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EXACT AND NATURAL SCIENCES

UDC: 517.518.5

ESTIMATES FOR CONVOLUTION OPERATORS RELATED TO A, TYPE
SINGULARITIES

Akramova Dilshoda Isroil gizi,
Teacher Bukhara State University
d.i.akramova@buxdu.uz

Annotatsiya. Ushbu magqolada biz giperbolik tenglamalar bilan bog'liq bo'lgan o ‘rama operatori
amplituda funksiyasining bir jinsli tartibi uchun baholarni olamiz. Bu natija M.Sugimoto tomonidan n =
3 holat uchun berilgan baholarni yaxshilaydi. Anigrog'i, biz M.Sugimoto tomonidan A, tipidagi o'ziga
xosliklarga ega bo'lgan ixtiyoriy analitik faza funksiyasi uchun berilgan baholarni kengaytiramiz. Bu
M. Sugimoto tomonidan qo ‘yilgan masalaning yechimini beradi.

Kalit so’zlar: O ‘rama operatori, Furye almashtirishi, Bessel potensiali, amplitude, faza, cho zish,
Hausdor-Yung tengsizligi, tebranuvchan integral.

Annomayua. B nacmosweil pabome nonyuenvl OYEHKU OOHOPOOHO20 NOPAOKA AMAIUMYOHOU
@dyHKkyuu onepamopa CGEPMKU, CEA3AHHO20 C 2UNEPOOIUYECKUMU VPAGHEHUAMU. DMom pe3yiomam
yayuwaem oyenku M.Cyeumomo ona cayuas n=3. Tounee, Mvl pacnpocmpamsem OYeHKU, OaHHble
M.Cyzaumomo, 0151 npoU360IbHLIX AHATUMUYECKUX PA306bIX DYHKYUU, UMEIOuUX 0cObeHHOCmU Muna As.
Omo oaém pewernue npobremul, npednoxcenroe M.Cyeumomo.

Kntouesvie cnosa: Ceépmounsiti onepamop, npeoopaszosanue @ypve, becceres nomenyuar,
amnaumyoa, gasa, 1okaruzayus, nepasencmeo Xaycoopgha-IOuea, ocyunnupyrowuti unmezpai.

Abstract. In this paper, we obtain estimates for the homogeneous order of the amplitude function of
the convolution operator related to hyperbolic equations. This result improves the estimates given by
M.Sugimoto for the case n = 3. More precisely, we extend the estimates given by M.Sugimoto for arbitrary
analytic phase functions having A, type singularities. This gives a solution of the problem proposed by
M.Sugimoto.

Keywors: Convolution operator, Fourier transform, Bessel potential, amplitude, phase, localization,
Hausdor-Young inequality, oscillatory integral.

Introduction. In this paper we consider the convolution operators of type:
M, = F~1[e*@q,]F, (1)

where F is the Fourier transform operator, ¢ € C*(R"\{0}) is homogeneous of order one, so-called
phase function, a;, € C*(Ry) is a homogeneous function of order —k for large ¢. ay is called to be an
amplitude function.

Let 1 < p < 2 be a fixed number: We consider the problem: find the minimal number k(p) such that
the operator M,: LP (RY) — LP'(R") is bounded for any k > k(p).

In the case v = 1, the problem is easy to solve. Since in this case due to homogeneity of the function

¢ we have
cié, for &>0,
¢) = {czf, for &<0,
where ¢, ¢, are non-zero constants and hence F~1e'?F is nothing but a sum of translations up to the
LP(R) — LP'(R) bounded operator for any 1 < p < 2, consequently M, is essentially a Bessel potential, the
boundedness of which is well known due to Hardy-Littlewood-Sobolev’s inequality [5].
Similar results hold true for the case v > 1 and ¢ = 0.
Further, we will assume that v > 1. Also, it is assumed that ¢ (&) # 0 for any & € RY\{0}. Since ¢ is
a smooth function on RV\{0} and its domain is a connected set, whenever v > 2, then without loss of
generality we may and will assume that ¢ (&) > 0 for any & # 0. Moreover, ¢ is a homogeneous function of
order one, then, due to the Euler’s homogeneity relation we have the identity:

fo <P(f) o(),

for any £ € RV\{0} and hence the set X defmed by the following
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L={{eR%p®) =1}

is a smooth or an analytic hypersurface provided ¢ is a smooth or a real analytic function respectively.
Next, we will assume that ¢ is a real analytic function defined on R\{0}.

Further, we use notation:

kp:=ky(E): = ’igg{k > 0: M, is LP(RY) —» LP'(RY) bounded for any a;} (2)

It turns out that the number k,, (Z) depends on geometric properties of the hypersurface X. The number
k,,(Z) is called to be a critical exponent.

In the case X = SY"1, which is related to the classical wave equation, the LP(RY) — LP'(R")
boundedness of M,, is obtained by Strichartz ([6] and [7]). It should be noted that the sphere has a positive,
constant Gaussian curvature, which is essential in the estimates for the convolution operator.

This result has been extended to the case when X has non-vanishing Gaussian curvature by Brenner
[3], and the case when X is convex by Sugimoto [8]. Note that the estimates, in the paper [8], are sharp for
partial class of convex hypersurfaces.

In this article, we shall consider the case when = c R3 is not necessarily convex and at least one of the
principal curvatures does not vanish at any point. Moreover, we obtain the sharp value of the number k,, for
arbitrary analytic hypersurface having A, type singularity improving results of the paper [10].

It is noteworthy that, in the case v = 2, by M. Sugimoto have been obtained the sharp bound for k,
(see [9]). In this case the sharp bound for k,, can be defined by the index y(Z), which is the maximal order of
contact of the curve X to its tangent line.

Similarly, one can define the index y, (X) for the case v > 3 by the following:

yo(Z) = supigfy(Z; x, H).
P

For a point x € X and for a plane H (of dimension 2) which contains the normal line of £ at x, we have
defined the index y(Z; x, H) to be the order of contact of the curve £ n H to the line T N H at x, where T
denotes the tangent hyperplane of X at x.

Then Sugimoto obtained the upper bound for k,,:

@ = (2n-55) (-3)

<|2n- ——=).

P Yo(2)/ \p 2

Actually, the upper bound for k,(Z) is closely related to estimates for the Fourier transform of

measures supported on the hypersurfaces X. It should be noted that except the case v = 2 in general the
quantity y,(2) does not define the sharp uniform (with respect to the direction of the frequency vector)
bound for the Fourier transform of measures supported on the hypersurface X. On the other hand, in general
even the sharp uniform bound for the Fourier transform of surface-carried measures does not give the sharp
bound for the number k,(Z) (compare with [4]). Actually, this phenomenon can be observed in the case
when X is related to A, type singularities.

We obtain an upper and lower bounds for the number k,(Z) extending the results proved by M.
Sugimoto [10]. It is noteworthy that the upper bound agree with the lower bound. Thus, we obtain the sharp
value of the number k,(Z) for arbitrary analytic surfaces having A, type singularity improving the result
proved by Sugimoto [10] (compare with Theorem 2 page 306).

The paper organized as follows, in the next section 2 we give preliminary results on localization of the
problem. Then we formulate relation oscillatory integrals in the next section 3. We formulate our main
results in the section 4. Also, we give the upper bound for the critical exponent. In the concluding section 5
we obtain a lower bound for the critical exponent finishing a proof of the main Theorem.

Conventions: Throughout this article, we shall use the variable constant notation, i.e., many constants
appearing in the course of our arguments, often denoted by ¢, C, €, &; will typically have different values at
different lines. Moreover, we shall use symbols such as ~, <; or « in order to avoid writing down constants,
as explained in [4] ( Chapter 1). By y, we shall denote a non-negative smooth, spherical symmetric cut-off
function on R with typically small compact support which is identically 1 on a small neighborhood of the
origin, and also y; (x): = xo(x) — xo(2x).

Localization. Since X is a compact hypersurface, then following M. Sugimoto it is enough to consider
the local version of the problem. More precisely, we may assume that the amplitude function a;($) is
concentrated in a sufficiently small conic neighborhood T of a fixed point v € §? (where S? is the unit
sphere centered at the origin of the space R3) and ¢ (&) € € (T). Fixing such a point v € R3, let us define
the following local exponent k, (v) associated to this point:

ky(v): = Iir;(f){k: ar, My: LP(R3) » LP'(R3) is bounded, whenever supp(a;) < TI'}. (3)
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Further, we use the standard notation assuming F being a sufficiently smooth function:
M F (x)
axit ... oxhY

where u = (yq, ..., #y) € ZY is a multi-index, with Z,: = {0} U N, and |u|: = puy + -+ 1.

Also, for the sake of being definite we will assume that v = (0,0,1) and ¢(0,0,1) = 1. Then after
possible a linear transform in the space ]Rig, which preserves the point v, we may assume d,¢(0,0,1) = 0 as
well as d,9(0,0,1) = 0. Thus, in a neighborhood of the point v the hypersurface X is given as the graph of a
smooth function:

INT={eNp@) =1} ={(,8 1+ ¢(1,§)) ER®(§,8,) EUY,

where U c R? is a sufficiently small neighborhood of the origin and, ¢ € C®(U) is a smooth function
satisfying the conditions: ¢(0,0) = 0,V¢(0,0) = 0 (compare with [10]).

Singularity of the function ¢ is called to be an A, type singularity at the point (0,0) if there exists a
diffeomorphic map x = G(y) defined in a neighborhood of the origin such that ¢(0,0) = (0,0) and the
relation

OHF(x):= 0" . 0MF (x): =

P(GO)) = +yi

holds true (see [2]).

Further, we assume that ¢ has A, type singularity at the origin.

Surely, similarly one can define Z in a neighborhood of the point v = (0, ...,0,1) € R" as the graph of
a smooth function ¢ defined in a sufficiently small neighborhood U of the origin of RV~1,

Preliminaries (related oscillatory integrals). Note that boundedness of the convolution operators is
related to behaviour of the following convolution kernel:

Ky (x): = F1(e®a,. () (x),
where we define the Fourier operator and its inverse by the followings [11]:

Fw)(é):= ! f e~ ¥xy(x)dx,
(V2m)Y Jrv
and
-1 - 1 iéx
F7r(w)(€): = Iy vae u(x)dx

respectively for Schwartz functions u, where &x is the usual inner product of the vectors & and x. Then
the Fourier transform and its inverse are defined by standard arguments for distributions.

Proposition 3.1. Let ¢ € C*(RV\{0}) be a positive, homogeneous function of order one and k > 0
be a fixed positive number. Then there exists a positive numbers € > 0, M > 0 such that the following
relation

Xgxizeyogx >my (DK (1) € LMO(RY)

holds, where we used the standard notation: L'*°(R): =N, LP(R") and x, is the indicator function
of the set A.

Proof. A proof of the Proposition 3.1 is straightforward. Indeed, we write

Ky (x) = K¢ (x) + K (),
where
KEC)i= [ e @O Da )

RV
and

KE@i= [ @O0y - x(©)ds)
]RV

where y, is a smooth cutoff function such that y,(¢) = 1 in a neighborhood of the origin of R".

Note that K,? (x) is a smooth function of x. Let y; € C;°(RY) be a smooth function supported near the

point 1 satisfying the conditions y; (x) = 0 in a neighborhood of the origin and also:

z 1 (2IE) =1 for any x # 0.
jez
So, we can write

Ko = | O Oa@n@n @K = ) K,
= =

where
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Kij(x): = fvei(“’@”f)ak(s‘))(o(s‘)xl(ZjIfl)df-
By using scaling arguments we obtﬂgin:
Kij (x) = 2'”[ o2 @O g, (27T8) 3o (27 E) a (1E])dE.
If |x27/] < 1 then we use the tr?{\:ial estimate |K;;(x)| S 27/, Otherwise, e.g. if |27/x| >> 1 then
we can use integration by parts arguments and obtain: .
—vj

K. SNTT————
| k](x)l N L+ [x2- IV
where N is any fixed number. We can choose N > v and have that

_Jv
I Ky () Npp vy Sp 27"
Thus, the series ; ; K,?j converge in LP for any p with 1 < p < oo, hence K} € L**O(R").
Now, we will estimate K,.°. If |x| > 1 then we can use integration by parts arguments and obtain:

1
|Kg* (0| sn Lk
From now, on we assume that |x| <« 1. Then, we can write

ke (")—Z J| 1@ 0a, @ - (@@ ez = 21@,@

Jj=
By using the scallng arguments we obtain:

Kij () = 277 f e @D ay (£, 27)(1 — o (TN X ()8,
. . . RV
where ay(§,27):= 2/%q, (276) € Co’ (D)®C™(R) is a classical symbol of order zero.
Note that if j > 1 then we have y,(2/&) = 0 because |¢| ~ 1. Thus for j > 1 we get
Kijn = 270 | o006, 20y 18D,
]RV

Since the phase function ¢ (&) + x¢ has no critical point on the annulus D provided x is sufficiently

small. Therefore we can use integration by parts arguments and get
K5 (Ol sy 27V,

where N is as large as we wish.

Consequently, there exist positive numbers & > 0,M >0 such that the following inclusion
X{|x|$£}U{|x|>M}()KI?O() € LP(RV) holds true for any p = 1.

Thus, we came to the following conclusion:

Corollary 3.2. The main contribution to K, gives points x which belongs to a sufficiently small
neighborhood of the set =V (supp(a,)\{0}).

Proof. Indeed, if x° € —Vo(supp(a,)\{0}) is a point, then there exist a positive number § > 0 and a
neighborhood V (x°) of the point x° such that the inequality

Vo) —x| =46

holds for any x € V(x°) and ¢ € supp(a;)\{0}. Thus, we can repeat all arguments of the proof of the
Proposition 3.1 and came to a proof of the Corollary 3.2.

In the paper [10] have been shown relation between the boundedness of the convolution operator M,
and behaviour of the following oscillatory integral:

I(4,2) = f e Zx+¢() g(x)dx, (A > 0,z € RV™1),
]R‘V—l

where g € C;°(U) and U is a sufficiently small neighborhood of the origin.

More precisely there are proved the following statements [10]:

Proposition 3.3. Let g > 2 and a > 0. Suppose for all g € C;°(U) and 4 > 1,

I 1(A,") ||Lq(Rv 1< CgAT, (4)

where C, is independent of A. Then Kj():=F'[e l‘/’(f)ak(f)]( ) € L1(RY) and M,:LP(R") —

LP'(R") bounded for p = 2;—:, ifk>v—a— i.
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The main results. The main Theorem. Suppose that ¢p(x) has A, type singularly at the origin with
3¢ (0,0) = 0,0,0,¢(0,0) = 0,3%2¢(0,0) = 0 and the equation =22 ¢(x1 *2) — ( has the solution x; =
X1

x3'w(x,) with a real analytic function w satisfying the conditions w(O) # 0and m > 3. Then M, is
LP(R3) - LP'(R3) bounded if
k > ky,(v):=max{6(1/p—1/2) —1/2,(5 - 1/m)(1/p — 1/2)}.
Moreover if k < k,(v) then there exists an amplitude function a; such that the M, is not LP (R3) -
LP'(R®) bounded.
Proof. First, we prove the upper bound for the number k, (v). Note that ¢:(0,0) = 0 and V¢(0,0) = 0.

Also, by assumptions of the Theorem 2 we may suppose that o ¢(0 9 %0 and o ¢(° 9 =0 and also
2
2
aaf?xo) = 0. Hence by implicit function theorem the equation
1 2
0 (x1,x2) _
dxq

has a smooth solution x; = W(x,) satisfying the conditions ¥(0) = ¥'(0) = ¥"(0) =
Ym-1) = 0 and Y™ (0) # 0. Thus, there exists an analytic function w such that w(0) # 0 and ¥(x,) =
xJ'w(x,). Therefore by the division theorem ¢(xq,x;,) can be written in the form: ¢(xqy,x;) =
b(xy,x3)(x; — ¥(x3))? and also by the assumptions of the main Theorem we have W(x,) = xJ*w(x,).
Now, we consider the oscillatory integral given by the following

1(4;2) =f eA®(x2) g(x)dx,
R2

where
®(x,z) = b(xq, %) (1 — xT'w(x2))? + 211 + Z3%5.

If |z| > € then the phase function has no critical points provided g is supported in a sufficiently small
neighborhood of the origin. Hence as before we consider behavior of the oscillatory integral when z € U,
where U is a sufficiently small neighborhood of the origin. We prove the following inequality which was
proved in the paper [10] in a particular case:

” I(A,) ”Lm+1(U)S Cg'gA_(1/2+2/(m+1))+g (5)
for any € > 0. From the estimate (5) it follows a proof of the following upper bound:
k, < max{6(1/p—1/2) —1/2,(5 —1/m)(1/p — 1/2)}.
The rest of the section is devoted to prove of the inequality (5).
First, we use change variables x; — xJ*w(x;) = y; x, = y, in the integral 1(4, z) and obtain:

I(A,2) = J ei/l(b(yl+y§”w(yz).yz)yf+21y1+21y£"w(yz)+22yz)g(y1 + Vw0 (y,), y2)dy.
Consider the following interior integral:

Iin(A,21,y,): = f eAP101220) gy, + YR w(y2), ¥2)dys,

where &, (y1,¥2,21): = b(y; + yw(v,), ¥2)yi + 21y, is the new phase function. Now, the variables
v,,Z; can be considered as parameters. The phase function ®;(y;,v,,2;) has a unique non-degenerate
critical point with respect to y;. It is a real analytic function of the parameters. The critical point can be

written in the form: y{ = z,B(y,, z,), Where B is a real analytic function with B(0,0) = Thus by

2b(0 0)
using stationary phase method in the variable y; we get:
= Ce‘“%Bl(VZ'Zl)g(yf(yz,lzl) HeOD) | of 1)
A2 |22
where C is a constant. Moreover, asymptotic relation in the remainder term holds uniformly with
respect to parameters. Therefore it is enough to investigate contribution of the principal part of the interior
integral. So, we consider the following integral:

C ; m
L(A4,2) = — elA(z1(y; w(y2)+2131(YZJZI))"'ZZYZ)g(yf + yﬁnw(J/z),YZ)d}Iz-

12
Note that
C
14, z) —11(4,2)| < —.
|42
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By using the classical van der Corpute Lemma [11] we have the estimate:
ILA2)| < 1= (6)

A2%m]zy [m
Suppose |z;| < M|z,| (where M is a fixed positive real number) then the phase function of the integral
1;(4,z) has no critical point provided that the amplitude function is concentrated in a sufficiently small

neighborhood of the origin. Then we can use integration by parts arguments and obtain:

C
L (4, 2)| < T (7
|2]122 2
Interpolating the inequalities (6) and (7) with the interpolation parameter
9: = m2-3m 2em ®)

) o 0om2-m—2  m-2
where ¢ is a sufficiently small positive real number, we get:
C

L4 2)| € —— P
|2 mAT 8| 2,207 |2y |m

It is easy to show that
X{|zi|SM|z2|}(ZZ e " (D),
>(1-6) -
| 22|27 z1|m
where U is any bounded neighborhood of the origin.
Now, we assume |z,| < 6|z,|, where § = % is a fixed positive real number. Then from the results of
the paper [1] there exists a function Q(z,, n) satisfying the conditions:
1) for any number 1 <p < % and for any z; the inequality
(Q(z1,m)Pdn < C,
[n]<é

holds, with constant C not depending on z;
2) the following estimate holds true:

Q (zl, i—i)

(1 = Xzy1smizp @D (A, 2) | < ———
AR

Finally, interpolating the last inequality with (6) by using interpolating parameter (8) we get:

(2(2)

(1 = Xgzy)2mizp (DI (A, 2)| < —5— 3
[A|2Tm+T |z |m¥T ¢

It is easy to show that the following inclusion holds:

Q (zl, i—i)

(1 = X1z, 1=m12,13(2)) 3

|z |m+1 ¢

>1—9
€ L™ ().

The last inclusion completes a proof of the upper bound for k,(v). Indeed, for p, = % we have

k>2—— 4 ¢forand e > 0. Hence kp,(v) < 2__2 The required estimate for other values of p can be
2 +1 0 2 m+1

obtained by using interpolation arguments (more detailed arguments one can seen from [10]).

Actually, we prove the following more better result.
Corollary 1. Assume the function ¢ satisfies conditions of the main Theorem. Then for any positive

real number ¢ there exists a function Q € LT2¥1(R?) such that the following inequality
0(z)
114, 2)| < -

|A|2Fm+i e

holds.
Lower bounds. Assume k < 6(1—1’ - %) - % We show that M, is not LP (R3) ~ LP(R3) bounded. We a

little modified the M. Sugimoto sequence and consider the sequence
_3j .
w =2 PF w7 D),

where
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;
9 (o) @

o) = £ 22 _( & )mw( 3 )
) \e(&) @($) ¢2(E)G( $1 S )
®(&) (&)
where f, g, ¥ € Cy;°(R) are non-negative smooth functions satisfying the conditions: f(0) = g(0) =
1,9 (1) = 1, and supports of f, g lie in a sufficiently small neighborhood of the origin of R and support of
belongs to a sufficiently small neighborhood of one (cf. [10]). Also, following, M. Sugimoto we introduce
the function: G(y) = 1+ ¢ (v, ¥2) — YV (»).
Obviously v € C°(R3) and || v lpr(r3y# 0. Thus for large j we have

I Uj ”Lp(]R3)~ 1.
Now, we consider estimate for I| Myw; Il pg3)-
We have:

. 3 , .
M = F~e®ay (§)Fu; = 2 PF (e O a, (Hv(27/§) (x).
We perform change of varlables given by the scaling 2/ — & and obtain:

“ <<pi1€)>)

] (&
— g2/ (p($)=$x)
G Jo.c / <<0(E) (qo(f))

) 9 (o4) we© “
$1_ & '
o6 (55 25)
Finally, we use change of variables & = A(y4,¥2, 1+ ¢(y1,2)). Then we have:
3j, Jm+1)
2v " P
V(@2m)?
X f(yz —yi"w(y1))g (1Y (D)dAdy,dy,.
Now, we perform the change of variables

Y1 =21,y = yr o) + 2.

My (x) = f 12135~ (%1 472X, x50 (V1.92)) ¢
R3

Thus
My () = 27 f ¢330 £ (2,) g (20 W(A)dAdzydzs,

where
®3(2,%,)):= 1= x3 — (X121 + %27" w0 (21) + 22X, + X325b(24, (27" 0(21) + 2,))).
We use stationary phase method assuming, |1 — x3| < 277, |x;| < 277/, |x,| « 27/ and obtain:

Moy () = 252 ( f 2204 £ (76 (2),%,)) g (20) () dAdz, +0(2-f),
]RZ

where
Qpi=Dy(2,%,)):=1—x3 — %12 + %,2"w(21) + x5B (21, %3).
From here we obtain the lower bound:

Il My u; Il pr r3y= 27T,
where ¢ > 0 is a constant which does not depend on j. Thus if k < 6 (; - %) — Lthen the operator My,

is not L? (R3) ~ LP'(R3) bounded.
Now, we show that if
k<(G-1/m)(1/p—1/2)}

then the corresponding operator M,, is not LP (R3) ~ LP’'(R3) bounded. Indeed, we can write ¢ in the

form
$(x1,%2) = b(0,0)(x; — x7'w(0))* + R(xq,X2),

Take Ky =1/2,k, =1/(2m). Then ¢ (x1,%3):= b(0,0)(x; — xJ'w(0))? is a weighted
homogeneous polynomial function of degree one with weights k:= (k;,x,) and R is a real analytic
functions consisting of sum of terms with degree strictly bigger that one with the weight .

We show that if k < (6 —2(k; +k3))(1/p—1/2) = (5 —1/m)(1/p — 1/2) then the operator M,
is not LP (R3) » LP'(R?) bounded.
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Actually, we show that the modified sequence of functions suggested by M. Sugimoto in the paper
[10] can be used to prove sharpness of the upper for k, (v). Let us take a smooth function in R3 such that
a, (&) = |&|7* for large . Define non-negative functions £(0) = g(0) = 1 concentrated in a sufficiently
small neighborhood of the origin, and a smooth function with ¥ (1) = 1 and with support in a sufficiently
small neighborhood of the point 1.

We set

uj(x) = Zj(3_|K|)(_%)F_1(Uj(Z_jf))(x)'
where

£ (29 5s) g (2% o ) wo sl

@)
1 & )

zG(
ERANATIORZ6
The sequence {F~'(v;(27/%1§;,277%2¢,,&3))}j2, is bounded in LP(R?). Indeed, the classical

Hausdorff-Young inequality yields:
I F_l(vj(Z_j"1 .'2—sz 5 ) sl vj(Z_j’Cl .’Z—J'Kz %) I o

€ C§(R3).

v;(§) =

On the other hand
—j —i ’ fl 52
(270K 20Kz L Y P = ! _ _ p! - ,
¢ ) iy J 7 (<p(2-f'<1§1,z-ﬂfzfz.fg)_)g e anm)
PP (9277181, 2777285, §5)) (277181)% + (2771285)% + §5)/2 ¢

@(27I%1§y, 277%28,,83) 2P/ GP! (§1 /(27T 18y, 277285, §3), &5 /(27T 8y, 27T%2§5, §3) 4
Since 1y is supported in a sufficiently small neighborhood of one, then we have:
%S @277, 277%2E, &) < 2. On the other hand supports of the functions f and g are concentrated in a
sufficiently small neighborhood of the origin. Hence, |&;] <1 and |&,] <1 and also |&5| ~ 1, because
¢(0,0,1) = 1. This yields:
I vj(z—jiﬁ L2702 oS 1.
Consequently,
I F2 w27 ) s 2/ =1eby
j LP = .
Hence the sequence {u;}72; is bounded in the space LP (R3).
On the other hand we have the relation:

- & " & .
Mkuj(x) _ 2]’(3—IKI)(—%)—kj+2jF_1 eigo(f)f (21 <P(t‘)>g (21 fﬁoé)f) Y2 o))
06 (5 5)

We perform the change of variables given by the scaling 27/& = & and obtain:

J(G=lel) () ~+3) 27 1 )g (21"‘2 %) (@)

j eri(go(f)—xf)f< p&) e
+(2m)3 3 _S2
e O (5 55)

Then following M. Sugimoto we use change of variables & = (1y, A(1 + ¢(¥))) and get:
J(G=ID (5 ~k+3)

J@n)?

Finally, we use change of variables 2/%1y, + y,,2/%2y,  y, and obtain:
. 1 . . . . .
J((3—|K|)(—ﬁ)—k—|’<|+3)f 2l IM((x3—1) =27/ 1y 01 =272y, 005 — X3 p(27 /1y, 272 y5))
]R3

; . X f(r1)g(2)y(A)dAdy.
If |23 — 1] < 277, || « 27737 |x, | « 27/(7%2) | then the phase is the non-oscillating function,

because ¢ (27/*1y,,27/%2y,) = 0(27/) provided the supports of £, g are small enough.
Consequently, we have the following lower bound:
| My, I ez 220D G—) =60
j Lp'=~ .

dé.

My ui(x) =

Mkuj (x) = f eiZjl(l—(x1y1+xzyz+x3(1+¢(y))))f(2jk1y1)g(zjkzyz)lp(j)dldy_

My ui(x) =2
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Therefore, if k < 2(3 — (k; + k3)) (zl7 - %) = (5 - %) G’ - %) then Il Myu; llpr— oo(as j — +oo).
Thus, the operator M: LP(R*) —» LP’(R?) is unbounded. Thus, we conclude that if k < k,(v) then the
operator M, is not bounded. This finishes a proof of the main Theorem.

Remark. Actually, the result of the main Theorem holds true for the case m = o. Thus, in terms of
the Sugimoto for all surfaces of classes Il and Ill, except the case m = 2 we have the sharp value of the
number k, (v).
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