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Abstract—The second initial-boundary value problem in a bounded domain for a fractional-diffusion
equation with the Bessel operator and the Gerasimov–Caputo derivative is investigated. Theorems of
existence and uniqueness of the solution to the inverse problem of determining the lowest coefficient
in a one-dimensional fractional-diffusion equation under the condition of integral observation are
obtained. The Schauder principle was used to prove the existence of the solution.
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INTRODUCTION AND PROBLEM STATEMENT
It is well known that partial differential equations play an important role in constructing mathematical

models of many real processes. Equations of mathematical physics with the Bessel operator belong to the
class of degenerate differential equations, for which the theory of boundary value problems is currently
one of the important sections of the theory of partial differential equations (PDEs).

Differential equations with fractional derivatives serve as the basis for mathematical modeling of pro-
cesses occurring in continua with a fractal structure. Especially, during the last few decades, many appli-
cations of various types of fractional differential equations have become the objects of attention of special-
ists for theoretical and practical reasons [1]. Many types of boundary value problems, including direct [2,
3] and inverse problems [4], were formulated for various types of PDEs of integer order and with several
differential operators of fractional order.

In works [5, 6] the unique solvability of the direct and inverse source problem for a fractional time par-
tial differential equation with the Gerasimov–Caputo and Bessel operators was studied. Solutions to these
problems are constructed on the basis of corresponding expansions in terms of eigenfunctions, and the
existence and uniqueness of the resulting solutions are proved. In works [7, 8] the main boundary value
problems for differential equations with the Bessel operator acting on a spatial variable and the Riemann–
Liouville and Caputo partial derivatives with respect to a time variable were studied.

In this work, the posed problem is equivalently reduced to a nonlinear integral equation of Volterra
type. One of the best mathematical tools for studying a system of nonlinear integral equations is the prin-
ciple of contraction mappings, and on its basis the existence and uniqueness of solutions to the problems
posed is proved, see [9–16]. In this work, unlike the above works, the Schauder principle is used to prove
the existence theorem for a solution to a nonlinear integral equation [17, 18].

In the region , we consider the differential equation
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40 AKRAMOVA
where  is a given number and  is the Gerasimov–Caputo derivative of fractional order  start-
ing at point 0, which is defined as follows ([1], p. 90):

Relations (1)–(3) are the direct problem, i.e., if the functions , , and  are known and the
constants  then the solution  can be found from Eqs. (1)–(3).

Definition 1. Under the solution to the direct problem (1)–(3) we will understand the function 
from the class

(4)

where , which is a solution to
Eq. (1) in the region  and satisfies conditions (1)–(3).

Inverse problem. Define a function  if the following additional information about solving a direct
problem (1)–(3) is known:

(5)

where  is a given sufficiently smooth function.
Definition 2. The solution to the inverse problem (1)–(5) is the functions  and  from the class

(4) and , respectively, satisfying relations (1)–(5).

1. SYMBOLS AND SUPPORTING INFORMATION
In this section we introduce the necessary notation and statements that will be needed below.
We use the following function spaces: by  we denote the function class  for which the func-

tion , where , and

and

where ,  and  is the integer part of number .
The Mittag–Leffler function is an entire function defined by the series

The two-parameter Mittag–Leffler function is the sum of a more general series

the equality  is obvious.

Statement ([19]). For ,  it is true that . Moreover,  is a mono-

tonically decreasing function with .
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INVERSE COEFFICIENT PROBLEM FOR A FRACTIONAL-DIFFUSION EQUATION 41
Lemma 1 ([20], p. 188). Let  , and  is a nonnegative function that is locally integrable on
 ( for some positive T) and suppose that  is nonnegative and locally integrable on  with

on this interval. Then we have

2. STUDY OF THE DIRECT PROBLEM (1)–(4)

In this section we will study the direct problem and study its properties. First, let us study the initial
boundary value problem for the equation

(6)

with conditions (2), (3).
In (1) let us introduce the notation . We will seek partial solutions to

Eq. (6) with  not equal to zero in the region  and satisfying zero boundary conditions (3), in the
form of a product . Substituting this product into Eq. (6), for  we obtain the follow-
ing spectral problem:

(7)

(8)

where  is the separation constant.

Let us find a general solution to Eq. (7). Multiplying (7) by , performing a change of variable,
according to the desired function

(9)

we reduce the original equation to the Bessel equation

(10)

It is well-known ([21], p. 249) that the general solution to Eq. (10) has the form

(11)

where  is the Bessel function of the first kind,  is the Bessel function of the second kind, and ,
 are arbitrary constants.

Passing in (11) to the original variable  and functions  according to formula (9), we obtain a gen-
eral solution to Eq. (7) as

(12)

We find the constants  and  from the requirement that the general solution (12) satisfies conditions (8).
Solution (12) satisfies the first boundary condition from (8) at  and . As a result, we have

(13)

Now, we require that solution (13) satisfied the second boundary condition from (8):
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42 AKRAMOVA
According to Lommel’s theorem ([22], p. 530) Eq. (14) has a countable number of simple real roots
, which determine the eigenvalues of the spectral problem (7), (8). Assuming

 in (13), we obtain the corresponding eigenfunctions of the problem (7) and (8):

For the convenience of further calculations, we orthonormalize this system of functions:

(15)

where

It is well-known ([23], p. 633) that the system of eigenfunctions (15) is complete in space  with
the weight x, i.e., in .

Note that for the eigenvalues of the problem (7), (8) at large  the asymptotic formula is valid ([23],
p. 317)

Let us now expand the required function and the right-hand side of Eq. (6) into the Fourier–Bessel
series in terms of eigenfunctions :

(16)

(17)

where

Substituting (16), (17) into (1), we get

(18)

As follows from (2), the initial conditions for  have the form

(19)

where ,  are the Fourier–Bessel coefficients of the series

(20)

It is easy to see that the solution to Eq. (18) with the initial conditions (19) has the following form ([1],
p. 231):
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Next, we put . Then we obtain the following integral equation for :

(21)

where

Equation (21) represents a weakly singular Volterra integral equation of the second kind. It is well-
known ([1], p. 205) that, if the functions  and  at each  then

Eq. (21) has a unique solution belonging to the class , where , , and
.

Let , , Then . From Lemma 1 and (21) we get  for all .

Then from (17) for any  we have  = 0. Hence, the completeness of system (15)

in the space  with weight  implies  almost everywhere in the range [0, 1] for any
. Because, according to (2), the function ,  in . Thus, the uniqueness of

the solution to the problem (1)–(4) is proved based on the completeness of the system of eigenfunctions
of the one-dimensional spectral problem.

Together with series (16), consider the following series:
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Let us prove the uniform convergence of series (16), (22), and (23) in the region . To do this, we impose
some additional conditions on the functions  and .

First, we prove the following statements.
Lemma 2. For large  the estimates hold:

where , ,  is the Euler integral of the first

kind, and  is a sufficiently small number.
Proof. Let us write the integral equation (21) as
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Then, using Proposition 1, we have

or

Further, according to Lemma 1

or

From the last inequality we immediately obtain the first estimate of Lemma 2 for any .
The second estimate follows from Eq. (18) and the first inequality of Lemma 2 for an arbitrary

.

Lemma 3. For large  for all , where  is a sufficiently small number, the estimates hold:

(24)

where , , are positive constants.

Proof. It is well-known that at large  the estimate takes place ([23], p. 133):
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the representation of  due to (25) implies the validity of the first estimate (24). To justify the second esti-
mate (24), we calculate
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According to Lemmas 2 and 3, for any  series (16) is majorized by the series

(27)

series (22) and (23) are majorized accordingly by the series

(28)

(29)

We explore number series (27)–(29) for convergence.

In accordance with the theory of Fourier–Bessel series, we need to obtain an estimate of the form
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stants. Thus, the constructed function , defined by series (16), satisfies all the conditions of the
problem (1)–(4).

This proves
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∈ Ω( , )x t

( )( ) ( )( )
∞ ∞

α α
α α+ α α−γ+ γ

= =
+ + + 1 3 , 1 2 3 ,2 1

1 1
1 1 ,n n

n n

c c q E T q a c c q E T q f

( )( ) ( )
∞

α
α α+

=
+ λ + 2

1 3 , 1
1

1 n n
n

c c q E T q q a

( )( ) ( )
∞

−γ α
α α−γ+ γ

=
+ ε + λ + 2

2 3 ,2 1
1

1 ,n n
n

c c q E T q q f

( )( ) ( )( )
∞ ∞

α α
α α+ α α−γ+ γ

= =
+ + + 1 4 , 1 2 4 ,2 1

1 1
1 1 ,n n

n n

c c q E T q n a c c q E T q n f

( )( ) ( )( )
∞ ∞

α α
α α+ α α−γ+ γ

= =
+ + + 2 2

1 5 , 1 2 5 ,2 1
1 1

1 1 .n n
n n

c c q E T q n a c c q E T q n f

γ+ +≤ ≤ > −
e e

e
2 26 7

6 72 1 2 1, ( , , 0 const).
( ) ( )

n n
c cn a n f c c

n n

⋅( )a ⋅( , )f t
∈ [0,1]x

∂ ∂ ∂= = = = = = = =
∂ ∂ ∂

2 3

2 3(0) (0, ) '(0) (0, ) ''(0) (0, ) '''(0) (0, ) 0a f t a f t a f t a f t
x x x

(4)( )a x ∂
∂

4

4 ( , )f x t
x

∂ ∂= = = = = =
∂ ∂ 2(1) (1, ) '(1) (1, ) ''(1) (1, ) 0a f t a f t a f t

x x

⋅( )a ⋅( , )f t

∞
− +

=
 e2 1

8
1

( ) ,
n

c n

Ω 8c
( , )u x t

h

( )a x ( , )f x t γ⋅ ∈( , ) [0, ]f x C T
≤ γ ≤ α <0 1 ∈( ) [0, ]q t C T ( , )u x t
RUSSIAN MATHEMATICS  Vol. 67  No. 9  2023



46 AKRAMOVA
3. EXISTENCE OF A SOLUTION TO THE INVERSE PROBLEM (1)–(5)

Let us derive an operator equation for the unknown function . We rewrite series (16) taking into
account (21) as

First, we integrate Eq. (1) with respect to  from 0 to 1. After this, integrating by parts with respect to

 and taking into account conditions (3)–(5) and designation  = , we arrive at the relation
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As a result, dividing both sides of Eq. (32) by  we get
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Let us prove that the operator  maps a convex set

into itself.
Indeed, if we assume that conditions (i)–(iii), (A) of the statement are satisfied, as well as (31), then

for any  we have

(35)

where . The right-hand side of inequality (35) is a monotonically increasing function of 

Moreover, if we replace  with , then due to  this inequality only strengthens

Let  be a positive root of the equation

Then for all  we have .
Due to estimate (35) the set of functions
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is uniformly bounded.
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Let us now prove that  is a completely continuous operator on . To do this, we use Arzel’s
theorem ([24], p. 207). Let us recall the definition of an equicontinuous operator: an operator  is called
equicontinuous if for any  there exists a  such that for all  for which

 the inequality holds

(37)

Let

Next, for any  we have

Therefore, if we take  then inequality (37) holds for . The equicontinuity of the set of
functions (36) is proved. According to Arzel’s theorem,  is completely continuous on . Besides,

 reflects this ball into itself. Therefore, by Schauder’s principle, the integral equation (33) has at least
one solution in the ball .

Thus, the following theorem is proved.

Theorem 2. Let the conditions of Theorems 1 and (A) hold. Then Eq. (34) has a fixed point on .

4. UNIQUENESS OF SOLUTION TO THE INVERSE PROBLEM (1)–(5)

Let us assume that there are two different solutions to the inverse problem (1)–(5):

Let us put

Then this pair of functions satisfies the relations
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dividing both sides of the last equality by  and taking into account (33), we have

(38)

where ,

Note that, by virtue of Theorems 1 and 2, for the functions  and , , the estimates (31),
(35) are valid. Then

Considering the first inequality written for  in Lemma 2,  and also the statement, we have
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where

On the other hand, from (38), (39) we have

(40)

Hence, by Lemma 1, for any  we conclude that  or .
Remark. The integral inequality (40) has been obtained similarly to (39), where  is some constant

depending only on .
So, we have proven the following uniqueness theorem.
Theorem 3. Let the conditions of Theorems 1 and 2 hold. Then the inverse problem (1)–(5) cannot have

more than one solution.
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