

9th INTERNATIONAL **CONFERENCE** on SUPERCONDUCTIVITY and MAGNETISM

2nd INTERNATIONAL **CONFERENCE on QUANTUM MATERIALS** and TECHNOLOGIES

27th April - 04th May 2024 Liberty Hotels Lykia / Ölüdeniz-Fethiye/TÜRKİYE

Abstract Book

www.icsm2018.org www.icsm2020.org www.icsm2023.org www.icsmforever.org

9th INTERNATIONAL CONFERENCE on SUPERCONDUCTIVITY and MAGNETISM

on QUANTUM MATERIALS and TECHNOLOGIES

27th April – 4th May 2024 Liberty Hotels Lykia / Ölüdeniz - Fethiye / Türkiye www.icsmforever.org

Abstract ID: 1459

INVESTIGATION OF THE PHASE CHANGE DURING SOLID PHASE SYNTHESIS OF $Bi_{1.7}Pb_{0.3}Sr_2Ca_{n-1}Cu_nO_y$ BISMUTH-BASED CUPRATES

D.R. Djurayev^{1,4}, A.A. Turayev^{2,4}, O.G. Turayev^{3,4}

¹Doctor of Physical and Mathematical Sciences, professor ²Doctor of Philosophy in Physical and Mathematical Sciences, (PhD) ³Doctoral student of Bukhara State University, UZBEKISTAN ⁴Bukhara State University, Bukhara, UZBEKISTAN

E-mail: drabbobur@gmail.com

There are different preparation technologies of any kind of cuprates. This article talks about the technology of obtaining bismuth-based cuprates and the aspects that need to be paid attention to in this process. The advantages and disadvantages of obtaining BSCCO cuprate by solid state reaction method are presented. At the same time, it was mentioned why cuprates of this type of superconducting phase appear in several phases instead of one, and these reasons are explained in a simple way. The steps for obtaining BSCCO cuprate by the solid state reaction method are listed in sequence. The constituents of the BSCCO composite material, the role of each element in the mixture was studied under an optical microscope. The formation of the overall structure near the melting temperature was analyzed by microscopic images.

9th INTERNATIONAL CONFERENCE on SUPERCONDUCTIVITY and MAGNETISM

2nd INTERNATIONAL CONFERENCE on QUANTUM MATERIALS and TECHNOLOGIES

27th April – 4th May 2024 Liberty Hotels Lykia / Ölüdeniz - Fethiye / Türkiye www.icsmforever.org

Cryogenics Group

RJT-100 4K GM-JT CRYOCOOLER

SHI's highest-capacity cryocooler delivers an impressive 9.0 W at 4.2 K and features:

- Superior efficiency at 4.2 K
- Excellent temperature stabilizing performance
- · Reduced maintenance costs
- Inverter-driven compressors
- CE and RoHS compliance

Ideal for a variety of applications:

- Superconducting radio frequency cavities
- Superconducting magnet applications
- · Low temperature systems
- Other applications requiring high cooling capacity at 4.2 K

Company profile Sumitomo (SHI) Cryogenics of Europe

As a member of the SHI Cryogenics Group, Sumitomo Cryogenics of Europe GmbH provides high-quality, innovative cryogenic solutions such as cryocoolers, cryopumps and helium compressors for a variety of industries.

9th INTERNATIONAL CONFERENCE on SUPERCONDUCTIVITY and MAGNETISM

2nd INTERNATIONAL CONFERENCE on QUANTUM MATERIALS and TECHNOLOGIES

27th April – 4th May 2024 Liberty Hotels Lykia / Ölüdeniz - Fethiye / Türkiye www.icsmforever.org

PLATINUM

GOLD

SILVER

Sponsors

PLATINIUM

GOLE

SILVER

Institutional Supporters

