, sometimes, it turned
out to be economical until the fifth or sixth iteration.

Comparisons of the calculated data with the experimental results of work [6] were carried out on the
distribution of the pulse f lux density in different cross-sections of the jet for a nozzle with the nozzle
aspect ratio (1; 1), (1; 2), (1; 3), and (1; 4); they agree well.

The small difference in the results can be explained by the fact that during the experiments it was
assumed that the transverse components of the velocity are nonzero in the initial section, and in our case
the calculations were carried out with zero transverse velocities.

For a nozzle with an aspect ratio (1; 1), from the very beginning the jet area expansion in the direction
of the  axis decreases, while in the direction of the  axis it grows [10, 17–20], i.e., at the beginning the
jet transforms into an ellipse shape, and, then, as the f low moves downward, the shape of the jet takes on
a circular shape, which is confirmed by the experimental data of the authors of [10, 17–20]. Figure 1 pres-
ent velocity profiles  along the  axis showing that the values  become comparable in mag-
nitude with the value of the longitudinal velocity in the initial sections of the jet at the boundary of the
displacement zone, and, when moving away from the nozzle exit, the maximum value of the velocity 
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Fig. 1. Transverse speed distribution  in different cross-sections of the jet along the axis  ( ).
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tends to zero, i.e., the jet then behaves as a direct f low and can be considered an axisymmetric problem.
The above studies are for a nozzle with a size of 20 mm × 20 mm (see [6]) at  = 1 atm,  = 38 m/s,

 and  = 300 K based on the algebraic model of turbulence (1) at , , .
Similar studies were carried out on the basis of a two-parameter turbulence model (2)–(4).
In the calculations, the dimensionless initial values of the kinetic energy of jet turbulence vary from

0.001 to 0.1 of the longitudinal velocity, and the dissipation of turbulence energy . To avoid
dividing by zero, the initial values of resting air  and  remain constant and equal to 0.005 and 0.00001,
respectively.

Figures 2a and 2b show the longitudinal velocity profiles in different cross sections of the jet and a com-
parison of the calculated data obtained on the basis of the algebraic model and k–ε-turbulence models in
different initial values .

From the results it is clear that at small values  the core of the jet is noticeably preserved.
In the initial sections of the jet, the results of model calculations are in good agreement with experi-

mental data (because the results based on the algebraic model were in good agreement with the experi-
mental data of [6]); further, with distance from the channel exit, the results based on the (k–ε)-turbulence
models are underestimated.

Satisfactorily matching results were obtained after numerous trial calculations using selected empirical
constants (models (2)–(4)), the values of which became equal: , , , ,

.
The results, as well as the first moment models, indicate that the width of the jet in the direction of the

major axis of the hole initially decreases, while in the direction of the minor axis it increases. At some dis-
tance downstream, their values become equal, after which both axial widths  and  increase almost
equally, i.e., the jet turns into a circular one . Apparently, the initial decrease in the width of the jet
is most likely associated with the presence of lateral velocities.

The saddle-shaped behavior of the longitudinal velocity profiles in the direction of the major
axis (Fig. 2b) was observed in the experiments of Sforza [20], but was not obtained numerically using
the k–ε-model in [19], where a three-dimensional turbulent free jet f lowing from a rectangular nozzle was
studied.
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Fig. 2. Comparison of calculation results within the framework of algebraic and (k– )-turbulence models longitudinal
velocity profiles along the (a)  and (b)  axes. 
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The numerical result, which cannot be obtained in calculations by the authors of [19], even when mod-
ifying the initial conditions, can be explained by the fact that additional f lows caused by turbulence can
contribute to the transfer of f luid with a high momentum from the central part of the jet to the edges, such
thus leading to the formation of saddle-shaped velocity profiles.

5.3. Application of the Proposed Methods for the Numerical Study of Three-Dimensional Turbulent Reacting 
Jets to the Calculation of a Three-Dimensional Turbulent Plume in a Submerged Air Flow

Below are some results of a numerical study of three-dimensional turbulent diffusion combustion of a
propane–butane mixture f lowing from a square nozzle and propagating into a quiescent medium of air
(oxidizer). It is assumed that the velocities, temperatures, and concentrations of the jets and the medium
were set to be uniform and stepped at the nozzle exit, and the pressure of the jet and the medium were
identical to each other and equal to atmospheric pressure, i.e., .

For the calculation version, the initial parameter values were used from [21].

(1) The parameters of the oxidizer zone are as follows:

(if the (k–ε)-model is used, then , ).

(2) The parameters of the fuel mixture have the form

= =1 2 atm.P P P

1 1 1 1 2 1 3 1 4 1300 K, 0, ( ) 0.232, ( ) 0, ( ) 0, ( ) 0.768T u C C C C= = = = = =

= β1 1k ε = γ1 1

= = = = = =2 1 1 2 2 2 3 2 4 21200 K, 61 m/s, ( ) 0, ( ) 0.12, ( ) 0, ( ) 0.88T u C C C C
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Fig. 3. Influence of the relaxation coefficient  on the transverse distribution of longitudinal velocity along the (a)  and
(b)  axes. 
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(if the (k–ε)-model is used, then , ), where  and  are some dimensionless
constants, and .

It can be noted that, when formulating the boundary conditions regarding the kinetic energy of turbu-
lence, experimental materials from existing sources were used [22, 23], and, regarding the dissipation of
the kinetic energy of turbulence, the boundary values were taken intuitively during a numerical experi-
ment, i.e., by varying the values of the constants , and .

Thus, in the calculations  varied so that the dimensionless initial value of the kinetic energy of tur-
bulence did not exceed 10% of the dimensionless initial velocity of the fuel jet.

Below, we present some numerical results and their comparisons obtained on the basis of the algebraic
model ,  at constant and variable pressure, as well as on the basis of the (k–ε)-turbulence
models , , , , , ,  at constant pressure.

Numerical results showed that, with successful selection   and initial turbulent energy 
 with an isobaric process, it is possible to obtain good agreement between the results in the ini-

tial sections of the  and  planes.
Distributions of the axial value of the longitudinal velocity calculated based on the (k–ε)-turbulence

model and based on the algebraic model of turbulence on the axis of symmetry of the f low, differ little.
It can be noted, when it is necessary to obtain only the parameters of the averaged f low, that there is

no need to involve multiparameter turbulence models, but it is quite sufficient to use simple expressions
for exchanging the coefficient of turbulent viscosity (1).

The use of an algebraic model of turbulence is convenient for practical purposes of engineering analy-
sis, and the use of higher-order turbulence models in a number of cases allows us to get closer to under-
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Fig. 4. Comparison of the temperature distribution of isobaric and nonisobaric jets. 
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Fig. 5. Effect of pressure gradient on plume shape: (1) , ; (2) and (3) (k – ε)-turbulence model at
 and ; and (4) and (5) algebraic model for  and .
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standing of those physical phenomena that determine the detailed structure of physical and chemical pro-
cesses in three-dimensional turbulent reacting jets.

Figures 3a and 3b show the distribution of longitudinal velocity at different cross-sections along the
longitudinal coordinate at constant (dashed line) and variable (solid line, ) pressures.

It is clear from the graphs that pressure variability noticeably affects the velocity (and temperature)
profiles in the initial sections of the jet, and, when moving away from the nozzle exit, the influence of
pressure can be considered insignificant, because the considered jets of reacting gases propagating in free
space and pressure quickly tend to a constant value. It should be noted that deformation of the longitudi-
nal velocity profiles is observed in the initial cross-sections of the jet along the  and  axes in both ver-
sions, i.e., when calculating with and without pressure. Figure 4 shows the temperature distribution at dif-
ferent cross-sections of isobaric  and nonisobaric ,  jets. Analyzing
these graphs, we can conclude that taking into account the pressure gradient does not significantly affect
the maximum value of the plume temperature.

Figure 5 shows the configurations of the diffusion plume for comparison.

From the shape of the plumes it is clear that the decrease in κ and  at constant pressure and at vari-
able pressure  leads to a significant increase in the plume length. Numerical results showed that,
taking into account the variability and constancy of pressure, the length of the plume in the first option is
higher, but the pressure variability does not significantly affect the configuration of the plume.
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