
The concept of architectural reliability of
software for ensuring the functioning of request-
free measuring stations

Igor Kovalev1,2,3,4∗, Dmitry Kovalev2,5, Roman Kovalev6, Valeria Podoplelova2,7,
Vasiliy Losev4, Anna Voroshilova1, Dmitry Borovinsky8, and Mavlyuda Gadoeva9
1Siberian Federal University, Krasnoyarsk, Russia
2Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
3 Navoi State University of Mining and Technology, Navoi, Uzbekistan
4Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia
5National Research University "Tashkent Institute of Irrigation and Agricultural Mechanization
Engineers", Tashkent, Uzbekistan
6JSC “Academician M F Reshetnev Information satellite systems”, Zheleznogorsk, Russia
7Sochi State University, Sochi, Russia
8FSBEE HE Siberian Fire and Rescue Academy EMERCOM of Russia, Zheleznogorsk, Russia
9Bukhara State University, Bukhara, Uzbekistan

Abstract. The article proposes the concept of architectural reliability of
software included in the hardware and software complex of request-free
measuring stations. This concept is based on previously completed activities
to shape the appearance of a complex of hardware and software for the
functioning of measuring stations. It is noted that in order to solve problems
related to increasing the architectural reliability of software, the security
functions and information and logical interaction of the components of the
measuring station are essential. Since software architecture is determined by
the concept of architectural design, the work presents the stages of designing
a complex software system. The description provided includes the basic
operations of architectural design, with decomposition necessary to structure
and organize system specifications. The final stage lists the main steps that
should be taken to enhance the strategic influence of the software
architecture on the functionality and reliability of the set of technical means
for ensuring the operation of request-free measuring stations.

1 Introduction

The development of the concept of architectural reliability of software included in the
hardware and software complex of request-free measuring stations is an urgent task. This
follows from the fact that currently in modern satellite navigation the principle of request-
free rangefinder measurements between navigation satellites and the consumer is actively
used [1-3]. The implementation of this principle is that information about satellite coordinates

 Corresponding author: kovalev.fsu@mail.ru

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

is transmitted to the consumer as part of the navigation signal. At the same time, ranges to
navigation satellites are measured simultaneously (synchronously) in automatic mode. To
ensure the correct implementation of the considered principle of query-free rangefinder
measurements, a special method for measuring ranges is required. This method is based on
calculating time delays. In particular, the time delay of the received signal from the satellite
is calculated, which is compared with the delay of the signal generated by the consumer
equipment [4, 5].

Figure 1 shows the circuit for determining consumer location (x, y, z coordinates) using
four navigation satellites (NS) for ranging. Colored thick lines show circles with satellites
located in the center. The radii of the circles correspond to the true ranges, i.e. the true
distances between the satellites and the consumer. The colored thin lines are circles with radii
corresponding to the measured ranges, which differ from the true ranges and are therefore
called pseudo-ranges.

The true range differs from the pseudodistance by an amount equal to the product of the
speed of light by the clock departure b, i.e., the amount of offset of the consumer's clock with
respect to system time. Figure 1 shows the case when the consumer's clock drift is greater
than zero, i.e. the consumer's clock is ahead of the system time, so the measured
pseudodistance is less than the true distance.

Fig. 1. Circuit for determining consumer location (x, y, z coordinates) using four NS for ranging
(source: https://glonass-iac.ru/guide/navfaq.php).

The basic option can only include three NS. However, in this case, measurements must
be made with high accuracy. In fact, the clock readings of the satellites and the consumer
must match. Then it is enough to take measurements of up to three NS to determine the
position of the consumer in space [6].

However, it should be noted that such a coincidence of satellite and consumer clock
readings is not always achieved. Often these values do not match. That is, in real conditions
of satellite navigation, the readings of the clocks that are part of the consumer navigation
equipment (CNE) may differ from the readings of the NS on-board clock. To improve the
method and obtain a correct solution to the navigation problem, one more parameter is added.

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

2

It is necessary to add one more parameter to the previously unknown parameters (three
consumer coordinates). This additional parameter uses the offset between the consumer clock
and the system (onboard) time NS. Thus, to correctly solve a navigation problem, in the
general case, it is necessary that at least four NS are available to the consumer. This
distinguishes this approach from the basic option discussed above.

2 Materials and methods

In order to ensure the functioning of demand-free measuring stations, the following activities
are carried out according to the results of theoretical and experimental studies conducted at
the stage of technical design [7, 8] to form the appearance of a set of technical means and
software for the functioning of measuring stations:

 development of the structural scheme of a set of technical means to ensure the
functioning of the measuring station - a set of technical means to ensure the
functioning of the measuring station (STM-MS);

 determination of the purpose and characteristics of STM-MS components;
 determination of variants of STM-MS constructive execution;
 analysis of measuring equipment that can be used for construction and testing of

STM-MS.
The fulfillment of the listed activities allows to determine the main approaches to the

construction of STM-MS in accordance with the requirements of the technical task at the
stage of technical design of the system. These requirements include:

 analysis of the product design for manufacturability taking into account feedback
from organizations and enterprises that are manufacturers of industrial production;

 development of necessary schematic diagrams, connection diagrams, etc.;
 assessment of the possibility of storage, transportation, as well as installation of the

product at the place of its operation;
 finalization of applications for the development and manufacture of new products

and materials used in the product under development.

Fig. 2. Stages of software architectural design.

To solve the problems related to the increase of architectural reliability of the software,
the functions of security and information-logical interaction of the components of the
measuring station are essential, in particular:

 information protection;
 safety of operating personnel and equipment;
 possibility of information-logical interaction with internal and external components

of STM-MS;

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

3

 transfer of information on functional control of the station elements, temperature-
humidity and power supply parameters, as well as information on unauthorized
intrusion, on the threat of fire.

Software architecture, as a rule, is determined by the concept of architectural design [9].
Figure 2 shows the stages of designing a complex software system.

In this paper, architectural design is understood as the definition of subsystems, control
structure and subsystems interaction, which is a connecting link between the design process
and the requirements development stage. The purpose of architectural design is to describe
the software architecture. At the same time, decomposition is necessary for structuring and
organizing system specifications [10].

A system whose operations (methods) do not depend on services provided by other
subsystems is considered as a subsystem. A subsystem consists of modules. A module is a
system component that provides one or more services for other modules.

3 Results and discussion

3.1 STM-MS architectural design

STM-MS architectural design consists of the following steps:
 system structuring - formation of a set of relatively independent systems;
 control modeling - management of relationships between parts of the system;
 modular decomposition - subsystems are divided into modules.

The result of architectural design is a document showing the architecture of the software
system [11].

 The following architectural models are considered:
 static structural model of the program system - subsystems are developed

independently;
 dynamic process model - organization of processes during the system operation;
 interface model - services provided by each subsystem through a common interface

are defined;
 relationship model - the relationships between the parts of the system are

considered.
Depending on the requirements, different attributes of the model are selected [12]:
1. Performance. A minimum number of subsystems with minimum interaction

between them are responsible for all critical situations. It is better to use large-
modular system components.

2. Protection. This is ensured by a multi-layer structure in which critical system
elements are protected at internal levels.

3. Security. The number of subsystems that affect security should be minimized as
much as possible.

4. Reliability. This is achieved by including redundant components that can be
replaced and updated without interrupting system operation.

5. Maintainability. This is accomplished by using small structural components that can
be easily modified. Programs that create data are separated from the components
that process and use that data.

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

4

3.2 Software Architectural Reliability

Issues related to software architecture are increasingly attracting the attention of researchers
and developers. Software architecture is understood by many authors [13, 14] as a
multifaceted approach to ensure that software meets its intended purpose.

It is obvious that no subject area is already without software. With the help of software,
enterprises can not only achieve their goals, but also define as clearly as possible what exactly
these goals are. Careful attention to software development enables enterprises to achieve
strategically significant goals that can affect their position in the marketplace. This section
suggests strategies that are significant in implementing modern approaches to analyzing and
designing software architecture.

Modern software architecture differs significantly from that used during the nascent
period of the industry. The developer no longer draws simple block diagrams, defining
individual functional modules, or manually writes each application. Modern architecture
offers a detailed and accurate model of the system. The techniques of software architecture
formation assume a detailed analysis of the system before its implementation. Techniques
such as Attribute Driven Design (ADD) [15] ensure that software implemented based on a
pre-formed architecture will accurately fulfill its intended purpose.

There are quite a few examples of using architecture for strategic purposes. One of the
best known is the Common Object Request Broker Architecture (CORBA) [16, 17]. This
architecture serves to link legacy systems, i.e., to integrate systems written in different
languages and to support communication between computers with different hardware
architectures.

CORBA makes it possible to give new life to legacy systems and at the same time quickly
integrate new applications into them, giving enterprises a strategic advantage over
competitors modifying legacy systems. A more recent example is the freely available
integrated development environment Eclipse [18, 19].

Let us focus on current concepts in the field of software architecture, analyzing how
software architecture can influence the formation of management strategy in a system, and
consider a number of possible concrete steps that allow architects to contribute to the
definition of new strategies and models for the development of architectural approach in
STM-MS software development.

3.2.1 General description of program architecture

The architecture of a software system defines its structure, or more precisely, several
structures, each of which includes elements and the relationships between them. Elements
can be computational objects bound by control flow or business objects bound by semantic
constraints.

In general, the architecture design process consists of a systematic decomposition of top-
level elements into sets of smaller elements.

For example, using the ADD approach, the architect chooses a particular decomposition
in an effort to improve certain properties of the final product. Note, however, that each
decomposition tends to degrade some properties. MVC (Model-View-Controller) based
decomposition extends the possibilities of modifying the system, in particular to add new
model views more efficiently. But this decomposition will lead to performance degradation,
since any changes to the Model will have to make a notification to the View element when
any changes to the Model occur. From the architect's point of view, this is an acceptable
compromise, since the system does not operate in real (computer) time, but in expectation of
human perception of changes.

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

5

The process of creating an architecture involves designing a system with specific
properties and functionality, with each such property having a given priority. Starting with
an overall structure that supports all required functionality, the architect methodically
decomposes the functionality and distributes it among the components.

The decomposition process continues until the components are properly detailed. In other
words, an optimal ratio between the characteristics of the given features must be achieved.
Working groups can then proceed with the design and implementation of their subset of
architecture elements.

To professionals familiar with the MVC design pattern, the visual representation of the
model may seem quite informative, but it lacks essential details not understood by users or
designers. Several architecture description languages [20] have been developed to support
detailed architecture specifications, but they have never been widely adopted. Many of the
concepts presented in these languages are implemented in the latest version of UML (Unified
Modeling Language) [21].

A UML diagram allows you to present the interfaces of software modules in detail. To
achieve this, the diagram contains additional information about the interfaces. This is the
request and receive information for each module. In this case, the architect can create
different diagrams to show the component structure, detailing the interactions between
components and their placement in the software architecture.

Then the architecture description can have several “views”. These different views are
used both to display different types of information and to display different software
structures. It is important that the dynamic interactions between elements of a static
architecture are easily described and visualized using a UML sequence diagram.

4 Conclusion

The above description includes the basic operations of architecture design, but does not
reflect a typical architecture development process. In most cases, an architect starts with a
predefined, reference architecture. This may be an actual industry standard (e.g., J2EE) or a
prescription (e.g., the Command, Control, Communications, Computer, Intelligence,
Surveillance and Reconnaissance architecture platform provided for special systems in the
United States). Reference architectures provide a high-level decomposition that establishes
the basic characteristics of the structure's properties, but leaves the architect free to perform
low-level decompositions that more accurately define the quality of the software product's
properties.

Having chosen a reference architecture, it is possible to use the components developed
with its help as a basis for design. An important factor in choosing an architecture is the
commercial community of manufacturers of standard components that is formed around it.
The larger and more diverse it is, the more likely you are to acquire components that allow
you to significantly accelerate product development. Besides, there are templates, references,
examples and other assets for this architecture.

This article concludes by listing the key steps that should be taken to enhance the strategic
impact of the software architecture on STM-MS functionality and reliability.

1. A deployed, state-of-the-art, proven STM-MS software architecture should be
developed. Keep in mind that this is the first but most important step in the project.
It is recommended to use UML or similar notations to describe the architecture so
that these descriptions are accurate and unambiguous.

2. Coordination of separate STM-MS software architectures used in the same
organization. Techniques are used to form software product series for solutions that
are closely related to each other.

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

6

3. Ensuring close coordination of processes related to the development of a set of
technical means by organizing them on the basis of architecture. ADD or similar
architecture design techniques should be used to support consistency between the
software architecture and the hardware suite.

4. Trade-offs should be made to support the realization of specified system properties
and, ultimately, the performance goals of the entire hardware-software complex.
Architectural representations should be created that show the correspondence
between goals and architectural decisions and the evolution of the architecture.

5. Continuous study of new technological and software solutions, analyzing the
activities of industry associations formed around a particular technology (e.g.,
Object Management Group). It is necessary to track software architectures that are
defined by groups specializing in a particular subject area, such as space navigation
or telecommunications, etc.

By consistently following these steps, it is possible to ensure that the software architecture
helps to define goals and achieve them with high reliability and readiness of the resulting IT
applications for STM-MS.

References

1. H.Kh. Saad, M.A. Loban, Reports of the Belarusian State University of Informatics and
Radioelectronics 20(8), 51-58 (2022)

2. P.A. Kudriasheva, A.S. Davydenko, Computer Science, Telecommunications and
Management 13(2), 14-23 (2020)

3. I. Kartsan, Modern Innovations, Systems and Technologies 1(2), 64-71 (2021).
https://doi.org/10.47813/2782-2818-2021-1-2-64-71

4. I.V. Kovalev, et al., Transportation Research Procedia 68, 796-801 (2023).
https://doi.org/10.1016/j.trpro.2023.02.111.

5. V.N. Tyapkin et al., Journal of the Siberian Federal University. Mathematics and Physics
12(6), 772-779 (2019)

6. R. Kovalev, et al., Spacecraft and technology 2(20), 72-75 (2017)

7. I.V. Kovalev et al., IOP Conf. Ser.: Earth Environ. Sci. 1112, 012156 (2022).
https://doi.org/10.1088/1755-1315/1112/1/012156

8. I. Kovalev et al., E3S Web of Conferences 417, 06008 (2023).
https://doi.org/10.1051/e3sconf/202341706008

9. J. Manishaben, SSRN Electronic Journal 6(11), 2452-2454 (2019).
https://doi.org/10.2139/ssrn.3772387

10. A.A. Mitsyuk, N.A. Jamgaryan, Proceedings of the Institute of System Programming
RAS 33(3), 7-26 (2021)

11. M. Richards, N. Ford, Fundamentals of Software Architecture: An Engineering
Approach (O'Reilly Media, 2020), p. 432

12. I.N. Kartsan, Modern Innovations, Systems and Technologies 3(4), 0322-0331 (2023).
https://doi.org/10.47813/2782-2818-2023-3-4-0322-0331

13. R. N. Taylor, A. van der Hoek, Software Design and Architecture: the once and future
focus of software engineering Proceedings of Future of Software Engineering (FOSE
'07), Minneapolis, MN, USA, 226-243 (2007). https://doi.org/10.1109/FOSE.2007.21

14. O. Sievi-Korte, I. Richardson, S. Beecham, Journal of Systems and Software 158,
110400 (2019). https://doi.org/10.1016/j.jss.2019.110400

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

7

15. H. Reza, Journal of Software Engineering and Applications 10, 483-499 (2017)

16. A. Gupta, S. Kar, IETE Technical review 19, 31-45 (2002).
https://doi.org/10.1080/02564602.2002.11417009

17. B. Kenneth, CORBA: The Common Object Request Broker Architecture. In: Reliable
Distributed Systems (Springer, New York, NY., 2005). https://doi.org/10.1007/0-387-
27601-7_6

18. J. desRivieres, J. Wiegand, IBM Systems Journal 43(2), 371-383 (2004).
https://doi.org/10.1147/sj.432.0371

19. B. Nuryyev, S. Nadi, N.U. Bhuiyan, L. Banderali, Challenges of Implementing Software
Variability in Eclipse OMR: An Interview Study Proceedings of IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), Madrid, ES, 31-40 (2021). https://doi.org/10.1109/ICSE-
SEIP52600.2021.00012

20. W. Eoin, H. Rich, Architecture Description Languages in Practice Session Report.
Proceedings of 5th Working IEEE/IFIP Conference on Software Architecture, WICSA,
243-246 (2005). https://doi.org/10.1109/WICSA.2005.15

21. F. Pecoraro, D. Luzi, International Journal of Environmental Research and Public Health
19(20), 13456 (2022). https://doi.org/10.3390/ijerph192013456

E3S Web of Conferences 525, 05002 (2024)

GEOTECH-2024
https://doi.org/10.1051/e3sconf/202452505002

8

