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Abstract. This paper describes in detail the method and algorithm for calculating the numerical integration of non-stationary 
two-dimensional systems of Navier-Stokes equations for a compressible gas using high-order implicit (explicit) difference 
schemes, i.e. , the Beam- Warming difference scheme. A number of mathematical transformations , such as non- 
dimensionalization of coordinates and physical parameters, transforming the shape of the channel into a square one, as well as 
thickening the integration steps with large gradients of unknowns, which make it possible to bring problems to a model one for 

solving similar problems. In addition to the study, as convergence in the number of calculated points, the dependence of the 
number of iterations on the Courant number and comparison of the results obtained by different proposed models for calculating 
the effective viscosity, as well as a number of numerical studies as co- occurrence , temperature inhomogeneities, non- design , 
the ratio of the sizes of the inlet slots of cocurrent flows and the length of the channel to the height of the main flow and the 
degree of expansion of the channel to the process of mixing and distribution of flows in the channel. It was revealed at what 
ratios of the initial parameters of the cocurrent flows and the linear dimensions of the channel a recirculation zone is formed. For 
a channel of constant cross section at large ratios of velocities (72, 46) and temperature (2, 33), as well as small ratios of the 
channel length to the height of the inlet slot of the main flow (5, 31), even at the same jet pressures in the initial section, the 

recirculation zone occupies more than 55% of the input section, and the length along the longitudinal coordinate reaches 20 cm. 
 

INTRODUCTION 
Cocurrent gas jets is of exceptional importance in connection with the wide application of this process in 

the creation of rocket and space technology, gas lasers, mixing and combustion devices, combustion chambers of 

various power plants and in solving theoretical problems of turbulent exchange [ 1–7]. 

Theoretical and experimental studies of the existence conditions and sizes of recirculation zones during 

mixing of two flows of constant density are contained in [5, 6]. In [17, 6], the experimental results of the study are 

presented, and some features of the interaction of a supersonic jet with a limited co-flow are quantitatively 

determined. However, experimental studies and generalizations were mainly concerned with cases of a large ratio of 
the cross-sectional areas of flows at the channel inlet, when the active flow (jet, flow with high speed) was an 

axisymmetric jet in a channel of a significantly larger diameter [5, 6, 17]. 

The paper [16] describes the results of an experimental study and an attempt to generalize the geometric 

dimensions of the recirculation zones and the distribution of concentrations along the axis, with the flow of coaxial 

co-axial flows in a channel of constant cross section, and the cross-sectional areas of the flows at the inlet are 

comparable, and the passive flow is located along the axis of the channel. 

It is relevant to solve such a problem by describing the mathematical model of internal laminar and 

turbulent flows, as well as its effective method of numerical solution. 

As is known, at present, to describe the internal flow of a viscous gas, the complete system of Navier-

Stokes equations [ 8–14] is used, the application of which opens up wide possibilities for a detailed description of a 

wide variety of flows. However, the numerical integration of this system is an extremely complex and time-
consuming task, the solution of which is at the limit of the technical capabilities of existing computer technologies 

even in the case of a homogeneous viscous gas flow and requires efficient calculation methods and algorithms. 

[8,9,11,15,23 - 25]. 

This paper proposes a method and an efficient algorithm for the numerical study of the flow, displacement 

and propagation of cocurrent flows in channels of constant and variable cross sections. 

 

PROBLEM STATEMENT 

 
 Let us consider the mixing and propagation of two viscous compressible gas flows in a channel of constant and 

variable cross-section of limited length 𝐿and half-height 𝑓0. At the channel inlet, there are two streams with a 

longitudinal velocity 𝑢1, temperature 𝑇1, and pressure 𝑃1 , transverse jet height 𝑓0 − 𝑅2(wall jet), and a second 

longitudinal velocity 𝑢2, temperature 𝑇2 , and pressure 𝑃2 , transverse jet height 𝑅2, as well as data characterizing the 

physical properties of gas flows. 
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In mathematical modeling of the problem, we assume that the flow is viscous and two-dimensional, flat, 

and there are no body forces and heat supply from the outside. Taking into account the above assumptions and in the 

future, for the convenience of numerical solutions, by carrying out a series of mathematical transformations, such as 

selecting the appropriate scales for spatial coordinates and physical parameters, in the considered area leading to 

square and introducing condensing functions, which allow to condense the calculated points near the wall and the 
inlet part of the channel of the physical plane , while maintaining a constant step in the computational plane (in these 

areas, the flow is characterized by large gradients of gas-dynamic parameters), the above, taking into account the 

mathematical model of the problem under study, can be written in a vector-conservative form [8,9]. 
𝜕𝑈

𝜕𝑡
+
𝜕𝐹(𝑈)

𝜕𝑥
+
𝜕𝐺(𝑈)

𝜕𝑦
=
𝜕𝑉1(𝑈, 𝑈𝑥)

𝜕𝑥
+
𝜕𝑉2(𝑈,𝑈𝑦)

𝜕𝑥
+
𝜕𝑊1(𝑈,𝑈𝑥)

𝜕𝑦
+
𝜕𝑊2(𝑈,𝑈𝑦)

𝜕𝑦
            (1) 

Relationship of total specific energy with internal and kinetic energy: 

                                                                     

𝐸 = 𝜌 𝐶𝜗𝑇 +
1

2
𝜌(𝑢2 + 𝜗2)                                                                     (2) 

 
State equation:         

                                                                     𝑝 = 𝜌 𝑇                                                                                    (3) 
Expression for dynamic viscosity: 

                                                                  𝜇 = 𝜇𝑥 + 𝜇𝑦                                                                                (4) 

where 𝜇𝑙- laminar, 𝜇𝑡- turbulent viscosity, 𝑈- vector of conservative variables; 𝐹,𝐺, 𝑉1, 𝑉2 ,𝑊1 ,𝑊2-flow vectors that 

look like: 

𝑈 =

[
 
 
 
 
𝜑𝑥 𝐹𝑦 𝑓 𝜌

𝜑𝑥 𝐹𝑦 𝑓 𝜌 𝑢

𝜑𝑥 𝐹𝑦 𝑓 𝜌 𝜗

𝜑𝑥 𝐹𝑦 𝑓 𝐸 ]
 
 
 
 

= [

𝜌̅
𝜌̅𝑢
𝜌̅𝜗

𝐸̅

] = [

𝜌
𝑚
𝑛
𝐸

] ;     𝐹 =
1

𝐿𝜑𝑥

[
 
 
 
 
 
 

𝑚
𝑚2

𝜌
+ 𝑝

𝑚𝑛

𝜌
𝑚(𝐸 + 𝑝)

𝜌 ]
 
 
 
 
 
 

;    𝐺 =
1

𝐹𝑦𝑓
[

Ω1𝜌
Ω1𝑚+Ω𝑃
Ω1𝑛 + 𝑃

Ω1(𝐸 + 𝑃)

]. 

where Ω1 = (𝑛 +𝑚Ω)/𝜌, Ω = −
𝑦𝑓′

𝑓
. 

𝑉1(𝑈, 𝑈𝑥) =
𝐹𝑦𝑓

𝑅𝑒𝐿2𝜑𝑥

[
 
 
 
 
 

0
4

3
𝜇𝑥

𝑁𝑥
𝑛𝑁𝑥
𝜌

+
4

3

𝑚𝑀𝑥

𝜌
+ 𝑃𝑇𝑇𝑥]

 
 
 
 
 

,      𝑉2(𝑈,𝑈𝑦) =
1

𝑅𝑒𝐿

[
 
 
 
 
 

0

−
2

3
𝑁𝑦 +

4

3
Ω𝑀𝑦

𝑀𝑦 + Ω𝑁𝑦

(𝑛 +
4

3
Ω𝑚)

𝑀𝑦

𝜌
+ (Ω𝑛 −

2

3
𝑚)

𝑁𝑦
𝜌
+ Ω𝑃𝑇𝑇𝑦]

 
 
 
 
 

, 

𝑊1(𝑈,𝑈𝑥) =
1

𝑅𝑒𝐿

[
 
 
 
 
 
 
 
 

0

𝑁𝑥 +
4

3
Ω𝑀𝑥

−
2

3
𝑀𝑥 +Ω𝑁𝑥

((𝑚 + Ω𝑛)𝑁𝑥 + (
4
3Ω𝑚−

2
3𝑛)𝑀𝑥)

𝜌
+ Ω𝑃𝑇𝑇𝑥]

 
 
 
 
 
 
 
 

, 

𝑊2(𝑈,𝑈𝑦) =
𝜑𝑥

𝑅𝑒𝐹𝑦𝑓

[
 
 
 
 
 
 
 
 

0

[
4

3
Ω2 + 1]𝑀𝑦 +

1

3
Ω𝑁𝑦

(Ω2 +
4

3
)𝑁𝑦 +

1

3
Ω𝑀𝑦

((Ω2 +
4
3) 𝑛 +

1
3Ω𝑚)𝑁𝑦 + ((

4
3Ω

2 + 1)𝑚 + 𝑛)𝑀𝑦

𝜌
+ (Ω2 + 1)𝑃𝑇𝑇𝑦]

 
 
 
 
 
 
 
 

,  
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Where 𝑀𝑥 =
𝜇̂(𝑚𝑥𝜌−𝜌𝑥𝑚)

𝜌2
,𝑀𝑦 =

𝜇̂(𝑚𝑦𝜌−𝜌𝑦𝑚)

𝜌2
, 𝑁𝑥 =

𝜇̂(𝑛𝑥𝜌−𝜌𝑥𝑛)

𝜌2
, 𝑁𝑦 =

𝜇̂(𝑛𝑦𝜌−𝜌𝑦𝑛)

𝜌2
, 𝑃𝑇 =

𝐶𝑝𝜇̂

𝑃𝑟𝑇
.  

Here 𝑓(𝑥), the dimensionless shape of the channel, 𝐿is the dimensionless length of the channel, 𝜑(𝑥)and 𝐹(𝑦)are, 

respectively, the thickening functions in the inlet and near-wall parts of the channel, the rest of the designations are 

generally accepted. 

 

BOUNDARY AND INITIAL CONDITIONS 

 
 When setting the boundary conditions, we will assume that the channel of constant and variable cross section is 

symmetrical. In this case, we can confine ourselves to considering the flow in the region between the symmetry axis 

and one of the channel walls. The axis 𝑂𝑋corresponds to the axis of symmetry, and the 𝑂𝑌 channel height axis, 

which is specified as 𝑦 = 𝑓(𝑥), 𝑥 = 0the channel inlet section, and the 𝑓(0) = 𝑓0  half height of the channel inlet 

section, 𝑓𝑤 c channel shade. The reduced system of differential equations (1) and relations (2 - 4) can be 

implemented using the following initial and boundary conditions, taking into account the channel at the inlet 

coaxially located to the nozzle 𝑅2- height (indices 1,2, - 𝑤respectively, the parameters of the near-wall, central and 

on the wall ) 

𝑡 = 𝑡0: 

𝑥 = 0: {
𝑢 = 𝑢2, 𝜗 = 0, 𝐸 = 𝐸2, 𝜇̂ = 𝜇̂2, 𝜌 = 𝜌2, 𝑝 = 𝑝2,    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑦 ≤ 𝑅2,
𝑢 = 𝑢1, 𝜗 = 0, 𝐸 = 𝐸1, 𝜇̂ = 𝜇̂1, 𝜌 = 𝜌1, 𝑝 = 𝑝1,    𝑤ℎ𝑒𝑟𝑒 𝑅2 < 𝑦 < 𝑓0,
𝑢 = 0, 𝜗 = 0,𝐸 = 𝐸𝑤 , 𝜇̂ = 𝜇̂𝑤 , 𝜌 = 𝜌𝑤 , 𝑝 = 𝑝𝑤 ,    𝑤ℎ𝑒𝑟𝑒 𝑦 = 1.

                                  (5) 

          0 < 𝑥 ≤ 1: {
𝑢 = 0, 𝜗 = 0, 𝐸 = 𝐸0, 𝜇̂ = 𝜇̂0, 𝜌 = 𝜌0, 𝑝 = 𝑝0,    𝑤ℎ𝑒𝑟𝑒 0 < 𝑦 < 1,
𝑢 = 0, 𝜗 = 0,𝐸 = 𝐸𝑤 , 𝜇̂ = 𝜇̂𝑤 , 𝜌 = 𝜌𝑤 , 𝑝 = 𝑝𝑤 ,    𝑤ℎ𝑒𝑟𝑒 𝑦 = 1.

 

 

𝑡 > 𝑡0: 

       𝑥 = 0: {

𝑢 = 𝑢2, 𝜗 = 0, 𝐸 = 𝐸2, 𝜇̂ = 𝜇̂2, 𝜌 = 𝜌2, 𝑝 = 𝑝2,    𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑦 ≤ 𝑅2,                           (6)
𝑢 = 𝑢1, 𝜗 = 0, 𝐸 = 𝐸1, 𝜇̂ = 𝜇̂1, 𝜌 = 𝜌1, 𝑝 = 𝑝1,    𝑤ℎ𝑒𝑟𝑒 𝑅2 < 𝑦 < 𝑓0 ,                          (7)
𝑢 = 0, 𝜗 = 0, 𝐸 = 𝐸𝑤 , 𝜇̂ = 𝜇̂𝑤 , 𝜌 = 𝜌𝑤 , 𝑝 = 𝑝𝑤 ,    𝑤ℎ𝑒𝑟𝑒 𝑦 = 1.                                    (8)

  

0 < 𝑥 ≤ 1: 

{
 
 

 
 𝑢 = 0, 𝜗 = 0, 𝐸 = 𝐸̃𝑤

𝜌 = 𝜌̃𝑤 ,
𝜕𝑃

𝜕𝑛⃗ 
= 0, 𝜇̂ = 𝜇𝑤 , 𝑇 = 𝑇̃𝑤 ,

}  𝑤ℎ𝑒𝑟𝑒  𝑦 = 1                                                          (9)

𝜕𝑢

𝜕𝑦
= 𝜗 =

𝜕𝐸

𝜕𝑦
= 0, }  𝑤ℎ𝑒𝑟𝑒 𝑦 = 0.                                                                                    (10)

 

𝑥 = 1: {
𝜕𝑢

𝜕𝑥
=
𝜕𝜗

𝜕𝑥
=
𝜕𝐸

𝜕𝑥
= 0  (𝑜𝑟 

𝜕2𝑢

𝜕𝑥2
=
𝜕2𝜗

𝜕𝑥2
=
𝜕2𝐸

𝜕𝑥2
) , 𝑤ℎ𝑒𝑟𝑒 0 < 𝑦 < 1.                                    (11) 

Here 𝜌1, 𝐸1, 𝜇̂1 𝑎𝑛𝑑 𝜌2, 𝐸2, 𝜇̂2,, respectively, are calculated for a given temperature 𝑇1, 𝑇2and pressure of the 𝑝1, 𝑝2jet 

and cocurrent. The values 𝜌𝑤 , 𝐸𝑤 , 𝜌̃𝑤 , 𝐸̃𝑤 , 𝜇𝑤are calculated by setting the boundary conditions on the wall according 

to 𝑢, 𝜗, 𝑇, 𝑃, 𝑎𝑛𝑑 𝑢0, 𝐸0, 𝜌0, 𝜇0, 𝑇0  are some initial values of the required parameters. 

In all variants, the condition on the wall was set 𝑃in the form  

  
𝜕𝑃

𝜕𝑛⃗ 
|
𝑤
= 0                                                                           (12)  

It may seem that the condition is based on the boundary layer approximation, where 
∂P

∂y
≈ 0 [10,19] is 

accepted. In reality, this condition is much less stringent, since constancy 𝑃is assumed not across the entire 

boundary layer, but only across the sublayer of thickness adjacent to the wall ∆𝑦. This method makes it possible to 

obtain a stable numerical solution both for flow in a continuous boundary layer and for flow with flow separation 

caused by the interaction of a shock wave with the boundary layer [11]. In the case of internal flows, setting the 

boundary conditions is complex and far from the final solution of the problem [12]. 

 

TRANSITION TO DIFFERENCE EQUATIONS AND CALCULATION METHOD 

 
To integrate the vector equation (1) and relation (2 ÷ 4), we use the universal finite difference formula [9]. 
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    Δ𝑈𝑛 =
𝜃∆𝑡

1 + 𝜃2

𝜕

𝜕𝑡
∆𝑈𝑛 +

∆𝑡

1 + 𝜃2

𝜕

𝜕𝑡
𝑈𝑛 +

𝜃2
1 + 𝜃2

∆𝑈𝑛−1      + 𝑂 [(𝜃 −
1

2
− 𝜃2)∆𝑡

2 + ∆𝑡3],    (13) 

   Where  ∆𝑈𝑛 = 𝑈𝑛+1 − 𝑈𝑛. 
This difference formula of a general form, due to the choice of parameters, 𝜃 𝑎𝑛𝑑 𝜃2makes it possible to 

obtain many conventional difference schemes [8, 9]. For schemes of the second order of accuracy 𝜃̅, it is necessary 

to take equal to 𝜃. 

In practice, the scheme is implemented as follows [9]: 

 

Step 1 

[[𝐼] +
𝜃∆𝑡

1 + 𝜃2
[
𝜕

𝜕𝑥
([𝐴] − [𝑃] + [𝑅𝑥])

𝑛 −
𝜕2

𝜕𝑥2
([𝑅])𝑛]]∆𝑈∗ 

=
∆𝑡

1 + 𝜃2
[
𝜕

𝜕𝑥
(−𝐹̅ + 𝑉1 + 𝑉2)

𝑛 +
𝜕

𝜕𝑦
(−𝐺 +𝑊1 +𝑊2)

𝑛] +
𝜃̅∆𝑡

1 + 𝜃2
∙ [
𝜕

𝜕𝑥
(∆𝑉2)

𝑛−1 +
𝜕

𝜕𝑦
(∆𝑊1)

𝑛−1] 

+
𝜃2

1 + 𝜃2
∆𝑈𝑛−1 + 𝑂 [(𝜃 −

1

2
− 𝜃2)∆𝑡

2, (𝜃̅ − 𝜃)∆𝑡2, ∆𝑡3]                                           (14) 

Step 2           

[[𝐼] +
𝜃∆𝑡

1 + 𝜃2
[
𝜕

𝜕𝑦
([𝐵] − [𝑄] + [𝑆𝑦])

𝑛 −
𝜕2

𝜕𝑦2
([𝑆])𝑛]]∆𝑈𝑛 = ∆𝑈∗;                                                         (15) 

Step 3                    

    𝑈𝑛+1 = 𝑈𝑛 + ∆𝑈𝑛                                                                                                                                             (16) 

where  [𝐴]𝑛 = (
𝜕𝐹

𝜕𝑈
)
𝑛

,   [𝐵]𝑛 = (
𝜕𝐺

𝜕𝑈
)
𝑛

, [𝑅]𝑛 = (
𝜕𝑉1

𝜕𝑈𝑥
)
𝑛

, [𝑅𝑥]
𝑛 = (

𝜕𝑅

𝜕𝑥
) , [𝑃]𝑛 = (

𝜕𝑉1

𝜕𝑈
)
𝑛

, [𝑆]𝑛 = (
𝜕𝑊2

𝜕𝑈𝑦
)
𝑛

, [𝑆𝑦]
𝑛 =

(
𝜕𝑆

𝜕𝑦
)
𝑛

− 𝐽 acobians.  𝐼 −  a unit matrix of size 4 × 4.  

We assume that at the beginning of the calculations (𝑡 = 𝑛∆ 𝑡0), at each node of the computational grid, all 

parameters of the initial flow are known from condition (5). The scheme given by equations (14) and (15) is three-

layer and requires initial data on two layers. If they are absent, then the initial data on the second time layer can be 

obtained using a two-layer scheme, taking 𝜃̅ = 𝜃2 = 0. For numerical integration of equations (14) and (15), the 

spatial derivatives are approximated to the second order 𝑂( ∆𝑥2;   ∆𝑦2). 
The use of three-point approximation by central differences of the second order of accuracy for equations 

(14) (step 1.) and (15) (step 2.) leads to a finite-difference system of equations that have a block-tridiagonal 

structure. 

The finite-difference system of equations for step 1 has the following form: 

{

𝐴̅1,𝑗∆𝑈1,𝑗
∗ = 𝐷̅1,𝑗 , 𝑖 = 1, 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐴̅𝑖,𝑗∆𝑈𝑖−1,𝑗
∗ + 𝐵̅𝑖,𝑗∆𝑈𝑖,𝑗

∗ + 𝐶̅𝑖,𝑗∆𝑈𝑖+1,𝑗
∗ = 𝐷̅𝑖,𝑗 , 𝑖 = 2, 𝑛𝑥 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐵̅𝑛𝑥,𝑗∆𝑈𝑛𝑥−1,𝑗
∗ + 𝐴̅𝑛𝑥,𝑗∆𝑈𝑛𝑥,𝑗

∗ = 𝐷̅𝑛𝑥,𝑗 , 𝑖 = 𝑛𝑥, 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

                      (17) 

where 𝑛𝑥 𝑎𝑛𝑑 𝑛𝑦is the number of design points along the axes 𝑂𝑋 𝑎𝑛𝑑 𝑂𝑌, respectively, and 𝐴̅1,𝑗 , 𝐷̅1,𝑗 , 𝐵̅𝑛𝑥,𝑗 ,

𝐴̅𝑛𝑥,𝑗  𝑎𝑛𝑑 𝐷̅𝑛𝑥,𝑗, are vectors (actually a square matrix with size 4 × 4, where only the elements of the first diagonal 

can be non-zero) and they can be 0 or 1, 𝐴̅𝑖,𝑗 , 𝐵̅𝑖,𝑗 , 𝐶𝑖̅,𝑗 , 𝐷̅𝑖,𝑗  are known coefficients calculated from the previous 

iteration. 

Using matrix sweep, [21,22] it is easy to obtain solution (17) in the recurrent form 

∆𝑈𝑖,𝑗
∗ = 𝛼𝑖,𝑗∆𝑈𝑖+1,𝑗

∗ + 𝛽𝑖,𝑗 , 𝑖 = 𝑛𝑥 − 1,2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                (18) 

Where 𝛼𝑖,𝑗 , 𝛽𝑖,𝑗 −  sweep coefficients, also calculated by recursive formulas 

𝛼𝑖,𝑗 = −(𝐴̅𝑖,𝑗𝛼𝑖−1,𝑗 +𝐵𝑖,𝑗)
−1
𝐶̅𝑖,𝑗 , 𝛽𝑖,𝑗 = (𝐴̅𝑖,𝑗𝛼𝑖−1,𝑗 +𝐵𝑖,𝑗)

−1
(𝐷̅𝑖,𝑗 − 𝐴̅𝑖,𝑗𝛽𝑖−1,𝑗),  

 𝑖 = 2, 𝑛𝑥 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗          = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                   (19) 
B (19)𝛼1,𝑗  𝑎𝑛𝑑  𝛽1,𝑗 are determined from the boundary conditions at 𝑖 = 1 from the first equation of system (17). 

Boundary conditions at 𝑥 = 0  (5) 𝑎𝑛𝑑 𝑥 = 𝐿  (𝑥 = 1)  (11) are implicitly implemented with respect to 

conservative variables. 𝜌, 𝑛,𝑚 , 𝐸. The equation 

𝐴̅1,𝑗∆𝑈1,𝑗
∗ = 𝐷̅1,𝑗                                                                                       (20) 
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corresponds to the rigid boundary condition at the channel input, for all 𝑗 = 1, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The known values of the 

variables 𝜌, 𝑛,𝑚 , 𝐸at the input (𝑖 = 1)make it possible to determine 𝛼1,𝑗 and 𝛽1,𝑗from equation (20) in the form: 

𝛼1,𝑗 = 0; 𝛽1,𝑗 = 𝐴̅1,𝑗
−1𝐷̅1,𝑗 ;    𝑗 = 1, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                                 (21) 

It should be noted that the third equation (17), i.e. 

𝐵̅𝑛𝑥,𝑗∆𝑈𝑛𝑥−1,𝑗
∗ + 𝐴̅𝑛𝑥,𝑗∆𝑈𝑛𝑥,𝑗

∗ = 𝐷̅𝑛𝑥,𝑗 , 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                         (22) 

corresponds to the boundary condition (11). 

Using Eqs. (18) and (22) for 𝑖 = 𝑛𝑥, we find the solution ∆𝑈𝑛𝑥,𝑗
∗ , 

∆𝑈𝑛𝑥,𝑗
∗ = (𝐵̅𝑛𝑥,𝑗

−1 ∙ 𝐴̅𝑛𝑥,𝑗 + 𝛼𝑛𝑥−1,𝑗)
−1
(𝐵̅𝑛𝑥,𝑗

−1 ∙ 𝐷̅𝑛𝑥,𝑗 − 𝛽𝑛𝑥−1,𝑗),   𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                      (23) 

and then successively the rest of the value ∆𝑈𝑖,𝑗
∗ from (18). If instead of condition (11) an “output” condition of the 

form 

𝜕2𝑢

𝜕𝑥2
=
𝜕2𝜗

𝜕𝑥2
=
𝜕2𝐸

𝜕𝑥2
= 0, 

finite difference equation 

𝐴̅𝑛𝑥,𝑗∆𝑈𝑛𝑥−2,𝑗
∗ + 𝐵̅𝑛𝑥,𝑗∆𝑈𝑛𝑥−1,𝑗

∗ + 𝐶̅𝑛𝑥,𝑗∆𝑈𝑛𝑥,𝑗
∗ = 𝐷̅𝑛𝑥,𝑗 , 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                      (24) 

in the joint solution of the following system of equations 

𝐴̅𝑛𝑥−1,𝑗∆𝑈𝑛𝑥−2,𝑗
∗ + 𝐵̅𝑛𝑥−1,𝑗∆𝑈𝑛𝑥−1,𝑗

∗ + 𝐶̅𝑛𝑥−1,𝑗∆𝑈𝑛𝑥,𝑗
∗ = 𝐷̅𝑛𝑥−1,𝑗 , 𝑗 = 2, 𝑛𝑦 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

∆𝑈𝑛𝑥−1,𝑗
∗ = 𝛼𝑛𝑥−1,𝑗∆𝑈𝑛𝑥,𝑗

∗ + 𝛽𝑛𝑥−1,𝑗               (25) 

calculated ∆𝑈𝑛𝑥,𝑗
∗ by the formula 

∆𝑈𝑛𝑥,𝑗
∗ = [(𝐴̅𝑛𝑥,𝑗

−1 𝐵̅𝑛𝑥,𝑗 − 𝐴̅𝑛𝑥−1,𝑗
−1 𝐵̅𝑛𝑥−1,𝑗)𝛼𝑛𝑥−1,𝑗 + (𝐴̅𝑛𝑥,𝑗

−1 𝐶̅𝑛𝑥,𝑗 − 𝐴̅𝑛𝑥−1,𝑗
−1 𝐶̅𝑛𝑥−1,𝑗)]

−1
× 

× [𝐴̅𝑛𝑥,𝑗
−1 𝐷̅𝑛𝑥,𝑗 − 𝐴̅𝑛𝑥−1,𝑗

−1 𝐷̅𝑛𝑥−1,𝑗 − (𝐴̅𝑛𝑥,𝑗
−1 𝐵̅𝑛𝑥,𝑗 − 𝐴̅𝑛𝑥−1,𝑗

−1 𝐵̅𝑛𝑥−1,𝑗)𝛽𝑛𝑥−1,𝑗]               (26) 

After finding ∆𝑈𝑛𝑥,𝑗
∗ the finite-difference system of equations (17) at all internal points, we proceed to the numerical 

integration of equations (15) (Step 2). We find solutions in the same way ∆𝑈𝑖,𝑗 . It should be noted that the use of 

various boundary conditions on the wall, for example, of the type(
𝜕𝑇

𝜕𝑛⃗ 
= 0;

𝜕𝑃

𝜕𝑛⃗ 
= 0) or others, greatly complicates the 

implementation of the scheme proposed in [9]. Therefore, in Step 2 it is assumed that the solution for the desired 

variables within these boundaries is known from the (𝑛)th time layer. It is safe to say that such an assumption does 

not affect the convergence in the least when steady solutions are found. 

On the axis of symmetry for the boundary condition (10), an implicit implementation procedure is applied, 

then finding a solution∆𝑈𝑖,𝑗
𝑛  same as described in step 1. 

The implementation of the scheme for calculating steady-state solutions in time can be represented in the 

following sequence: 

1. At the moment of time, the 𝑡 = 𝑡0initial values of all the required variables are set; 

2. Solutions are found ∆𝑈𝑖,𝑗
∗ and boundary conditions (9 ÷ 10) are satisfied; 

3. Solutions are found ∆𝑈𝑖,𝑗
𝑛 and boundary conditions (11) are satisfied; 

4. Solutions are found ∆𝑈𝑖,𝑗
𝑛+1by formula (16), step 3; 

5. From equality (2) is calculated 𝑇𝑖,𝑗
𝑛+1; 

6. From the equation of state is determined𝑃𝑖,𝑗
𝑛+1; 

7. The effective turbulent viscosity is calculated 𝜇̂𝑖,𝑗
𝑛+1using the formula: 

𝜇̂ = 𝑐𝑜𝑛𝑠𝑡𝑇0,6472 + 𝜒𝜌𝑏2(𝑥) |
𝜕𝑢

𝜕𝑦
|,                                                             (27) 

where χ is the empirical turbulence constant, is 𝑏(𝑥)the conditional width of the mixing area; 

8. Convergence (establishment) of the solution by the condition is checked 

max
𝑖,𝑗

|
∆𝑈𝑖,𝑗

𝑛

𝑈𝑖,𝑗
𝑛 ∆𝑡

| < 𝜀                                                                               (28) 

where 𝜀 is a small number. 

If conditions (28) are not satisfied, then the calculation process is repeated from the second point, otherwise it is 

considered that the steady-state solution with accuracy𝜀 found. 
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IMPLEMENTATION OF THE METHOD AND RESULTS OF METHODOLOGICAL 

CALCULATIONS 
The described method and algorithm were implemented as a program. This program can be used to 

calculate laminar and turbulent flows in flat channels of constant and variable (in Laval nozzles) sections, as well as 

jet flows for a limited co-current flow. 
It should be noted that all variants of the boundary conditions for temperature (of the first and second kind), 

velocity (sticking, sliding) on the wall and at the outlet, specific design points along the axes 𝑥 𝑎𝑛𝑑 𝑦, as well as the 

thickening coefficients 𝐾𝑥  𝑎𝑛𝑑 𝐾𝑦[13] and setting the shape (dimensions) of the channel are included in the set of 

initial data, therefore, when solving a wide range of specific problems, it is not necessary to make any changes to the 

text, and in this sense the program is universal. 

For carrying out methodical calculations, a flat channel was chosen as an object, for which the ratio of 

length to half-height was 5, and the Reynolds number 𝑅𝑒was calculated from the initial values of density, velocity, 

half-height of the channel and dynamic viscosity, its given power dependence on 𝑇[14]. 

As initial conditions (𝑡 = 𝑡0), i.e., the longitudinal velocity component, pressure and temperature were 

considered constant, and the transverse velocity component was assumed to be zero everywhere. Dynamic viscosity 

at each design point was calculated by the formula  

𝜇𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑇
0,6472                                                                                    (29) 

and thermal conductivity according to the formula 𝜆 =
𝐶𝑃𝜇̂

𝑃𝑟
, 

where 𝑐𝑜𝑛𝑠𝑡in (29) is calculated by the method given in [14]. 

The dimensionless time step in each iteration is chosen from the condition [15] ∆𝑡 ≤ 𝑚𝑖𝑛(∆𝑡𝑥 , ∆𝑡𝑦), where 

∆𝑡𝑥 ≤
1

2

1

|𝑢| + 𝑎̅
𝐿∆𝑥𝜑𝑥

+
2𝛾

𝑅𝑒𝜌𝐿2𝜑𝑥2∆𝑥2

, ∆𝑡𝑦 ≤
1

2

1

|𝜗| + 𝑎̅
𝐹𝑦∆𝑦

+
2𝛾

𝑅𝑒𝜌𝐹𝑦2∆𝑦2

, 𝛾 = 𝑚𝑎𝑥 [𝜇̂,
4

3
𝜇̂, 𝜆]            (30) 

Here 𝑎̅ is the speed of sound. 

The fulfillment of condition (28) was considered as the 

criterion for establishing accuracy in methodological 

calculations, and at the same time 𝜀= 0.0001 ÷ 0.0005 was 

taken in the calculations. 

Of great interest is the choice of a mathematical model for 

calculating the effective viscosity [ 8,19]. For this purpose, we 

study a jet flowing out of a flat slot and propagating in a 

cocurrent air flow in a flat channel of constant cross section. As 

the basic object of study, a channel was chosen, similarly to 

[17], with geometric characteristics 𝐷 = 188 𝑚𝑚 (𝑓0 =
94 𝑚𝑚, 𝐿 = 1,4 𝑚). 

In the calculations it was taken: 𝑇1 = 𝑇2 =
300 𝐾, 𝑃1 = 𝑃2 = 𝑃𝑎𝑡𝑚 = 1 𝑎𝑡𝑚, Pr 𝑇 = 0,7. Options for 

calculating the effective turbulence using formulas (27) were 

considered, and 

 

𝜇̂𝑇 = 𝜒𝑏(𝑥)(𝜌𝑢)|𝑦=0        (31)                                        

  𝜇̂𝑇 = 𝜒𝑏
2(𝑥)𝜌

𝜕𝑢

𝜕𝑦
.          (32) 

Numerical calculations have shown that formulas (27) and (32) give practically the same results for 

subsonic displacements. For the displacement of supersonic flows,           (
𝑢2

𝑢1
= 1,4706,

𝑅2

𝑓
= 0,26) the results in 

the near-wall region and in the region of flow contact are noticeably different (Figure 1).  

This can be explained by the fact that when two viscous flows with different velocities are displaced, the 

drag coefficient increases at the displacement boundary. Of these algebraic models, formula (27) was used to 

calculate the effective turbulent viscosity in serial calculations. 

To study the convergence of the scheme and the reliability of the numerical results, series of air flow 

calculations were carried out on a grid with different steps and for the same air parameters based on the narrow 

channel approximation model [20]. Obtaining convergence in different grids and qualitative coincidence of the 

Figure 1. Velocity profiles on the channel slice with a 

different number of calculated points in the transverse and 

longitudinal directions. 
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Figure 2. Velocity profiles on the channel slice 

for different models of the turbulent viscosity 

coefficient. 

results with the work [20] indicates the reliability of the results and the correctness of the calculation algorithm 

(Figure 2). 

With the help of the above method and the calculation program, a number of studies have been carried out, 

such as non- isothermality , satellite and the ratio of satellite height , off - design (
𝑃2

𝑃1
≠ 1), channel length and under 

different boundary conditions on the wall, as well as the degree of channel expansion due to displacement and flow 

propagation in a flat channel. 

Figure 3 shows the transverse temperature distribution in different sections along the longitudinal 

coordinate at the same temperatures(
𝑇2

𝑇1
= 1) cocurrent options: 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

№ 1.  
𝑢2

𝑢1
= 0,0965,

𝑅2

𝑓0
= 0,5,

𝐿

𝑓0
= 14,8936          

№ 2.  
𝑢2

𝑢1
= 45,0725,

𝑅2

𝑓0
= 0,5,

𝐿

𝑓0
= 14,8936  

№ 3.  
𝑢2

𝑢1
= 10,3667,

𝑅2

𝑓0
= 0,26,

𝐿

𝑓0
= 14,8936  

As can be seen from these results, the temperature 

increases in the mixing regions, and in the initial part of the 

channel it is lower than in the outlet. (𝑥 = 1). This is explained 

by the fact that at the mixing boundary, due to the deceleration 

of the flow, the gradient of velocity and friction increases, and 

this, in turn, leads to an increase in temperature. In the variant 

№ 2, a recirculation zone is observed in the initial section of the 

channel and reaches 25% of the inlet half-height of the inlet 

section. 

Studies of the influence of non- isothermality in the 

range 0,6 <
𝑇2

𝑇1
<  2,3333at constant pressure of the jet and co-

flow are mutually equal and at 
𝑇2

𝑇1
= 2,3333,

𝑢2

𝑢1
= 0,0222values 

𝑅2

𝑓0
= 0,26and 0.5 in the mixing region, no sharp changes in the 

velocity and temperature profiles are observed, and in both 

cases the core and high temperature are maintained until the end 

of the channel. At 
𝑇2

𝑇1
= 0,4286,

𝑢2

𝑢1
= 0,0222 (

𝑅2

𝑓
= 0,5,

𝐿

𝑓
=

Figure 3. Temperature profiles at different distances 

from the inlet section of the channel: 

 − −− - 
𝑢2

𝑢1
= 0.0965;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8936 

_____ - 
𝑢2

𝑢1
= 45.0725;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8636 

−.−.− - 
𝑢2

𝑢1
= 10.367;

𝑅2

𝑓0
= 0.26;

ℎ

𝑓0
= 14.8636 

Figure 4. Transverse profiles of the longitudinal 

velocity in different section of the channel and its 

axial changes along the channel at 

−
𝑢2

𝑢1
= 0.0222;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 5.3191;

𝑇2

𝑇1
= 2.3333;

𝑃2

𝑃1
= 1. 
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Figure 6. Transverse distribution of the longitudinal velocity at 

different distances from the inlet section of the channel, and its axial 

change along the channel: 

___ - 
𝑢2

𝑢1
= 72,4636;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8936;

𝑇2

𝑇1
= 1;

𝑃2

𝑃1
= 2. 

−− −-
𝑢2

𝑢1
= 72,4636;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8936; 

𝑇2

𝑇1
=

2.333;
𝑃2

𝑃1
= 2. 

Figure 5. Temperature profiles at different distances from the 

inlet section of the channel at –
𝑢2

𝑢1
= 0,0222; 

𝑅2

𝑓0
= 0,5;   

ℎ

𝑓0
= 5,3191;  

𝑇2

𝑇1
= 2,3333; 

𝑃2

𝑃1
= 1 

5,3191), i.e., the temperature and flow velocity that is supplied to the central part of the channel is much less than 

in the near-wall part, so that with such an option for studying the mixing and distribution of two viscous air flows 

near the mouth of the channel, a recirculation zone is formed (Figure 4), and when moving away from the inlet part 

of the channel, the recirculation zone is not observed. 
In the mixing regions, in the initial section of the 

channel, the deceleration of the peripheral flow velocity at the 

mixing boundary is observed, while the transverse distribution 

of the longitudinal velocity has a saddle shape, and with 

distance the maximum velocity value shifts to the channel axis 

and takes on a parabolic form. The opposite behavior is 

observed in the transverse temperature distribution along the 

channel, i.e., near the mouth of the channel at the mixing 

boundary of two flows, friction increases due to viscosity, and 

this, in turn, leads to an increase in the flow temperature (Figure 

5). 

It was found that at large ratios of velocities (
𝑢2

𝑢1
=

72,4636), as well as small ones 𝐿/𝑓 = 5,3191 (𝑇2/𝑇1 =

2,3333, 𝑅2/𝑓 = 0,26in the initial section, the recirculation zone  
occupies about 55–60 % of the inlet section, and the length 

along the longitudinal coordinate reaches 20 cm, which is 

confirmed by the experimental materials of works [16,17]. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

In this variant, in the initial section of the channel, in the area where the flows come into contact, the longitudinal 

velocity noticeably increases. This can be explained by the fact that the jet is supersonic, and the velocity of the 

cocurrent flow is rather low 𝑢1 = 6,9m/s, and naturally, the jet behaves as if it is flowing into an expanding area 

with distance from the inlet, the velocity and temperature on the axis decrease. 

Of great practical interest is the study of the influence of initial pressures, temperatures, the co-occurrence 

parameter of mixing flows and the geometric ratio of the sizes of the slots in the channel on the features of mixing 
and propagation of the air flow. 
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Figure 7. Transverse distribution of the longitudinal velocity at 

different distances from the nozzle cutoff, as well as its axial change 

along the channel:  −Opt.№20, Opt.№21 

___ -  
𝑢2

𝑢1
= 72,4636;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8936;

𝑇2

𝑇1
= 1;

𝑃2

𝑃1
= 4. 

−− − -  
𝑢2

𝑢1
= 72,4636;

𝑅2

𝑓0
= 0.5;

ℎ

𝑓0
= 14.8936;

𝑇2

𝑇1
= 2.333;

𝑃2

𝑃1
= 4. 

Here are some numerical results related to non- calculation cocurrent flows under identical 
𝑢2

𝑢1
= 72,4638,

𝑅2

𝑓0
=

0,5,
𝐿

𝑓0
= 14,8936and conditions on the wall 

∂T

∂y
= 0. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

In Figure 6. the transverse distribution of the longitudinal velocity is given at various distances from the 

channel exit at the same jet and coflow temperatures , i.e. 𝑇1 = 𝑇2 = 300 𝐾, as well as at 𝑇1 = 300 𝐾 𝑎𝑛𝑑 𝑇2 =

700 𝐾, 𝑎𝑛𝑑
𝑝2

𝑝1
= 2. As follows from the graph, with an increase in the jet temperature, 𝑇2 = 700 𝐾reverse currents 

are traced, i.e., recirculation zones in the initial sections. At the same temperatures of the jet and cocurrent, this is 
not observed. Increasing the temperature of the jet promotes the development of the flow. The axial value of the 

longitudinal velocity is also given here. As can be seen from the graph, the axial value of the velocity first increases, 

and decreases with distance from the channel cutoff. This is explained by the fact that an increase in temperature 

leads to an acceleration of the flow and a decrease in pressure in the initial sections. Figure 7 shows the transverse 

distribution of the longitudinal velocity on different longitudinal sections of the channel at the same temperatures of 

the jet and cocurrent flow (𝑇1 = 𝑇2 = 300 𝐾)and at the jet temperature 700 𝐾, and the cocurrent flow −300 𝐾, as 

well as the jet pressure of 4 atm and the cocurrent flow of 1 atm. As follows from the results, an increase in the 

temperature and pressure of the jet leads to an increase in the recirculation zone of the flow in the initial sections of 

the channel and the rapid development of the flow. From the given axial values of the longitudinal velocity, it can be 

noted that an increase in the initial values of the temperature and pressure of the jet leads to a sharp increase in the 

axial values of the longitudinal velocity in the initial sections of the channel, and when moving away from the 
channel exit, to its rapid drop. Such patterns were observed in [16, 17]. 

The obtained numerical results make it possible to regulate the flow in the channels for specific ratios of the 

parameters of the cocurrent flows and the geometry of the channel.  

CONCLUSION 

 On the basis of the conducted method and algorithm for calculating numerical solutions of the Navier – 

Stokes equations for the flow of compressible gas, the effects of entanglement, non-isothermicity, the ratio of the 

height of the slots, the uncountability of co-flows and the length of the channel on the parameters of mixing and 

propagation of co-flows in the channel are investigated, and it is also revealed at what ratios of these parameters the 

recirculation zone is observed. It is revealed that the effects of non-isothermicity in the range 0,6<  Т2/Т1< 2,333 at 

the same pressure of the jet and co-flows in the mixing region, sharp changes in the velocity and temperature 

profiles are not observed, and the core and high temperature remain until the end of the channel. It is revealed that at 
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high velocity ratios ( 𝑢2/𝑢1=72.4636), as well as small values L/𝑓0= 5.319 and 𝑅2/𝑓0=0.26 (Т2/Т1=2.333) in the 

initial section of the channel, the recirculation zone occupies about 55-60% of the input section, and the length along 

the longitudinal coordinate reaches 20 cm, as well as an increase in temperature and the pressure of the jet leads to 

an increase in the recirculation zone of the flow in the initial sections and the rapid development of the flow. 
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