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Abstract 

The most efficient device for modelling uncertainty in decision-making issues is the neutrosophic set (NS) and its 

add-ons, such as NS of complex, interval, and interval complex. An efficient device for establishing uncertainty 

in decision-making by inserting three grades of truth, indeterminacy, and falsehood of an established statement. 

Recently, financial globalization has significantly expanded various methods for enhancing service quality using 

advanced resources. The practical application of the blockchain (BC) model enables stakeholders concerned about 

the hazard and return prediction models of economic products. To explore the application of deep learning (DL) 

in processing financial trading data, a neural network (NN) and DL data are utilized. Absolute stock indices and 

financial data are utilized for analyzing the efficiency of these models in financial prediction and analysis. This 

paper presents an Enhanced Risk Prediction Framework for Financial Transactions System Using Interval 

Neutrosophic Covering Rough Sets (ERPFFTS-INCRS) model. The aim is to develop an effective risk prediction 

model that enhances the reliability and security of BC financial transactions under uncertain conditions, utilizing 

neutrosophic logic. Initially, the z-score standardization method is used to clean, transform, and organize raw data 

into a structured and meaningful format. Furthermore, the ERPFFTS-INCRS method implements the INCRS 

method for the financial classification process. Finally, the hyperparameter selection for the INCRS model is 

performed by implementing the Elephant Herding Optimisation (EHO) algorithm. The experimental evaluation of 

the ERPFFTS-INCRS approach is examined under the metaverse financial transactions (MFT) dataset. The 

comparison analysis of the ERPFFTS-INCRS approach revealed a superior accuracy value of 98.77% compared 

to existing methods. 
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1. Introduction 

Neutrosophic Logic is an emerging area of research that evaluates each statement based on three components: the 

degree of truth represented by a subset T, the degree of indeterminacy represented by a subset I, and the degree of 

falsity represented by a subset F [1]. The NS is effectively employed for processing indeterminate data, offering 

significant advantages in managing the uncertainty inherent in information. It is widely recommended for data 

analysis and classification tasks [2]. With the rise of computer technologies, innovation-led and technology-

focused approaches have become a key driver of global economic development [3]. According to the national 

congress statement, India's economy is transitioning from a phase of rapid growth to one of high-standard 

advancement. As a crucial pillar of China's national economy, the sustained growth of small and medium 

enterprises (SMEs) serves as the foundation for continuing steady national economic development. Still, SMEs 

encounter challenges, such as limited and costly access to financing, which obstruct their growth [4]. Within the 

framework of the Internet, financial transactions in the supply chain serve as an efficient method for financial 

reform and economic expansion. As one of the recent evolving techniques, BC holds a promising outlook. BC is 

a large-scale collaboration tool applicable to all types of registration, transactions, and inventory management. The 

financial market operates on a broad level, allowing for multi-party interaction and supporting transactions at 

moderate frequencies [5]. The inclusion of BC technologies in financial transactions holds notable theoretical and 

real-world importance. Extracting insights from financial transaction information and predicting transaction 

patterns remains a prominent area of research [6]. Fig. 1 represents the general structure of financial transactions 

using BC technology. 

 

Figure 1. BC-based financial transactions system 

The progression of artificial intelligence (AI) has undergone significant changes over the years, introducing 

numerous efficient applications that contribute to a more convenient modern lifestyle [7]. One notable 

investigative area of AI methods is machine learning (ML), which utilizes labelled or unlabeled input data to 

determine proper rules for identifying known data or forecasting future outcomes [8]. Presently, the global 

economy is experiencing rapid growth, and with it, various barriers limiting industrial development are being 

addressed through the rapid rise of resources [9]. The structure of socio-economic improvement defines these 

markets. It regulates or governs the allocation of the entire economic and social framework and thus becomes a 

vital component of socio-economic progress. Furthermore, AI and BC tools have evolved as transformative forces 

in the financial domain, significantly reducing credit-related risks [10].  

https://doi.org/10.54216/IJNS.270111


 
International Journal of Neutrosophic Science (IJNS)                                           Vol. 27, No. 01, PP. 111-124, 2026 

113 
DOI: https://doi.org/10.54216/IJNS.270111 

This paper presents an Enhanced Risk Prediction Framework for Financial Transactions System Using Interval 

Neutrosophic Covering Rough Sets (ERPFFTS-INCRS) model. The aim is to develop an effective risk prediction 

model that enhances the reliability and security of BC financial transactions under uncertain conditions, utilizing 

neutrosophic logic. Initially, the z-score standardization method is used to clean, transform, and organize raw data 

into a structured and meaningful format. Furthermore, the ERPFFTS-INCRS method implements the INCRS 

method for the financial classification process. Finally, the hyperparameter selection of the INCRS model is 

performed by implementing the Elephant Herding Optimisation (EHO) model. The experimental evaluation of the 

ERPFFTS-INCRS approach is examined under the metaverse financial transactions (MFT) dataset. 

 The ERPFFTS-INCRS model applies Z-score standardization to pre-process raw financial data by 

normalizing features to have zero mean and unit variance. The model mitigates variability and enhances 

dataset consistency. This transformation enables more effective feature representation, improving the 

performance and reliability of the classification model. 

 The ERPFFTS-INCRS method employs the INCRS technique to develop a financial classification model, 

effectively managing uncertainty and imprecision in intrinsic data. This approach captures truth, 

indeterminacy, and falsity membership intervals, enabling more accurate classification of ambiguous financial 

transactions and improving decision-making under uncertain conditions. 

 The performance of the ERPFFTS-INCRS technique was enhanced by integrating the EHO model to optimize 

the hyperparameters of the INCRS model. This adaptive optimization technique efficiently searches the 

parameter space, enhancing classification accuracy and convergence speed, which results in a more robust 

and reliable financial classification system. 

 The novelty of the ERPFFTS-INCRS methodology lies in its integration of neutrosophic theory with advanced 

optimization techniques for hyperparameter tuning, thereby addressing uncertainty and imprecision in 

financial data more effectively than conventional methods. This incorporation enables more precise modelling 

of ambiguous data and adaptive optimization, leading to improved classification accuracy. It presents a robust 

solution constructed for complex and uncertain financial environments, thus outperforming existing models. 
 

2. Related Works 

Biswas et al. [11] proposed a new DL approach, which merges a TCN alongside an Attention mechanism (AM) 

for predicting stock prices. Zhou et al. [12] proposed a trading strategy optimizer technique depending on TCN. 

TCN enhances the modelling capability of market dynamics through dilated and causal convolution mechanisms, 

while also enabling effective parallel computing abilities. Experimental outcomes demonstrate that this technique 

is more advanced than conventional approaches in terms of risk control, cumulative yield, and prediction accuracy, 

and significantly enhances the stability of trading approaches. Xiao et al. [13] presented a new methodology for 

detecting anomalous payment behaviours and predicting financial threats in SMEs, utilizing an optimized LSTM-

AM. This methodology incorporates bi-directional LSTM networks alongside a multi-head AM for capturing 

intricate temporal relations in payment forms, though concentrating on important transaction features. The 

methodology addresses the challenges of emerging payment patterns through a detailed risk assessment approach 

and a dynamic threshold adjustment mechanism.  

Ilori et al. [14] presented a system for incorporating sophisticated data analytics into the internal audit process, 

aiming to deliver stronger risk management and improved fraud detection capabilities. Incorporate various data 

sources, including operational, financial, and external data, to provide a comprehensive understanding of the 

organization's risk landscape. Employ ML models and predictive analytics for pattern identification, future risk 

prediction, and anomaly detection. Bai et al. [15] explored the use of generative AI in financial market data 

management and prediction. By combining numerous data sources and feature extractor methods, namely technical 

indicators, fundamental analysis, sentiment analysis, and global economic data, generative AI creates a detailed 

DL model, which highly improves financial data management effectiveness and market predictions' accuracy. 

Gu [16] introduced a BP-based NN to design an Optimum Risk Prediction (ORP-BNN) model for prevalidating 

current and novel financial imbalances. This model is designed to facilitate business protocols and ensure risk-free 

financial management. Li et al. [17] proposed an approach to predict credit risk for listed companies using a CNN-

LSTM and a neural network (NN). This technique relies on the assistance of the LSTM network for predicting 

long-range time sequences, combined with the CNN technique. Additionally, the advantages of incorporating a 

CNN and LSTM paradigm include reducing data complexity, enhancing the model's training and calculation speed, 

and addressing the limitation of past data in the long-range LSTM approach's sequence prediction. 

3. The Proposed Methodology  

In this paper, an ERPFFTS-INCRS technique is proposed. The aim is to develop an effective risk prediction model 

that enhances the reliability and security of BC financial transactions under uncertain conditions, utilizing 

neutrosophic logic. Fig. 2 represents the workflow of the ERPFFTS-INCRS model. 

https://doi.org/10.54216/IJNS.270111
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Figure 2. Workflow of ERPFFTS-INCRS approach 

A. Z-score Normalization 

Initially, the z-score normalization method is employed in the data pre-processing step [18]. This method is chosen 

for its capability to standardize data by converting features to have a mean of zero and a standard deviation of one, 

which effectively mitigates bias caused by varying scales in the raw data. Z-score normalization maintains the 

original data distribution while handling extreme values more robustly, unlike min-max scaling, which compresses 

data into a fixed range and can be sensitive to outliers. This makes the model most appropriate for financial 

datasets, where the presence of outliers and varying feature ranges is familiar. The model also enhances the 

convergence speed and stability of various ML models by ensuring consistent feature scales, ultimately improving 

the performance and reliability of the model compared to other normalization methods. 

As part of pre-processing, data normalization comprises scaling features to hold a standard distribution that is vital 

for the pre-processing stage in ML. Various ML models are sensitive to scale data, particularly those that employ 

distance metrics. Every feature contributes equally to the distance calculation utilizing normalization. Furthermore, 

in the gradient descent optimizer that is used to train NNs, normalized data allows for faster convergence. 

Normalization restricts features with wider ranges from controlling the process of learning. In this study, Z-score 

normalization is utilized to normalize the data. This method modifies the data to have a mean of zero and a standard 

deviation (SD) of one. The 𝑥𝑖, normalizing the value of 𝑥𝑖 for the parameter X, is calculated: 

𝑥𝑖 =
𝑥𝑖 − 𝜇

𝜎
                                                           (1) 

Here, 𝜎 and 𝜇 refer to the SD and mean of parameter 𝑋, respectively. 

B. INCRS-based Classification Process 

Followed by, the ERPFFTS-INCRS model implements the INCRS method for the financial classification process, 

particularly in uncertain and imprecise FinTech environments [19]. This model is chosen for its ability to handle 

uncertainty, imprecision, and incomplete data, which are prevalent in financial data. Unlike conventional rough 

sets or fuzzy sets, interval neutrosophic sets capture three membership degrees — truth, indeterminacy, and falsity 

— providing a more comprehensive representation of ambiguity. This enables the model to discriminate subtle 

variances in complex transaction data better, thereby enhancing classification accuracy. Moreover, INCRS 

integrates neutrosophic logic with covering rough sets, enabling flexible approximations that adapt to varying data 

granularities. Compared to conventional classifiers, INCRS offers enhanced robustness in uncertain environments, 

making it particularly suitable for dynamic and noisy financial applications. 

https://doi.org/10.54216/IJNS.270111
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This approach is based on neutrosophic theory, which extends classical logic by introducing degrees of truth, 

indeterminacy, and falsity, making it highly appropriate for modelling incomplete or inconsistent financial data. 

By integrating Interval Neutrosophic Sets (INS) with covering rough set theory, the model shows efficiency in 

capturing the uncertainty and vagueness inherent in real-world financial datasets, improving decision-making 

accuracy. INS are an extension of neutrosophic sets designed to handle uncertain, imprecise, and inconsistent data. 

For a given universe 𝑋, an INS 𝐴 assigns to each element 𝑥 ∈ 𝑋 three membership intervals: a truth-membership 

𝑇𝐴(𝑥), an indeterminacy-membership 𝐼𝐴(𝑥), and a falsity-membership 𝐹𝐴(𝑥), all in the range [0,1]. These intervals 

are illustrated as 𝑇𝐴(x) = [𝑇𝐴
𝐿(𝑥), 𝑇𝐴

𝑈(𝑥)], 𝐼𝐴(𝑥) = [𝐼𝐴
𝐿(𝑥), 𝐼𝐴

𝑈(𝑥)], 𝐹𝐴(𝑥) = [𝐹𝐴
𝐿(𝑥), 𝐹𝐴

𝑈(𝑥)]. The complement of an 

INS reverses the roles of truth and falsity while adjusting indeterminacy. The membership intervals are utilized 

for evaluating similarity or dominance when comparing two INSs. This structure enables INSs to capture 

uncertainty in decision-making processes, such as financial risk classification. 

The neutrosophic covering rough sets process addresses indeterminacy in transactions by defining lower and upper 

approximations of a set 𝐴 ⊆ 𝑋, which represent the elements that certainly and possibly belong to 𝐴, respectively. 

Formally, the lower approximation 𝑁(𝐴) comprises all elements whose neutrosophic membership intervals fully 

satisfy the criteria of 𝐴, while the upper approximation 𝑁 consists of elements whose membership intervals 

partially meet these criteria. These approximations integrate truth, indeterminacy, and falsity membership 

functions, enabling precise handling of ambiguous or incomplete transaction data. 

Definition_2.1: Accept 𝑋 to be the space of facts by a class of components represented by 𝑥. During 𝑋, the 𝑁𝑆 𝐴 

was abridged using an indeterminacy‐membership function (IMF) 𝐼𝐴(𝑥), a truth‐MF (TMF) 𝑇𝐴(𝑥), and a falsity‐MF 

(FMF) 𝐹𝐴(𝑥). 

Definition_2.2: Suppose 𝑋 acts as a space of objects using the form of components in 𝑋 represented by 𝑥. A single‐

valued NS 𝑁 in 𝑋 was condensed using an IMF 𝐼𝑁(𝑥), FMF 𝐹𝑁(𝑥), and TMF 𝑇𝑁(𝑥). Following, an INS 𝐴 is 

characterized as shown: 

𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑋}                                       (2) 

Definition_2: The counterpart of the INS 𝐴 = 〈𝑇𝐴, 𝑙𝐴, 𝐹𝐴〉 = {[𝑇𝐴
𝐿 , 𝑇𝐴

𝑈], [𝐼𝐴
𝐿 , 𝐼𝐴

𝑈], [𝐹𝐴
𝐿 , 𝐹𝐴

𝑈]} is represented by 𝐴𝑐 and 

that was named as 𝐴𝑐 = {[𝐹𝐴
𝐿 , 𝐹𝐴

𝑈]𝑡[1 − 𝐼𝐴
𝑈, 1 − 𝐼𝐴

𝐿], [𝑇𝐴
𝐿 , 𝑇𝐴

𝑈.  

Definition_2.4: 𝐴 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)𝐹𝐴(𝑥)〉} and 𝐵 = {〈𝑥, 𝑇𝐵(𝑥), 𝐼𝐵(𝑥)𝐹𝐵(𝑥)〉} are two INS, however 𝑇𝐴(x) = 

[𝑇𝐴
𝐿(𝑥), 𝑇𝐴

𝑈(𝑥)], 𝐼𝐴(𝑥) = [𝐼𝐴
𝐿(𝑥), 𝐼𝐴

𝑈(𝑥)], 𝐹𝐴(𝑥) = [𝐹𝐴
𝐿(𝑥), 𝐹𝐴

𝑈(𝑥)], and 𝑇𝐵(𝑥) = [𝑇𝐵
𝐿(𝑥), 𝑇𝐵

𝑈(𝑥)], 𝑙𝐵(𝑥) = 

[𝐼𝐵
𝐿(𝑥), 𝐼𝐵

𝑈(𝑥)], 𝐹𝐵(𝑥) = [𝐹𝐵
𝐿(𝑥), 𝐹𝐵

𝑈(𝑥)].  

Definition_2.5: 𝐴 and 𝐵 are 2 INNs, having noted below the fundamental tools of INNs. 

The INCRS approach extends conventional rough set theory by integrating interval neutrosophic sets to handle 

uncertainty and imprecision in data effectively. This method can be applied in various decision-making scenarios 

to manage ambiguous data. It also defines a cover of the universe 𝑋 as a family of interval neutrosophic subsets, 

each characterized by truth, indeterminacy, and falsity intervals in 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑠, 𝑡]. These covers approximate 

objects in 𝑋 by grouping elements with similar neutrosophic properties, enabling refined analysis of incomplete 

or uncertain data. Moreover, when the intervals collapse to a single value 𝛽, the cover is called an IN 𝛽 cover, 

representing a more specific classification region. This framework also allows defining smaller components and 

their corresponding signs within the INCRS structure. 

Definition_3.1: Suppose 𝑋 is a space of objects. For some [s, 𝑡] ∈ [0,1] and = {𝐶1, 𝐶2, … , 𝐶𝑚}, whereas 𝐶𝑖 =
{𝑇𝑐,𝑖𝑙𝑐𝑖

, 𝐹𝑐𝑖
} and 𝐶𝑖 ∈ 𝑙𝑁𝑆(𝑖 = 1𝑡2≤ … , 𝑚).  

Definition_3.2: Presume 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} be IN [s, 𝑡] protect of 𝑋. If 0 ≤ [𝑠′, 𝑡′] ≤ [s, 𝑡], 𝐶 symbolizes an IN 

[𝑠′, 𝑡′] covers of 𝑋. 

Definition_3.3: Let 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} symbolizes IN [s, 𝑡] protect of 𝑋. If 𝑠 = 𝑡 = 𝛽, then 𝐶 is named an IN 𝛽 

covers of 𝑋. 

Definition_3.4: Suppose 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} be IN [s, 𝑡] covers of𝑋, while 𝐶𝑖 = {Tc,i, Ici
,𝐹𝑐𝑖

} and 𝐶𝑖 ∈ 𝑙𝑁𝑆(𝑖 =

1,2, … , 𝑚). For ∀𝑥 ∈ 𝑋, the IN [s, 𝑡] area of 𝑥. 

Definition_3.5: Assume 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑚} be an IN [s, 𝑡] cover of 𝑋, however, 𝐶𝑖 = {Tc,i, Ici
,𝐹𝑐𝑖

} and 𝐶𝑖 ∈

𝑙𝑁𝑆(𝑖 = 1,2, … , 𝑚). If 𝑠 = 𝑡 = 𝛽, then the IN [s, 𝑡] area of 𝑥 is disturbed as an IN 𝛽 region of 𝑥. 

C. Parameter Optimizer using EHO Model 

Finally, the hyperparameter selection of the INCRS model is performed by utilizing the EHO [20]. This model is 

chosen for its efficiency in balancing the exploration and exploitation stages, inspired by natural herding behaviour, 

https://doi.org/10.54216/IJNS.270111
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which helps avoid local optima and ensures global search capabilities. Compared to conventional optimization 

methods, such as grid or random search. The model also converges more quickly and requires fewer evaluations, 

thereby mitigating computational cost. Its population-based nature allows for a simultaneous search across various 

regions of the parameter space, thereby enhancing the likelihood of finding optimal hyperparameters. Furthermore, 

EHO demonstrates superior performance in diverse and complex optimization problems, making it suitable for 

fine-tuning the INCRS model to achieve higher classification accuracy and robustness in financial data analysis. 

EHO is a meta-heuristic swarm-centred searching model that resolves a variety of optimization problems. This 

method simulates the herding behaviour of elephants. The EHO stages are explained as follows, 

1. Produce individuals 𝑚 and bifurcate the population into 𝑛 clans. Subsequently, calculate the fitness value for 

each individual and arrange him or her in order of their fitness. 

2. Upgrade each location on the clan 𝑐𝑛. Assume that the clan indicate 𝑐𝑛 and the following location of each 

solution 𝑚 in clan 𝑐𝑛 

𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚
1

4⁄ 𝑥𝑐𝑛;𝑚 þ𝑎 × ð𝑥𝑏𝑒𝑠𝑡;𝑐𝑛
− 𝑥𝑐𝑛;𝑚 þ × 𝑐                           (3) 

Now, 𝑥𝑐𝑛;𝑚 indicates the old location of solution 𝑚 in the clan 𝑐𝑛, 𝑥𝑏𝑒𝑠𝑡;𝑐𝑛
 denotes the area of best solution in clan 

𝑐𝑛 and 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 represents the newly upgraded location of solution 𝑚 in clan 𝑐𝑛. 𝑎 depicts the scaling factor 

which determines the effect of 𝑥𝑏𝑒𝑠𝑡;𝑐𝑛
 on 𝑥𝑐𝑛;𝑚. c 2 [0, 1] indicates a random number from a uniform distribution. 

Select and retain the finest solution betwixt 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 and 𝑥𝑐𝑛;𝑚, utilizing Eq. (3). 

3. Upgrade 𝑥𝑐;𝑚and create 𝑥𝑛𝑒𝑤;𝑐;𝑚 to attain the best solution to employ Eq. (4) if the solution m’s location 

corresponds to the finest position of solution (𝑥𝑐𝑛;𝑚 = 𝑥𝑏𝑒𝑠𝑡;𝑐𝑛
). The fittest solution in each clan is upgraded: 

𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚
1

4⁄ 𝑏 × 𝑥𝑐𝑒𝑛𝑡𝑒𝑟;𝑐𝑛
                                       (4) 

Now, b 2 [0, 1] denotes a factor which determines the effect of 𝑥𝑐𝑒𝑛𝑡𝑒𝑟;𝑐𝑛
 on 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚. On the other hand, the 

novel individual 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 in Eq. (4) generates data gained by entire solutions from the clan 𝑐𝑛. Select and retain 

the finest solution betwixt 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 and 𝑥𝑏𝑒𝑠𝑡;𝑚. 𝑥𝑐𝑒𝑛𝑡𝑒𝑟;𝑐𝑛
 denotes the centre of the clan 𝑐𝑛, and for 𝑡ℎ𝑒 𝑑 th 

dimension. 

𝑥𝑐𝑒𝑛𝑡𝑒𝑟;𝑐𝑛;𝑑
1

4⁄
1

𝑁𝑐𝑛

×

𝑋
𝑁𝑐𝑛𝑥

𝑚
1

4⁄ 1

 𝑐𝑛; 𝑚; 𝑑                             (5) 

Now, 𝑁𝑐𝑛
 indicates the Number of solutions in clan 𝑐𝑛. 1 ≤ 𝑑 ≤ 𝐷 represents 𝑑 th dimension, 𝐷 depicts its overall 

dimension. 

4. Swapping the worst fitness individual in clan 𝑐𝑛 to employ a separating operator, 

𝑋𝑤𝑜𝑟𝑠𝑡;𝑐𝑛
1/4𝑥𝐿þð𝑋𝑈 − 𝑥𝐿þ1þ × 𝑟                                     (6) 

Here, 𝑥𝐿 signifies the lower bound of individual location, 𝑥𝑈 is the Upper boundary of individual location and 

𝑥𝑤𝑜𝑟𝑠𝑡;𝑐𝑛;𝑚 refers to the worst individual in the clan 𝑐𝑛. And 𝑟[0,1] indicates a sort of stochastic distribution 

together with a uniform distribution from the gamut of zero and one. 

5. Using the recently upgraded locations, evaluate the population and gauge the fitness for each performance. 

Return the finest outcome (𝑠𝑓) and the overall clans according to their value of fitness. The projected EHO 

pseudocode is displayed in Algorithm 1. 

Algorithm 1: EHO pseudocode 

Input: Dataset features 

Output: Optimized features 

Begin: 

Initialization: 

Create individuals; Dividing population into 𝑛 clans; Compute fitness of every individual; Set generation 

counter 𝑡 = 1 and maximal generation MaxGen. 
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While 𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛 do 

 Sort individuals according to their fitness. 

Clan Upgrade: 

 For every clan 𝑐𝑛 do 

  For each solution 𝑚 in the clan 𝑐𝑛 do 

   Upgrade 𝑥𝑐𝑛;𝑚 and create 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 

Choose and retain the finest solution among 𝑥𝑐𝑛;𝑚 and 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 

Upgrade 𝑥𝑏𝑒𝑠𝑡;𝑚 and produce 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 

Choose the finest solution among 𝑥𝑏𝑒𝑠;𝑚 and 𝑥𝑛𝑒𝑤;𝑐𝑛;𝑚 

end for  

end for 

For each clan, 𝑐𝑛 population do 

Substitute the poorest solution in the clan 𝑐𝑛 

end for 

Calculate population and fitness 

end while 

Return the finest solution to every clan 

End 

The fitness choice is a significant feature that influences the solution of the EHO model. The procedure of 

hyperparameter selection involves determining the optimal solution to assess the efficacy of the candidate result. 

The EHO model indicates accuracy as the primary standard for predicting the fitness function, as stated below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃)                                                             (7) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                   (8) 

While 𝑇𝑃 and 𝐹𝑃 signify the positive value of true and false. 

4. Experimental Validation 

The performance analysis of the ERPFFTS-INCRS model is examined under the metaverse financial transactions 

dataset [21]. The technique is simulated using Python 3.6.5 on a PC with an i5-8600k, 250GB SSD, GeForce 

1050Ti 4GB, 16GB RAM, and 1TB HDD. Parameters include a learning rate of 0.01, ReLU activation, 50 epochs, 

a dropout rate of 0.5, and a batch size of 5. The dataset comprises 78,600 records, each representing a distinct 

metaverse financial transaction. Each record includes the following attributes: hour_of_day, timestamp, 

sending_address, receiving_address, transaction_type, amount, ip_prefix, age_group, login_frequency, 

location_region, purchase_pattern, risk_score, session_duration, and anomaly. The risk score is a key attribute and 

is assigned by utilizing a hybrid model; initially computed through an algorithm that evaluates transactional 

behaviours, amounts, frequency, and anomaly scores, followed by manual validation by domain experts to ensure 

contextual accuracy. Based on this, transactions are classified into three risk levels: low_risk (63,493), 

moderate_risk (8,611), and high_risk (6,495). 

Table 1 and Fig. 3 illustrate the classifier outcome of the ERPFFTS-INCRS approach on 70:30. Based on 70% 

TRPHE, the ERPFFTS-INCRS model attains an average 𝑎𝑐𝑐𝑢𝑦 of 98.77%, 𝑝𝑟𝑒𝑐𝑛 of 96.20%, 𝑟𝑒𝑐𝑎𝑙 of 95.36%, 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 95.78%, and 𝑀𝐶𝐶 of 94.15%. Similarly, at 30% TSPHE, the ERPFFTS-INCRS model achieves an 

average 𝑎𝑐𝑐𝑢𝑦 of 98.67%, 𝑝𝑟𝑒𝑐𝑛 of 96.05%, 𝑟𝑒𝑐𝑎𝑙 of 94.91%, 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 95.47%, and 𝑀𝐶𝐶 of 93.70%. 
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Table 1: Classifier outcome of ERPFFTS-INCRS model under 70:30 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝑴𝑪𝑪 

TRPHE (70%) 

Low_Risk 98.63 98.97 99.34 99.15 95.55 

Moderate_Risk 98.44 93.69 91.94 92.80 91.94 

High_Risk 99.24 95.96 94.82 95.38 94.97 

Average 98.77 96.20 95.36 95.78 94.15 

TSPHE (30%) 

Low_Risk 98.50 98.83 99.32 99.07 95.15 

Moderate_Risk 98.28 93.15 91.18 92.15 91.20 

High_Risk 99.22 96.16 94.23 95.19 94.76 

Average 98.67 96.05 94.91 95.47 93.70 

 

 

Figure 3. Average values of ERPFFTS-INCRS model (a) 70% TRPHE, and (b) 30%TSPHE 

Fig. 4 exemplifies the training (TRAIN) 𝑎𝑐𝑐𝑢𝑦 and validation (VALID) 𝑎𝑐𝑐𝑢𝑦 of an ERPFFTS-INCRS technique 

over 25 epochs. At first, both TRAIN and VALID 𝑎𝑐𝑐𝑢𝑦 rise rapidly, representing efficient pattern learning from 

the data. Around the epoch, the VALID 𝑎𝑐𝑐𝑢𝑦 slightly exceeds the training accuracy, implying good generalization 

without overfitting. As training advances, it reflects maximum performance and a minimum performance gap 

between TRAIN and VALID. The close alignment of both curves during training suggests that the technique is 

well regularised and well-generalized. This exhibits the technique’s stronger capability in learning and retaining 

valuable features across both seen and unseen data. 
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Figure 4. 𝐴𝑐𝑐𝑢𝑦 Curve of ERPFFTS-INCRS model 

Fig. 5 demonstrates the TRAIN and VALID losses of the ERPFFTS-INCRS method over 25 epochs. Initially, both 

TRAIN and VALID losses are higher, showing that the process begins with a partial understanding of the data. As 

training evolves, both losses persistently decline, displaying that the method is efficiently learning and enhancing 

its parameters. The close alignment between the TRAIN and VALID loss curves during training suggests that the 

technique has not over-fitted and maintains good generalization to unseen data. This persistent and steady decrease 

in loss shows a stable, reliable, and well-trained DL model. 

 

Figure 5. Loss curve of the ERPFFTS-INCRS method 

In Fig. 6, the PR inspection study of the ERPFFTS-INCRS approach provides insights into its outcome by charting 

Precision against Recall for all classes. The outcomes display that the ERPFFTS-INCRS approach consistently 

achieves elevated PR values across different classes, demonstrating its proficiency in retaining a significant share 

of true positive predictions among all positive predictions (precision) while also capturing a substantial portion of 

actual positives (recall). The stable improvement in PR values across each class indicates the effectiveness of the 

ERPFFTS-INCRS model in the classification procedure. 
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Figure 6. PR curve of ERPFFTS-INCRS method 

In Fig. 7, the ROC analysis of the ERPFFTS-INCRS approach is presented. The outcomes indicate that the 

ERPFFTS-INCRS approach achieves elevated ROC values across all class labels, demonstrating considerable 

capabilities to distinguish between classes. This consistent pattern of increased values of ROC for several classes 

suggests the efficacious outcomes of the ERPFFTS-INCRS technique on class prediction, underscoring the robust 

nature of the classification process. 

 

Figure 7. ROC curve of ERPFFTS-INCRS method 

Table 2 and Fig. 8 present a comparative study of the ERPFFTS-INCRS approach with current methods under 

various metrics [22-24]. The table values emphasized that the ERPFFTS-INCRS model achieved higher 𝑐𝑢𝑦 , 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 98.77%, 96.20%, 95.36%, and 95.78%, respectively. While the present 

methodologies, namely logistic regression (LR), SVM, XGBoost, GraphSAGE, GGNN, random forest (RF), and 

GCN, have worse performance. 

Table 2: Comparative analysis of ERPFFTS-INCRS model with existing techniques 

Models 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

LR 77.85 85.36 78.43 87.79 

SVM 93.86 80.96 94.25 89.82 

XGBoost 92.19 95.55 85.41 94.32 
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GraphSAGE 91.66 94.80 77.36 91.01 

GGNN 86.46 82.29 79.55 88.12 

RF 83.77 88.11 77.05 88.85 

GCN 95.54 94.32 87.32 92.66 

ERPFFTS-INCRS 98.77 96.20 95.36 95.78 

 

 

Figure 8. Comparative study of ERPFFTS-INCRS with existing techniques 

In Table 3 and Fig. 9, the computational time (CT) of the ERPFFTS-INCRS model is compared to that of current 

approaches. The ERPFFTS-INCRS model offers a lower CT of 6.73sec while the LR, SVM, XGBoost, 

GraphSAGE, GGNN, RF, and GCN methodologies achieve superior CTs of 7.85sec, 16.72sec, 24.68sec, 29.90sec, 

29.75sec, 25.77sec, and 21.74sec, respectively.  

Table 3: CT outcome of ERPFFTS-INCRS model with recent methods 

Models CT (sec) 

LR 7.85 

SVM 16.72 

XGBoost 24.68 

GraphSAGE 29.90 

GGNN 29.75 

RF 25.77 

GCN 21.74 

ERPFFTS-INCRS 6.73 
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Figure 9. CT outcome of the ERPFFTS-INCRS model with recent methods 

Table 4 and Fig. 10 illustrates the ablation study of the ERPFFTS-INCRS technique with existing models. The 

ablation study evaluates the efficiency of the ERPFFTS-INCRS technique by comparing it with existing methods 

such as the EHO and INCRS. The ERPFFTS-INCRS model attained an 𝑎𝑐𝑐𝑢𝑦 of 98.77%, 𝑝𝑟𝑒𝑐𝑛 of 96.20%, 𝑟𝑒𝑐𝑎𝑙 

of 95.36%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 95.78% across the dataset. In contrast, the INCRS method attained an 𝑎𝑐𝑐𝑢𝑦 of 

98.22%, 𝑝𝑟𝑒𝑐𝑛 of 95.63%, 𝑟𝑒𝑐𝑎𝑙 of 94.86%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 of 95.18%. The EHO method performed comparatively 

lower with an 𝑎𝑐𝑐𝑢𝑦 of 97.54%, 𝑝𝑟𝑒𝑐𝑛 of 95.00%, 𝑟𝑒𝑐𝑎𝑙 of 94.18%, and 𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒  of 94.65%. These results clearly 

illustrate that the ERPFFTS-INCRS model outperforms both baselines, confirming its robustness and improved 

detection capability. 

Table 4: Result analysis of the ablation study of ERPFFTS-INCRS methodology 

Methodology 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

EHO Algorithm 97.54 95.00 94.18 94.65 

INCRS 98.22 95.63 94.86 95.18 

ERPFFTS-INCRS 98.77 96.20 95.36 95.78 

 

 

Figure 10. Result analysis of the ablation study of ERPFFTS-INCRS methodology 
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5. Conclusion 

In this paper, an ERPFFTS-INCRS model is proposed. This paper aims to develop an effective risk prediction 

model for enhancing the reliability and security of BC financial transactions under uncertain conditions, utilizing 

neutrosophic approaches. Initially, the z-score standardization is used to clean, transform, and organize raw data 

into a structured and meaningful format. Afterwards, the ERPFFTS-INCRS model implements the INCRS method 

for the financial classification process. Finally, the hyperparameter selection of the INCRS method is implemented 

by the design of the EHO method. The experimental evaluation of the ERPFFTS-INCRS approach is examined 

under the MFT dataset. The comparison analysis of the ERPFFTS-INCRS approach revealed a superior accuracy 

value of 98.77% compared to existing methods. 
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