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Abstract. In this paper, we consider two dimensional inverse problem for a fractional-wave equation with variable coefficient.
The inverse problem is reduced to the equivalent integral equation. For solving this equation, the contracted mapping principle is
applied. The local existence and global uniqueness results are proven. Also, the stability estimate is obtained.

INTRODUCTION

Denoting as usual x, t the space and time variables and u = u(x, t) the response variable, this equation read:(CDα
t u

)
(x, t)−�xu(x, t)+q(x1, t)u(x, t) = f (x, t), x ∈ R

2, 0 < t ≤ T, (1)

where 1 < α < 2, CDα
t is the Caputo fractional derivative, that is

(CDα
t u

)
(x, t) :=

1

Γ(2−α)

∫ t

0
(t − τ)1−α uττ(x,τ)dτ, (2)

and �x := ∂ 2

∂x2
1

+ ∂ 2

∂x2
2

, f (x, t) is the known source term.

For the Cauchy problem corresponding to the initial conditions

u(x,0) = u1(x), ut(x,0) = u2(x), x ∈ R
2, (3)

where u j(x), j = 1,2 are given functions.

We assume that the functions f ,u1,u2 are bounded; f is a continuous in (x, t) ∈ R
2 × [0,T ], and locally Hölder

continuous in x, uniformly respect to t, u1 and its first derivatives are bounded and Hölder continuous with the exponent
1
α < γ ≤ 1; u2 is Hölder continuous. Under this assumption, the problem (1), (3) possesses a classical solution u(x, t)
as [1]. This means that u(x, t) belongs to C2 in x for each t > 0; for each x ∈ R

2 u(x, t) belongs to C1 in (x, t) on
R

2 × [0,T ], and for any x ∈ R
2 the Caputo derivative

(
CDα

t u
)
(x, t) is continuously in t for t > 0; u(x, t) satisfies the

equation (1) and initial conditions (3).
For the given functions q(x1, t), f (x, t), u1(x), u2(x) and a number α ∈ (1,2), the problem of determining the solu-

tion to Cauchy problem (1) and (3) we call as the direct problem.
Many modern science and engineering technology areas can be described very successfully by models using frac-

tional differential equations (see [2, 3]). When q(x1, t)≡ 0, this equation was studied by many authors (mostly [1, 4,
5] and the references therein). The equation (1) describes the propagation of stress pulses in a viscoelastic medium
[1]. In practical situations, the function q represents some physical property, which is very hard to be measured di-
rectly in advance. So we consider an inverse problem of determining source term function q from some additional
measurement on u.

For classical integro-differential and time-fractional wave equations, sometimes the initial value, part of boundary
value, wave coefficient, kernel or source term are not known. If we recover some of them by additional measured
data, we can deduce many inverse problems for integro-differential and time-fractional wave equations. There have
been some results for integro-differential and time-fractional wave equations, for instance the reconstruction of the
kernel [6, 7, 8, 9, 10, 11, 12, 13, 14], the reconstruction of the time-dependent source term [15, 16, 17, 18, 19, 20,
21], the Cauchy problem [21, 22, 23, 24, 25], the reconstruction of order of fractional derivative and source term [26,
27]. However, as we know, the inverse problems of fractional wave equations have only a few papers such as inverse
problems on an unbounded domain [28, 29].

Inverse problem consists of determining the time and horizontal variable dependent unknown coefficient of the
source term q(x1, t) and the wave distribution u(x, t), from the initial condition (3) and

u(x1,0, t) = g(x1, t), x1 ∈ R, t ∈ [0,T ], (4)

International Scientific and Practical Conference on “Modern Problems of Applied Mathematics and Information Technology (MPAMIT2022)”
AIP Conf. Proc. 3004, 040012-1–040012-12; https://doi.org/10.1063/5.0199843

Published by AIP Publishing. 978-0-7354-4876-6/$30.00

040012-1

 13 M
arch 2024 06:42:29



where g(x1, t) is given.
The remainder of this paper is composed of three sections. Section 2 is devoted to the study of the properties of

the solution of the direct problem (1), (3). In section 3, the existence and uniqueness of the solution of the inverse
problem (1)-(4) is established by using the Banach fixed point theorem and the continuous dependence of the solution
of the inverse problem upon the data of { f ,u1,u2,g} is shown.

By DT := {(x, t) : x ∈ R
2, 0 ≤ t ≤ T} we denote a strip with the thickness T , where T > 0 is any fixed number.

Let Cα,m(DT ) be the class of the m times continuously differentiable, bounded with all derivatives of order up to m
with respect to x ∈ R

2 and its fractional derivative CDα
t is continuous in t on [0,T ].

Everywhere in this paper we will denote by Hl(R2) locally Hölder continuous functions with exponent l ∈ (0,1).
The norms in Hl(R2) are determined in [30].

By C(Hl(R2), [0,T ]) we denote the class of continuous with respect to t variable on the segment [0,T ] with values
in Hl(R2) functions. For a fixed t, the norm of the function φ(x, t) in Hl(R2) will be denoted by |φ |l(t). The norm of
a function φ(x, t) in C(Hl(R2), [0,T ]) is defined by the equality

‖φ‖l := max
t∈[0,T ]

∣∣|φ |l(t)∣∣.

INVESTIGATION OF DIRECT PROBLEM (1)-(3)

The functions q, f and ui, (i = 1,2) satisfy the following assumptions:
(A1) q(x1, t) is bounded, uniformly Hölder continuous in x1, uniformly with respect to t;
(A2) f (x, t) is a bounded function, jointly continuous in (x, t) ∈ DT , and locally Hölder continuous in x, uniformly

with respect to t;
(A3) u1(x) is bounded, continuously differentiable, and its first derivatives are bounded and Hölder continuous with

the exponent 1
α < γ ≤ 1;

(A4) u2(x) is Hölder continuous.
Let us transpose the last term on the left in (1), the fractional differential equation becomes

(CDα
t u

)
(x, t)−�u(x, t) = F(x, t), x ∈ R

2, 0 < t ≤ T, (5)

where F(x, t) =−q(x1, t)u(x, t)+ f (x, t).
To solve problem (1) and (3), we apply the Laplace transform with respect to t:

(Ltu)(x,s) =
∫ ∞

0
e−tsu(x, t)dt, x ∈ R

2, s ∈ C, (6)

and the Fourier transforms with respect to x ∈ R
2:

(Fxu)(ξ , t) =
∫
R2

e−i(x,ξ )u(x, t)dx, ξ ∈ R
2, t > 0, (7)

here x = (x1,x2) ∈ R
2, ξ = (ξ1,ξ2) ∈ R

2, (x,ξ ) = x1 ·ξ1 + x2 ·ξ2, dx = dx1dx2.
Applying the Fourier transform (7) to (5) and using a formula of the form

(Fx�xu)(ξ , t) =−|ξ |2(Fxu)(ξ , t),

we arrive at the following relation:

(CDα
t Fxu)(ξ , t)+ |ξ |2(Fxu)(ξ , t) = (FxF)(ξ , t). (8)

Applying the Laplace transform (6) to (8), and taking into account the formula of the form

(Lt
CDα

t Fx)(ξ ,s) = sα(LtFx)(ξ ,s)− sα−1(Fxu)(ξ ,0)− sα−2(Fxut)(ξ ,0)

with ξ ∈ R
2 and initial conditions in (3), we have

(LtFxu)(ξ ,s) =
sα−1

sα + |ξ |2 (Fxu1)(ξ )+
sα−2

sα + |ξ |2 (Fxu2)(ξ )+
1

sα + |ξ |2 (LtFxF)(ξ ,s)
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= Φ1(ξ ,s)+Φ2(ξ ,s)+Φ3(ξ ,s), ξ ∈ R
2, s ∈ C. (9)

Now we obtain the explicit solution u(x, t) by using the inverse Laplace transform with respect to s:

(L −1
s u)(x, t) =

1

2πi

∫ γ+i∞

γ−i∞
etsu(x,s)ds, x ∈ R

2, t > 0

and the inverse Fourier transform with respect to ξ :

(F−1
ξ u)(x, t) =

1

4π2

∫
R2

ei(x,ξ )u(ξ , t)dξ , ξ ∈ R
2, t > 0,

where dξ = dξ1dξ2 and γ =R(s)> inf |s|. First, these operations we carry out for Φ1(ξ ,s). It may be performed by
using the equality

sα−1

sα + |ξ |2 = s−1 · 1

1+ |ξ |2
sα

(10)

and expanding the second factor on the right side of this expression into an infinitely decreasing geometric series:

1

1+ |ξ |2
sα

=
∞

∑
n=0

(
− |ξ |2

sα

)n

for |ξ |< sα/2. On bases of (10) from last equality we have

sα−1

sα + |ξ |2 =
∞

∑
n=0

(
−|ξ |2

)n
s−nα−1. (11)

Then, according to the following relation

(L −1
s s−ν)(t) =

tν−1

Γ(ν)

for R(ν)> 0 and R(s)> 0, we have

(L −1
s Φ1)(ξ , t) = Eα(−|ξ |2tα)(Fxu1)(ξ ).

Similarly, we can calculate the inverse Laplace transform for Φ j, j = 2,3 like that and generally after applying this
transform to (10), we get

(Fxu)(ξ , t) = Eα(−|ξ |2tα)(Fxu1)(ξ )+ tEα,2(−|ξ |2tα)(Fxu2)(ξ )

+tα−1Eα,α(−|ξ |2tα)∗t (FxF)(ξ , t), ξ ∈ R
2, t > 0, (12)

where ∗t and Eα,β (z) :=
∞
∑

n=0

zn

Γ(αn+β ) , α,β ,z ∈ C,R(α) > 0,R(β ) > 0 are the Laplace convolution operator and

Mittag-Leffler functions respectively (see [31], p. 19 and p. 42, [32]). Before applying the inverse Fourier transform
to (12), we bring a formula which is relation between Mittag-Leffler and Fox functions, i.e.,

Eα,β (z) = H1,1
1,2

[
− z

∣∣∣(0,1)
(0,1),(1−β ,α)

]
,

(more information about Fox’s H−function see [33].) Besides the following formula useful for the Fourier transform
of a radial function, that is, if ψ(x) ∈ L1(Rn)∩C(Rn) is radial with ψ(x) = ϕ(|x|), then its Fourier transform is also
radial and is given by (see [32])

1

(2π)n

∫
Rn

ei(x,ξ )ϕ(|ξ |)dξ =
1

(2π)n/2
|x|(2−n)/2

∫ ∞

0
rn/2ϕ(r)Jn/2−1(|x|r)dr. (13)
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In particular,
∫
R2

ei(x,ξ )Eα,β (−a|ξ |2)dξ = 2π
∫ ∞

0
rEα,β (−ar2)J0(|x|r)dr. (14)

The right hand of (13) is the Hankel transform of ϕ(r) and we will use it later. Firstly, we do change the last equality
by Fox function and so (14) becomes

∫
R2

ei(x,ξ )Eα,β (−a|ξ |2)dξ = 2π
∫ ∞

0
rJ0(|x|r)H1,1

1,2

[
ar2

∣∣∣(0,1)
(0,1),(1−β ,α)

]
dr. (15)

Furthermore, using the Hankel transform of the H−function [33], i.e.,

∫ ∞

0
xρ−1Jν(ax)Hm,n

p,q

[
bxσ

∣∣∣(ap,Ap)

(bq,Bq)

]
dx =

2ρ−1

aρ Hm,n+1
p+2,q

[
b
(2

a

)σ ∣∣∣(1−
ρ+ν

2 , σ
2 ),(ap,Ap),(1− ρ−ν

2 , σ
2 )

(bq,Bq)

]
.

If, we apply the last formula to (15), then we get the inverse Fourier transform for two parameter Mittag-Leffler
function:

∫
R2

ei(x,ξ )Eα,β (−a|ξ |2)dξ =
4π
|x|2 H2,0

1,2

[ |x|2
4a

∣∣∣(β ,α)

(1,1),(1,1)

]
, (16)

here we used the reduction formula of the H−function (see [31], p. 11, formula (1.57)). We can represent the last
function by definite integral and Wright function (see, [34]). Firstly, we bring the following useful formula [5]:

fβ (z; μ,δ ) =
1

2ε
√

π

( z
2

)−γ/ε
H2,0

1,2

[( z
2

)1/ε ∣∣∣
(

δ+ γβ
ε , β

ε

)

( γ
2ε ,

1
2ε ),

(
1−μ

2 + γ
2ε ,

1
2ε

)
]
, (17)

where

fβ (z; μ,δ ) =

⎧⎨
⎩

2
Γ( μ

2 )

∞∫
1

W (−β ,δ ;−zy)(y2 −1)
μ
2 −1dy, μ > 0,

W (−β ,δ ;−z), μ = 0,

W (−β ,δ ;z) =
∞

∑
n=0

zn

n!Γ(δ −βn)
, β ∈ (0,1).

Then from (16) for a = tα follows

∫
R2

ei(x,ξ )Eα,β (−a|ξ |2)dξ = π3/2 fα/2

( |x|
tα/2

;1,β −α
)
.

If taking into account β ∈ {1,2,α} and using the definition of the Fourier convolution operator, then after applying
the inverse Fourier transform to (12), we have

u(x, t) = u0(x, t)−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)q(ξ1,τ)u(ξ ,τ)dξ , (18)

where dξ = dξ1dξ2,

u0(x, t) :=
∫
R2

Z1(x−ξ , t)u1(ξ )dξ +
∫
R2

Z2(x−ξ , t)u2(ξ )dξ

+
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ) f (ξ ,τ)dξ , (19)

and the Green kernels Z j, ( j = 1,2), Y have the following form

Z j(x, t) = π3/2 fα/2

( |x|
tα/2

;1, j−α
)
, Y (x, t) = π3/2 fα/2

( |x|
tα/2

;1,0
)
.
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Lemma 1. Suppose (A1)-(A4) be satisfied. Then there exists a unique solution of the integral equation (18) with
u(x, t) ∈Cα,2(DT ) where α ∈ (1,2).

Proof. Since the unknown function u appears in the integral, this is not a solution formula, but an integral equation
for u. It can be shown that the only continuous solution of the integral equation (18) is the solution of the problem (1),
(3). To solve the integral equation (18), we use the method of successive approximations and consider the sequence
of functions defined recursively by the formulas:

un+1(x, t) = u0(x, t)−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)q(ξ1,τ)un(ξ ,τ)dξ , n = 1,2, ..., (20)

where u0(x, t) is determined by the equality (19). We wish to show that the sequence un converges to the solution u.

Further we use the following estimates [1]. Let ρσ (x, t) = exp{−σ(t−α/2|x|) 2
2−α }, σ > 0. Then

|Z1(x, t)| ≤Ct−α
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (21)

|Z2(x, t)| ≤Ct−α+1
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (22)

|Y (x, t)| ≤Ct−1ρσ (x, t), (23)

|Dm
x Y (x, t)| ≤Ct−α−1

[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), |m|= 1, (24)

|∂tZ1(x, t)| ≤Ct−α−1
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (25)

|∂tZ2(x, t)| ≤Ct−α
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (26)

|∂tY (x, t)| ≤Ct−2ρσ (x, t), (27)

∣∣(CDα
t Z1

)
(x, t)

∣∣≤Ct−2α
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (28)

∣∣(CDα
t Z2

)
(x, t)

∣∣≤Ct−2α+1
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t), (29)

∣∣(CDα
t Y

)
(x, t)

∣∣≤Ct−α−1
[
1+ | ln(t−α/2|x|)|

]
ρσ (x, t). (30)

The estimates

|Dm
x Z1(x, t)| ≤Ct−α |x|−mρσ (x, t), (31)

|Dm
x Z2(x, t)| ≤Ct−α+1|x|−mρσ (x, t) (32)

with 1 ≤ m ≤ 3 and the estimate

|Dm
x Y (x, t)| ≤Ct−1|x|−mρσ (x, t) (33)

with 2 ≤ m ≤ 3, valid. In (21)-(33) the letter C denotes various positive constants. These estimates for Z j, j = 1,2, Y
are based on the following inequality (see, [5])

| fβ (z; μ,δ )| ≤C exp(−σz
1

1−β ) lnz,
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where C and σ are positive constants, and related only the parameters β , μ, δ . We also note that the following integral
formulas hold: ∫

R2
Z1(x, t)dx = 1,

∫
R2

Z2(x, t)dx = t, (34)

∫
R2

Y (x, t)dx =
tα−1

Γ(α)
. (35)

Note that u0(x, t) is the solution to the problem (1), (3) for q(x1, t) ≡ 0. For a comparison, note that for the wave
equation corresponding formally to α = 2, with the initial conditions (3), a counterpart of the kernel Z j, j = 1,2, Y
from (19) are a distribution supported on light cone {|x−ξ | ≤ t}.

Thus in the fractional order case, though the fundamental solution of the Cauchy problem is not concentrated on the
set {|x−ξ | ≤ tα/2}, it decays exponentially outside it, possessing a kind of weak hyperbolicity property. Of course,
the equation (1) "interpolates" between the heat and wave equations, and possesses some "parabolic" properties too,
as it is clear from (19).

Under the assumptions of Lemma 1 it is true inclusion u0(x, t) ∈ Cα,2(DT ). The last assertion we will show step-
by-step. Indeed, in accordance with the estimates (21)-(33), the first derivatives in t of function u0, given by formula
(19) is exists i.e., the following differentiation formula is valid:

∂
∂ t

u0(x, t) =
∫
R2

∂
∂ t

Z1(x−ξ , t)u0(ξ )dξ

+
∫
R2

∂
∂ t

Z2(x−ξ , t)u1(ξ )dξ +
∫ t

0
dτ

∫
R2

∂
∂ t

Y (x−ξ , t − τ) f (ξ ,τ)dξ , (36)

that is the last improper integral converges in DT . Indeed,

u0h(x, t) =
∫
R2

Z1(x−ξ , t −h)u1(ξ )dξ

+
∫
R2

Z2(x−ξ , t −h)u2(ξ )dξ +
∫ t−h

0
dτ

∫
R2

Y (x−ξ , t − τ) f (ξ ,τ)dξ .

Then

∂
∂ t

u0h(x, t) =
∫
R2

∂
∂ t

Z1(x−ξ , t −h)u1(ξ )dξ +
∫
R2

∂
∂ t

Z2(x−ξ , t −h)u2(ξ )dξ

+
∫
R2

Y (x−ξ ,h) f (ξ , t −h)dξ +
∫ t−h

0
dτ

∫
R2

∂
∂ t

Y (x−ξ , t − τ) f (ξ ,τ)dξ

= I1 + I2 + I3 + I4.

By (26) and first equality in (34),

|I1|=
∣∣∣
∫
R2

∂
∂ t

Z1(x−ξ , t −h)[u1(ξ )−u1(x)]dξ
∣∣∣≤C(t −h)−α−1

∫
R2

(
1+

∣∣∣ ln
|x−ξ |

(t −h)α/2

∣∣∣
)

×ρσ (x−ξ , t −h)|x−ξ |γ dξ ≤Cα(t −h)αγ−1 <+∞,

as h → 0, here we used the fact that
∫
R2

∂
∂ t

Z1(x−ξ , t −h)dξ = 0.

Using (26) and second equality in (34), we have

|I2|=
∣∣∣
∫
R2

∂
∂ t

Z2(x−ξ , t −h)[u2(ξ )−u2(x)]dξ
∣∣∣+ |u2(x)| ≤C(t −h)−α

∫
R2

(
1+

∣∣∣ ln
|x−ξ |

(t −h)α/2

∣∣∣
)
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×ρσ (x−ξ , t −h)|x−ξ |γ1dξ ≤Cα(t −h)αγ <+∞.

as h → 0. Similarly, by using (23), we find

|I3|=
∣∣∣
∫
R2

Y (x−ξ ,h) f (ξ , t −h)dξ
∣∣∣≤Cα hα−1 → 0, (37)

as h → 0.
Let

I40 =
∫
R2

∂
∂ t

Y (x−ξ , t − τ) f (ξ ,τ)dξ .

Using (23), then

|I40| ≤C(t −h)−1
∫
R2

ρσ (x−ξ , t −h)dξ ≤Cα(t −h)α−1. (38)

Since α > 1, that means the convergence of I4, as h → 0, which implies (36).
It follows from (37) and (38) that

lim
t→0

I3 = lim
t→0

∂
∂ t

I4 = 0. (39)

It is straightforward to check, using the estimates for Z j(x, t), j = 1,2 and Y (x, t), that the first derivative in x of
u0(x, t) can be obtained by differentiating under the sign of integral in (19). Other derivatives from u0(x, t) repeats the
reasoning in [4] (pp. 342-347).

Now, we continue of the proof of Lemma 1.
Set d1 := |u1|γ , d2 := |u2|γ1 , q0 := ‖q‖α and d3 := ‖ f‖γ2 , where 0 < γ1,γ2 ≤ 1. We wish to show that the sequence

un converges to the solution u. We consider the difference

ϑn ≡ un −un−1.

We subtract (20) with n replaced by n−1 from (20) to find that

ϑn+1(x, t) =−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)q(ξ1,τ)ϑn(ξ ,τ)dξ . (40)

From (19) we can easily obtain upper estimate for ϑ1, i.e.,

|ϑ1(x, t)| ≤ d0q0

Γ(1+α)
tα , for t ≤ T,

where d0 := d1 +d2T + d3
Γ(1+α)T α .

Then by (40) with n = 1

|ϑ2(x, t)| ≤ d0q2
0

Γ(1+2α)
t2α .

Again by (20), but with n = 2

|ϑ3(x, t)| ≤ d0q3
0

Γ(1+3α)
t3α .

Continuing in this fashion, we see that

|un(x, t)−un−1(x, t)|= |ϑn(x, t)| ≤ d0qn
0

Γ(1+nα)
tnα , for t ≤ T. (41)

Thus for any m > n and t ≤ T

|um(x, t)−un(x, t)|= |ϑm +ϑm−1 + · · ·+ϑn+1| ≤ |ϑm|+ |ϑm−1|+ . . . |ϑn+1|
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≤ d0

m−1

∑
k=n

qk
0

Γ(1+ kα)
tkα . (42)

The series
∞
∑

k=0

qk
0

Γ(1+kα) t
kα converges uniformly for t ≤ T to Eα(q0T α). Hence um −un → 0 uniformly in t. This is the

Cauchy criterion. Hence the sequence un(x, t) converges uniformly in x and t (for t ≤ T ) to a function. Letting n → ∞
in the recursion relation (20) gives the integral equation (18). The limiting function u(x, t) solves (18) and hence the
problem (1), (3).

The uniqueness of the solution follows the same considerations. For if ϑ is the difference of two solution of (18),
we have

ϑ(x, t) =−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)q(ξ1,τ)ϑ(ξ ,τ)dξ .

The derivation of (37) leads to the inequality

|ϑ(x, t)| ≤ d0qn
0

Γ(1+nα)
tnα sup

(x,t)∈DT

|ϑ(x, t)|

for all n. Letting n → ∞, we find that ϑ ≡ 0.
Letting m → ∞ in (38) leads to the inequality

|u(x, t)−un(x, t)| ≤ d0

∞

∑
k=n

qk
0

Γ(1+ kα)
tkα = d0

(
Eα(q0tα)−

n−1

∑
k=0

qk
0

Γ(1+ kα)
tkα

)
.

This is a bound for the error |u− un| in terms of the maximum d0 of the difference |u1 − u0| between the first and
second approximations. For fixed t the error bound approaches zero quite rapidly as n → ∞.

AUXILIARY PROBLEM AND INVESTIGATION OF INVERSE PROBLEM (1)-(4)

Let u(x, t) be a classical solution to Cauchy problem (1), (3) and f ,u0,u1,g be enough smooth functions. We carry
out the next converting of the inverse problem (1)-(4). Denote for this purpose the second derivative of u(x, t) with
respect to x2, by v(x, t) i.e. v(x, t) := ux2x2

(x, t). Differentiating (1) and (3) twice in x2, we get

(CDα
t v

)
(x, t)−�v(x, t)+q(x1, t)v(x, t) = ∂ 2

x2
f (x, t), x ∈ R

2, 0 < t ≤ T, (43)

v(x,0) = (∂ 2
x2

u1)(x), vt(x,0) = (∂ 2
x2

u2)(x), x ∈ R
2, (44)

To obtain an additional condition for the function v(x, t), we note that the second term of Laplacian in (1) is v(x, t).
Setting x2 = 0 in (1) and using equality (4), we obtain

v(x1,0, t) =
(CDα

t g
)
(x1, t)− (∂ 2

x1
g)(x1, t)

+q(x1, t)g(x1, t)− f (x1,0, t), x1 ∈ R, 0 < t ≤ T. (45)

When the matching conditions u1(x1,0) = g(x1,0) and u2(x1,0) = gt(x1,0) are fulfilled, it is easy to derive from
(43)-(45) the equations (1)-(4).

In (43), introducing the notation ∂ 2
x2

f (x, t)− q(x1, t)v(x, t) =: F(x1,x2, t) and applying the formula (18) to direct
problem (43), (44), we obtain the integral equation for determining v(x, t):

v(x, t) = v0(x, t)−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)q(ξ1,τ)v(ξ ,τ)dξ , (46)

where

v0(x, t) :=
∫
R2

Z1(x−ξ , t)(∂ 2
ξ2

u1)(ξ )dξ
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+
∫
R2

Z2(x−ξ , t)(∂ 2
ξ2

u2)(ξ )dξ +
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)(∂ 2
ξ2

f )(ξ ,τ)dξ . (47)

Set

d4 := |u1|γ+2, d5 := |u2|γ+2, d6 := ‖ f‖l+2.

The following lemma is valid.
Lemma 2. Let q(x1, t) ∈ C(Hα(R); [0,T ]), f (x, t) ∈ C(Hγ2+2(R2); [0,T ]), u1(x) ∈ Hγ+2(R2), u2(x) ∈ Hγ1+2(R2),

where γ, γi, i = 1,2 are defined in Lemma 1. Then, there exists a unique solution of the integral equation (8) with
v(x, t) ∈C2−α,2(DT ) where α ∈ (1,2) and

|v(x, t)| ≤ d7Eα(q0T α) =: d00 (48)

estimate holds, where d7 := d4 +d5T + d6
Γ(1+α)T α .

The proof of Lemma 2 is similar to the proof of Lemma 1 and so we omitted it.
Let M(d00) be the set of functions v(x, t) ∈C2−α,2(DT ) satisfying the inequality |v(x, t)| ≤ d00 with a fixed positive

constant d00 for (x, t) ∈ DT . This constant is determined by (48).
Lemma 3. Let v(x, t) ∈ M(d00) and ṽ(x, t) ∈ M(d00) be solutions of integral equation (47) with respective data sets

{q, fx2x2
,(u1)x2x2

,(u2)x2x2
} and {q̄, f̄x2x2

,(ū1)x2x2
,(ū2)x2x2

}. Then the stability estimate

|v− v̄| ≤ d8

[|u1 − ū1|γ+2 + |u2 − ū2|γ1+2 +‖ f − f̄‖γ2+2 +‖q− q̄‖α]
is hold, where d8 will be defined bellow.

Proof. Let v, v̄ denote the solutions to (46) corresponding to the functions q, q̄. If the difference between two
functions, whose only difference in notation is the overbar, is denoted by the same letter with a tilde (∼), for instance
ṽ = v− v̄, q̃ = q− q̄, etc., then equation (46) give the following equality

ṽ(x, t) = ṽ0(x, t)−
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)[q̃(ξ1,τ)v(ξ ,τ)+ q̄(ξ1,τ)ṽ(ξ ,τ)]dξ ,

where

ṽ0(x, t) :=
∫
R2

Z1(x−ξ , t)(∂ 2
ξ2

ũ1)(ξ )dξ

+
∫
R2

Z2(x−ξ , t)(∂ 2
ξ2

ũ2)(ξ )dξ +
∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)(∂ 2
ξ2

f̃ )(ξ ,τ)dξ .

Note that the functions ṽ and ṽ0 included in it can be estimated on the basis of the a priori information on the problem
data. Indeed, there is the obvious estimate

|ṽ0(x, t)| ≤ |ũ1|γ+2 + |ũ2|γ1+2 +
T α

Γ(1+α)
‖ f̃‖γ2+2

and

|ṽ(x, t)| ≤ |ṽ0(x, t)|+ d7

Γ(1+α)
T α Eα(q0T α)‖q̃‖α + q̄0

∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)|ṽ(ξ ,τ)|dξ , (49)

where q̄0 := ‖q̄‖α .

Let d9 := max
{

1, T α

Γ(1+α) ,
d7

Γ(1+α)T α Eα(q0T α), q̄0

}
. Applying the successive approximation method to inequality

(11) with the help of the scheme

|ṽ(x, t)|0 ≤ d9

[|ũ1|γ+2 + |ũ2|γ1+2 +‖ f̃‖γ2+2 +‖q̃‖α] ,

|ṽ(x, t)|n ≤ q̄0

∫ t

0
dτ

∫
R2

Y (x−ξ , t − τ)|ṽ(ξ ,τ)|n−1dξ , n = 1,2, ...,

we arrive at the estimate

|ṽ(x, t)| ≤ d8

[|ũ1|γ+2 + |ũ2|γ1+2 +‖ f̃‖γ2+2 +‖q̃‖α] , (50)
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where d8 := d9d00, which will be used to solve the inverse problem. Indeed the expression (50) is the stability estimate
for the solution to the Cauchy problem (43) and (44). The uniqueness for this solution follows from (50).

Now, we investigate the inverse problem (43)-(45). Setting in (46) x = 0 and using additional condition (45), after
simple converting, we get the following integral equation for determining q(x1, t):

q(x1, t) = q0(x1, t)− 1

g(x1, t)

∫ t

0
dτ

∫
R2

Y (x1 −ξ1,ξ2, t − τ)q(ξ1,τ)v(ξ ,τ)dξ , (51)

q0(x1, t) =
1

g(x1, t)

[
v0(x1,0, t)−

(CDα
t g

)
(x1, t)+∂ 2

x1
g1(x1, t)

]
,

where v0(x1,0, t) is defined by (47) when x2 = 0.
The solution of integral equation (46) depends on q, i.e. v = v(x, t;q).
We introduce an operator A defining it by the right hand side of (51).

A [q](x1, t) = q0(x1, t)− 1

g(x1, t)

∫ t

0
dτ

∫
R2

Y (x1 −ξ1,ξ2, t − τ)q(ξ1,τ)v(ξ ,τ;q)dξ .

Then the equation (51) is written in a more convenient form as

q(x1, t) = A [q](x1, t). (52)

Let d10 := ‖q0‖α . Fix a number ρ > 0 and consider the ball

BT [q0,r] := {q ∈C(Hα(R), [0,T ]) : ‖q−q0‖α ≤ r} , α ∈ (1,2).

Theorem 1. Let f (x, t)∈C(Hγ2+2(R2); [0,T ]), u1(x)∈Hγ+2(R2), u2(x)∈Hγ1+2(R2), g(x1, t)∈C2(Hα(R); [0,T ]),
ui(x1,0) = g(x1,0), i = 1,2 and the condition

‖g(x1, t)‖α ≥ g0 > 0, x1 ∈ R, t ∈ [0,T ]

is fulfilled, then at sufficiently small T0 ∈ (0,T ) the solution to the inverse problem (1)-(4) on the intercept R× [0,T ]
exists, unique and belongs to the class C(Hα(R); [0,T0]).

Proof. Let us first prove that the operator A , defined by (52), is a contraction on the Banach space BT [q0,r] into
itself, if the final time T > 0 is small enough. Indeed, for any continuous function q(x1, t), the function A [q](x1, t)
calculated using formula (52) will be continuous. Moreover, estimating the norm of the differences, we find that

‖A[q]−q0‖α ≤ g−1
0 T α

Γ(1+α)
d00‖q‖α ,

here we have used the estimate (48). Note that the function occurring on the right-hand side in this inequality is
monotone increasing with T , and the fact that the function q(x1, t) belongs to the ball BT [q0,r] implies the inequality

‖q‖α ≤ r+d10. (53)

Therefore, we only strengthen the inequality if we replace ‖q‖α in this inequality with the expression r+ d10. Per-
forming these replacements, we obtain the estimate

‖A[q]−q0‖α ≤ g−1
0 d7

Γ(1+α)
T α (r+d10)Eα ((r+d10)T α) .

Let T1 be a positive root of the equation

r1(T ) =
g−1

0 d7

Γ(1+α)
T α (r+d10)Eα ((r+d10)T α) = r.

Then for T ∈ [0,T1] we have A[q](x1, t) ∈ BT [q0,r].
Now consider two functions q(x1, t) and q̄(x1, t) belonging to the ball BT [q0,r] and estimate the distance between

their images A[q](x1, t) and A[q̄](x1, t) in the space C(Hα(R), [0,T ]). The function v̄(x, t) corresponding to q̄(x1, t)
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satisfies the integral equation (46) with the functions (u1)x2x2
= (ū1)x2x2

, (u2)x2x2
= (ū2)x2x2

, fx2x2
= f̄x2x2

. Composing
the difference A[q](x1, t)−A[q̄](x1, t) with the help of equation (46) and then estimating its norm, we obtain

‖A[q](x1, t)−A[q̄](x1, t)‖α ≤ g−1
0

Γ(1+α)
T α

[
‖v‖‖q− q̄‖α +‖q̄‖α‖v− v̄‖

]
. (54)

Using inequality (48) and the estimate (49) with (u1)x2x2
= (ū1)x2x2

, (u2)x2x2
= (ū2)x2x2

, fx2x2
= f̄x2x2

, we continue the
previous inequality in the following form:

‖A[q](x1, t)−A[q̄](x1, t)‖α ≤ g−1
0 d7

Γ(1+α)
T α

[
Eα(q0T α)+d9q̄0

]
‖q− q̄‖α .

The functions q(x1, t) and q̄(x1, t) belong to the ball BT [q0,r], and hence for each of these functions one has in-
equality (53). Note that the function on the right-hand side in inequality (54) at the factor ‖q− q̄‖α is monotone
increasing with ‖q‖α , ‖q̄‖ and T . Consequently, replacing and in inequality (54)(including in d9) with r+ d10 will
only strengthen the inequality. Thus, we have

‖A[q](x1, t)−A[q̄](x1, t)‖α ≤ g−1
0 d7

Γ(1+α)
T α

[
Eα((r+d10)T α)+d9(r+d10)

]
‖q− q̄‖α .

Let T2 be a positive root of the equation

r2(T ) =
g−1

0 d7

Γ(1+α)
T α

[
Eα((r+d10)T α)+d9(r+d10)

]
= 1.

Then for T ∈ [0,T2] we have that the distance between the functions A[q](x1, t) and A[q̄](x1, t) in the function space
C(Hα(R), [0,T ]) is not greater than the distance between the functions q(x1, t) and q̄(x1, t) multiplied by r2(T ) < 1.
Consequently, if we choose T0 = min{T1,T2}, then the operator A is a contraction in the ball BT [r,q0]. However, in
accordance with the Banach theorem, the operator A has a unique fixed point in the ball BT [r,q0]; i.e., there exists a
unique solution of the equation (52). Theorem 1 is proven.

Let T be a positive fixed number. Consider the set Ω1(μ1) (μ1 is some positive fixed number) of the given functions
( f ,u1,u2,g) for which all conditions from Theorem 1 are fulfilled and so that max{‖ f‖l+2, |u1|γ+2, |u2|γ+2,‖g‖α}. By
Ω2(μ2) we denote the class of functions q(x1, t) ∈ C(Hα(R), [0,T ]), satisfying the inequality ‖q‖α ≤ μ2 with some
fixed positive number μ2.

Theorem 2. Suppose ( f ,u1,u2,g) and ( f̄ , ū1, ū2, ḡ) are in Ω1(μ1). Then for the solution of the inverse problem
(43)-(45) the following stability estimate is valid:

‖q− q̄‖α ≤ d11

(
|u1 − ū1|γ+2 + |u2 − ū2|γ1+2 +‖ f − f̄‖γ2+2 +‖g− ḡ‖α

)
,

where the constant d11 depends only on T,α,μ1,μ2.
The proof of Theorem 2 is identical to the proof of Theorem 2 in [28]. So we don’t repeat it and the following

uniqueness theorem for any T > 0 follows from Theorem 2:
Theorem 3. Let the functions q, f ,u1,u2,g and q̄, f̄ , ū1, ū2, ḡ have the same meaning as in Theorem 2. Besides, if

f = f̄ , u1 = ū1, u2 = ū2, g = ḡ for DT , then q(x1, t)≡ q(x1, t), (x1, t) ∈ R× [0,T ].

CONCLUSION

In this paper, we investigated an inverse space and time-dependent source problem of a two dimensional time-
fractional wave equation with additional condition. The existence and uniqueness of a solution for the direct problem
are obtained by the integral equation theory. Then, the well-posedness for the inverse problem are obtained by the
Contraction Theorem.
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