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Abstract—This paper is devoted to constructing a new optimal quadrature formula in the Gilbert
space of real-valued, periodic functions. Here, the norm of the error functional is calculated to obtain
the upper bound for the absolute error of the considered quadrature formula. For this the extremal
function of the quadrature formula is used. As well, optimal coefficients of the quadrature formula
that give the minimum value to the norm of the error functional are found, and the norm of the error
functional for the optimal quadrature formula is calculated. It is shown that the value of the norm of
the found error functional is less than the value of the norm of the error functional for the constructed

optimal quadrature formula in the space ˜L2

(1)
.
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1. INTRODUCTION, STATEMENT OF THE PROBLEM

It is known that fractional integration and fractional differentiation are as old as integer integration
and differentiation. For a long time they developed slowly. Though, in the last years, there has been a
growing interest in fractional calculus because of its applications in science and technology. Fractional
derivatives have provided excellent tools for characterizing memory and hereditary properties of various
materials and processes. There are several analytical methods which are used to solve very special
(mostly linear) fractional differential and integral equations, such as the Fourier transform, the Laplace
transform, the Mellin transform, and the Green function methods.

It should be noted that the existence and uniqueness of solutions of boundary and initial problems
posed for differential and integro-differential equations of fractional or integer orders are mainly investi-
gated analytically. In particular, in [1] authors considered an inverse boundary value problem for a mixed
type partial differential equation with Hilfer operator of fractional integro-differentiation in a positive
rectangular domain and with spectral parameter in a negative rectangular domain. There, using the
Fourier series method, the solutions of direct and inverse boundary value problems were constructed in
the form of a Fourier series. In the work [2], in three-dimensional domain the single-value solvability
of a mixed problem for a Hilfer type nonlinear partial differential equation of the even order with small
positive parameters in mixed derivatives was considered. The regular solution of the fractional differential
equation was studied in the case 0 < α < 1.

Note also that, finding explicit analytical solutions to the corresponding problems is very difficult.
Therefore, developing efficient and reliable numerical methods for solving general fractional differential
and integral equations is useful in application. There are many recent works (for example, see the books
[3, 4] and references therein) which are mainly devoted to study of numerical methods for fractional
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integrals, fractional derivatives, and fractional differential equations. For instance, in the work [5]
a mathematical model and numerical method for simulation of the continuous casting process in a
variable in time domain are presented. The mathematical model of the process is a Stefan problem
with prescribed convection and non-linear Robin boundary condition. Considered differential equation
is approximated by a finite difference scheme. The work [6] is devoted to consideration of a homogeneous
Dirichlet initial-boundary value problem for a quasilinear parabolic equation with Caputo fractional time
derivative. There, the equation is approximated by two finite-difference schemes: implicit and fractional
step scheme. In [7] a mean field game model in the interpretation of optimal control is investigated
theoretically and numerically. In the work [8] the author considered a positive semi-definite eigenvalue
problem for second-order self-adjoint elliptic differential operator defined on a bounded domain in the
plane with smooth boundary and Dirichlet boundary condition. There, the original differential eigenvalue
problem is approximated by the finite element method with numerical integration and Lagrange curved
triangular finite elements of arbitrary order.

Generally, formulas of numerical integrations play the main role in numerical solving of fractional
and integer order differential and integral equations. Because the method of numerical integration is one
of the methods for approximate solutions of these equations. The solutions of these equations can be
expressed by the following weighted integrals

I(p, ϕ) =

b
∫

a

p(x)ϕ(x)dx,

where p(x) is a given weight function, as usual it is integrable, ϕ(x) is a sufficiently smooth function from
a Banach space B. Depending on the weight function p(x) we can get the following type of integrals:

a) regular integrals for p(x) = 1;
b) weakly singular integrals for p(x) = (x− t)−α, 0 < α < 1;
c) singular integrals for p(x) = (x− t)−1;
d) oscillating integrals for p(x) = exp(2πiωx), where ω is a sufficiently large real number.
As usual, in the theory of quadrature formulas, the integral I(p, ϕ) is approximated, for example, by

the following quadrature sum

S(p, ϕ) =

N
∑

β=0

Cβϕ(xβ).

It should be noted that the quadrature sum S(p, ϕ) can has more general form. Then, we get the
quadrature formula of the form

I(p, ϕ) ∼= S(p, ϕ), (1)

where Cβ are coefficients and xβ (∈ [a, b]) are nodes of the formula.
In order to construct the certain quadrature formula it is necessary to find the coefficients Cβ and the

nodes xβ . Depending on the methods of finding the coefficients and nodes there are several approaches
of construction of quadrature formulas:

classical quadrature formulas, for example, Rectangular, Trapezoidal, Simpson, Newton-Cotes,
Gauss quadrature formulas (see, textbook [9]);

Monte-Carlo methods which are based on the methods of the probability theory;
optimal quadrature formulas in the sense of Sard (was started in the work [10] by A. Sard),
the best quadrature formulas which were firstly constructed by S. M. Nikolskii (see, for in-

stance, [11]),
optimal cubature formulas were firstly considered and obtained by S. L. Sobolev, see, for in-

stance, [12].
It should be noted that the process of construction of optimal formulas are based on the methods of

functional analysis.
We recall that the difference between the integral I(p, ϕ) and the quadrature sum S(p, ϕ), i.e.,

(�, ϕ) = I(p, ϕ) − S(p, ϕ),
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is called the error for the quadrature formula (1) and it defines the linear functional � on the functions ϕ
of the Banach space B. The functional � is said to be the error functional of the quadrature formula (1).

The absolute value of the error for the quadrature formula (1) is estimated as follows

|(�, ϕ)| ≤ ||�||B∗ ||ϕ||B ,

where B∗ is the conjugate space to the Banach space B. In addition, the norm ||�||B∗ of the error
functional � is bounded and it depends on coefficients Cβ and nodes xβ of the formula (1).

Let us remember that the problem of finding the minimum of the norm of the error functional � by
coefficients Cβ and nodes xβ , is called the Nikolskii problem or the best quadrature formula problem,
and the obtained formula is called the optimal quadrature formula in the sense of Nikolskii or the
best quadrature formula. As we said above this problem was first considered by S. M. Nikolskii.
Minimization of the norm of the error functional � by coefficients Cβ when the nodes xβ are prescribed
is called Sard’s problem. And the obtained formula is called the optimal quadrature formula in the
sense of Sard. Since this problem was first studied by A. Sard.

Since in the present paper we consider construction of a optimal quadrature formula we first give a
brief review on optimal formulas.

In various Hilbert and Banach spaces of periodic and non-periodic functions, optimal quadrature
formulas of the form (1) with weight function p(x) = 1 have been constructed by many researchers.
The results for this case can be found, for instance, in the books [11, 13] and the literature in them. In
particular, some recent results on optimal quadrature formulas are obtained in the works [14, 15].

Numerical integration formulas for weakly singular integrals with weight function p(x) = (x− t)−α,
where 0 < α < 1, are presented, for instance, in [3, 4]. Recently, in [16], for the functions from the

Sobolev space L
(m)
2 optimal quadrature formulas were constructed, for numerical approximation of the

Abel generalized integral equations.

There are special quadrature formulas for numerical calculations of Cauchy type singular integrals.
Some of resent results on numerical calculation of singular integrals with Cauchy kernel p(x) = (x−
t)−1 can be found, for example, in the works [17–19].

It is known that the Fourier transforms are widely used in science and technology, particularly, in the
problems of Computed Tomography (see, for instance [20, 21]). Since in practice we have finite discrete
values of a function, we have to approximately calculate the Fourier transforms. Therefore, one has to
consider the problem of approximate calculation of the integral with weight function p(x) = exp(2πiωx).
Particularly, the works [22, 23] are devoted to approximate calculation of Fourier integrals in the Hilbert

space W (m,m−1)
2 of non-periodic functions. Recently, in the works [20, 21]) authors constructed optimal

quadrature formulas for numerical calculation of Fourier integrals in the Sobolev space L(m)
2 , where L(m)

2
is the Hilbert space of functions which are square integrable with mth order derivative. Compared with
the optimal quadrature formulas in non-periodic case constructed in [20], the approximation formula for
the periodic case constructed in the work [21] is much simpler, therefore it is easy to implement and costs
less computation even though both provide the similar performances.

Therefore, construction of new optimal quadrature formulas, which are simple in implementation, in
various Hilbert spaces of periodic functions is very important.

We note that results of this paper is the continuation of the results of the paper [24]. Here we solve

the problem of construction of optimal quadrature formula in the Hilbert space ˜W
(1,0)
2 (0, 1] of periodic

functions.

We recall the definition of this Hilbert space. The space ˜W
(1,0)
2 [0, 1] is the Hilbert space of periodic,

real-valued functions ϕ(x), 0 < x ≤ 1, that are absolute continuous and square integrable with first
order derivative. The inner product of two functions ϕ and ψ in this space is defined as follows

〈ϕ,ψ〉
˜W

(1,0)
2

=

1
∫

0

(ϕ′(x) + ϕ(x))(ψ′(x) + ψ(x))dx (2)
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and the corresponding norm of the function ϕ has the form

||ϕ||
˜W

(1,0)
2

=

⎛

⎝

1
∫

0

(

ϕ′(x) + ϕ(x)
)2

dx

⎞

⎠

1/2

.

We note every function ϕ in this space satisfies the following periodicity condition
ϕ(x+ β) = ϕ(x) for x ∈ R and β ∈ Z.

Here, we consider a quadrature formula of the following form
1

∫

0

ϕ(x)dx ∼=
N
∑

k=1

Ckϕ(hk), (3)

where ϕ(x) ∈ ˜W
(1,0)
2 , Ck are the coefficients of the quadrature formula and N ∈ N, h = 1

N .
The error of the quadrature formula (3) is given as follows

1
∫

0

ϕ(x)dx −
N
∑

k=1

Ckϕ(hk) =

1
∫

0

[(

ε(0,1](x)−
N
∑

k=1

Ckδ(x− hk)

)

∗ φ0(x)

]

ϕ(x)dx = (�, ϕ), (4)

where ε(0,1](x) is the characteristic function of the interval (0, 1], δ is the Dirac delta-function, φ0(x) =
∑∞

β=−∞ δ(x− β), * is the convolution operation and

�(x) =

(

ε(0,1](x)−
N
∑

k=1

Ckδ(x − hk)

)

∗ φ0(x) (5)

is the periodic error functional of the quadrature formula (3). Henceforth, we say the error functional
instead of the periodic error functional.

The error (4) of the quadrature formula (3) is a linear functional in ˜W2
(1,0)∗

(0, 1], where ˜W2
(1,0)∗

(0, 1]

is the conjugate space for the space ˜W2
(1,0)

(0, 1]. The absolute value of the error (4) is estimated by the
Cauchy–Schwarz inequality as follows

|(�, ϕ)| ≤ ||�||
˜W2

(1,0)∗ ||ϕ||
˜W2

(1,0) ,

where
||�||

˜W2
(1,0)∗ = sup

||ϕ||
˜W2

(1,0)=1
|(�, ϕ)| (6)

is the norm of the error functional (5).
The problem of constructing the optimal quadrature formula (3) is as follows.
Problem 1. Find the coefficients C̊k that give the minimum value to the quantity ||�||

˜W2
(1,0)∗ , and

calculate the following quantity
∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

˜W2
(1,0)∗ = inf

Ck

||�||
˜W2

(1,0)∗ .

We note that the coefficients C̊k which are the solution for Problem 1 are called the optimal
coefficients and the quadrature formula (3) with these coefficients is said to be the optimal quadrature

formula in the sense of Sard [10] in the Hilbert space ˜W
(1,0)
2 .

Further, in next sections we solve Problem 1.
The rest of the paper is organized as follows. In Section 2 we present the main results as Theorems 1

and 2. The section 3 is devoted to calculation the norm of the error functional and to obtain the system of
linear equations for optimal coefficients which give the minimum value to the norm of the error function.
In section 4 this system is solved and explicit expressions of the coefficients (which are optimal) for the

optimal quadrature formula (3) are found. Finally, in Section 5 we calculate the quantity
∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

˜W2
(1,0)∗

which is the sharp upper bound for the error of the optimal quadrature formula (3).
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2. MAIN RESULTS

To calculate the norm (6), we use the extremal function ψ� for the error functional � (see [12]) that
satisfies the following equality

(�, ψ�) = ||�||
˜W2

(1,0)∗ ||ψ�||
˜W2

(1,0) . (7)

Since ˜W2
(1,0)

is the Hilbert space by the Riesz theorem for the error functional � for any ϕ from ˜W
(1,0)
2

there exists an element ψ� ∈ ˜W
(1,0)
2 that satisfies the equality

(�, ϕ) = 〈ψ�, ϕ〉
˜W2

(1,0) , (8)

where 〈ψ�, ϕ〉
˜W2

(1,0) is the inner product of the functions ψ� and ϕ defined by the formula (2) for m = 1.

In addition, the equality ||�||
˜W2

(1,0)∗ = ||ψ�||
˜W2

(1,0) is fulfilled. So, taking into account the equality (7),

we derive

(�, ψ�) = ||�||2
˜W2

(1,0)∗ . (9)

Integrating by parts the right-hand side of (8), keeping in mind periodicity of functions, for ψ� we have

ψ′′
� (x)− ψ�(x) = −�(x). (10)

The solution of differential equation (10) is given in the work [25, Theorem 1], and it is equal to the
following

ψ�(x) = 1 +
N
∑

k=1

CkG1(x− hk), (11)

where

G1(x) = −
∞
∑

β=−∞

e−2πiβx

(2πβ)2 + 1
, (12)

i2 = −1 and it is known that
∫ 1
0 G1(x− y)dy = −1.

Now, we give the main results of this work.

Theorem 1. If ϕ ∈ ˜W
(1,0)
2 , then the following formulas are valid for the optimal coefficients of

the quadrature formula (3) with the error functional (5)

C̊k =
2
(

eh − 1
)

eh + 1
, k = 1 , 2 , ...,N .

Theorem 2. In the space ˜W
(1,0)
2 for the norm of the error functional (5) of the optimal

quadrature formula, the following holds
∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

2

˜W
(1,0)
2

= 1−
2
(

eh − 1
)

h (eh + 1)
. (13)

Remark. It should be noted that from (13) we obtain

||̊�||2
˜W

(1,0)
2

=
1

12
h2 − 1

120
h4 +O(h6).

This is less than the sharp error bound

||̊�||2
˜L
(1)
2

=
1

12
h2

of the optimal quadrature of the form (3) in the space L(1)
2 (0, 1] (see [9, Theorem 4.5, page 205]).

In order to prove Theorem 1 we calculate the norm of the error functional (5) in the next section.
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3. THE NORM FOR THE ERROR FUNCTIONAL OF THE QUADRATURE FORMULA

Initially, to calculate the norm of the error functional �, simplifying the error functional of the form (5),
we can rewrite it in the following form

�(x) =

∞
∑

β=−∞
ε(0,1](x) ∗ δ(x− β)−

N
∑

k=1

Ck

∞
∑

β=−∞
δ(x− hk) ∗ δ(x− β)

=

∞
∑

β=−∞

∞
∫

−∞

ε(0,1](y)δ(x − β − y)dy −
N
∑

k=1

∞
∑

β=−∞

∞
∫

−∞

δ(y − hk)δ(x − β − y)dy

=

∞
∑

β=−∞
ε(0,1](x− β)−

N
∑

k=1

Ck

∞
∑

β=−∞
δ(x− β − hk) = 1−

N
∑

k=1

Ck

∞
∑

β=−∞
δ(x− β − hk). (14)

Using equalities (9), (11) and (14) we have

||�||2
˜W2

(1,0)∗ =

1
∫

0

⎛

⎝1−
N
∑

k=1

Ck

∞
∑

β=−∞
δ(x− hk − β)

⎞

⎠

(

1 +

N
∑

k′=1

Ck′G1(x− hk′)

)

dx.

Hence we get the following for square of the norm of the error functional

||�||2
˜W2

(1,0)∗ = 1 +

N
∑

k=1

Ck

1
∫

0

G1(x− hk)dx −
N
∑

k=1

Ck

∞
∑

β=−∞

∞
∫

−∞

ε(0,1](x)δ(x − hk − β)dx

−
N
∑

k=1

N
∑

k′=1

CkCk′

∞
∑

β=−∞

∞
∫

−∞

ε(0,1](x)G1(x− hk′)δ(x− hk − β)dx

= 1−
N
∑

k=1

Ck −
N
∑

k=1

Ck

∞
∑

β=−∞
ε(0,1](hk + β)−

N
∑

k=1

N
∑

k′=1

CkCk′

×
∞
∑

β=−∞
ε(0,1](hk + β)G1(hk + β − hk′).

Taking into account
1

∫

0

G1(x− hk)dx = −1, for k = 1, 2, ..., N

and using equality (12) for the square of the norm of the error functional of the quadrature formula, we
obtain the following analytical expression

||�||2
˜W2

(1,0)∗ =
N
∑

k=1

N
∑

k′=1

CkCk′

∞
∑

β=−∞

e−2πiβh(k−k′)

(2πβ)2 + 1
− 2

N
∑

k=1

Ck + 1. (15)

For finding the minimum of the norm of the error functional �, we consider the following function

L(C1, C2, ..., CN ) = ||�||2
˜W2

(1,0)∗ .

To solve Problem 1, taking the partial derivatives of the function L with respect to Ck (k = 1, N ) we get

∂L

∂Ck
= 0, for k = 1, 2, ..., N.
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They give the following system of the linear equations with respect to Ck:
N
∑

k′=1

Ck′

∞
∑

β=−∞

e−2πiβh(k−k′)

(2πβ)2 + 1
= 1, for k = 1, ..., N. (16)

By virtue of equations (16), we see that the extremal function ψ�(x), defined by equality (11), vanishes
at the nodes of the quadrature formula (3).

The solution of the system (16) gives the minimum to the square of the norm (15) for the error
functional (5) in certain values of Ck = C̊k (k = 1, 2, ..., N ), C̊k are called the optimal coefficients.

4. THE OPTIMAL COEFFICIENTS OF THE QUADRATURE FORMULA (3)

In this section we prove Theorem 1. To do this, we seek the solution of the system (16) in the form

C̊k = C(h), for k = 1, 2, ..., N, (17)

where C(h) is an unknown function of h.
Putting (17) into (16), we obtain

N
∑

k′=1

C(h)

∞
∑

β=−∞

e−2πiβh(k−k′)

(2πβ)2 + 1
= 1, for k = 1, 2, ..., N.

Since the infinite series in (16) is convergent, we can rewrite the last system as follows

C(h)
∞
∑

β=−∞

e−2πiβhk

(2πβ)2 + 1

N
∑

k′=1

e2πiβhk
′
= 1. (18)

It is obvious that
N
∑

k′=1

e2πiβhk
′
=

e2πiβh(1− e2πiβ)

1− e2πiβh
=

{

0, if β �= γN,

N, if β = γN.
(19)

where β, γ ∈ Z and N = 1
h .

Taking into account (19), we write equation (18) as follows

C(h)
∞
∑

γ=−∞

e−2πiγNhk

(2πγN)2 + 1
N = 1.

From the last equation and taking into account e−2πiγNhk = 1 (k = 1, 2, ..., N and γ ∈ Z) we obtain the
following

C(h) = h

( ∞
∑

γ=−∞

1

(2πγN)2 + 1

)−1

=
(2π)2

h

( ∞
∑

γ=−∞
f(γ)

)−1

, (20)

where

f(γ) =
1

(

γ − ih
2π

) (

γ + ih
2π

) . (21)

To calculate the sum the series in (20) we use the following well-known formula from the residual
theory (see [25], p. 296)

∞
∑

γ=−∞
f(γ) = −

∑

z1,z2,...,zn

res(π cot(πz) f(z)), (22)

where z1, z2, ..., zn are poles of the function f(z).
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From the expression (21) we have f(z) = 1

(z− ih
2π )(z+

ih
2π )

. It is understandable that z1 =
ih
2π and

z2 = − ih
2π are the poles of the first order of the function f(z). After taking into account the formula

(22) we have
∞
∑

γ=−∞
f(γ) = −

∑

z1,z2

res(π cot(πz) f(z)). (23)

Since

res
z=z1

(π cot(πz) f1(z)) = lim
z→z1

π cot(πz)

z + ih
2π

=
π2

i h
cot

ih

2

and

res
z=z2

(π cot(πz) f(z)) = lim
z→z2

π cot(πz)

z − ih
2π

=
π2

i h
cot

i h

2

from (23) we get
∞
∑

γ=−∞
f(γ) = −2π2

i h
cot

i h

2
.

Using the well-known formula cot z = ez i+e−z i

ez i−e−z i i, after some simplifications for the above series, we
obtain the following result

∞
∑

γ=−∞
f(γ) =

2π2

h

eh + 1

eh − 1
. (24)

Therefore, from (20) and (24) we get

C(h) =
2(eh − 1)

eh + 1
. (25)

From (17) and (25) the assertion of Theorem 1 follows, i.e., for the optimal coefficients of the
quadrature formula (3) we have the form

C̊k =
2(eh − 1)

eh + 1
, for k = 1, 2, ..., N. (26)

And so, Theorem 1 is proved.

5. CALCULATION OF THE NORM FOR THE ERROR FUNCTIONAL OF THE OPTIMAL
QUADRATURE FORMULA (3)

In this section we prove Theorem 2. To do this, let’s simplify ||�||2 which is defined by expression (15)

∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

2

˜W2
(1,0)∗ =

N
∑

k=1

N
∑

k′=1

C̊kC̊k′

∞
∑

β=−∞

e−2π iβh(k−k′)

(2πβ)2 + 1
− 2

N
∑

k=1

C̊k + 1

=

N
∑

k=1

C̊k

⎡

⎣

N
∑

k′=1

C̊k′

∞
∑

β=−∞

e−2π i βh(k−k′)

(2πβ)2 + 1
− 1

⎤

⎦ −
N
∑

k=1

C̊k + 1.

Hence, taking into account (16) for the square of ||̊�||, we have

∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

2

˜W2
(1,0)∗ = 1−

N
∑

k=1

C̊k.
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From equality (26), we finally obtain for the square of the norm for the error functional
∣

∣

∣

∣

∣

∣̊�
∣

∣

∣

∣

∣

∣

2

˜W2
(1,0)∗ = 1− 2(eh − 1)

h(eh + 1)
.

Thus, Theorem 2 is completely proved.

6. CONCLUSIONS

In the present paper, the optimal quadrature formula in the sense of Sard is constructed in the

space ˜W
(1,0)
2 (0, 1] of periodic, real-valued functions to an approximation of the Fourier integrals with

ω = 0. Here, we found analytical forms for coefficients of the constructed optimal quadrature formula. In
addition, we calculated the norm of the error functional for the optimal quadrature formula and obtained
that this norm is less than the norm of the error functional for the optimal quadrature formula in the

space ˜L2
(1)

(0, 1] of periodic, real valued functions.

ACKNOWLEDGMENTS

We are very thankful to professor Kh.M. Shadimetov for discussing the results of this work.

REFERENCES
1. T. K. Yuldashev and B. J. Kadirkulov, “Inverse boundary value problem for a fractional differential equations

of mixed type with integral redefinition conditions,” Lobachevskii J. Math. 42, 649–662 (2021).
2. T. K. Yuldashev, B. J. Kadirkulov, and R. A. Bandaliyev, “On a mixed problem for Hilfer type fractional

differential equation with degeneration,” Lobachevskii J. Math. 43, 263–274 (2022).
3. C. Li and F. Zeng, Numerical Methods for Fractional Calculus (CRC, New York, 2015).
4. D. Baleanu, K. Diethelm, E. Scalesm, and J. J. Trujillo, Fractional Calculus: Models and Numerical

Methods, 2nd ed. (World Scientific, Singapore, 2016), Vol. 5.
5. A. Lapin and E. Laitinen, “A numerical model for steel continuous casting problem in a time-variable

domain,” Lobachevskii J. Math. 41, 2664–2672 (2020).
6. A. Lapin and K. O. Levinskaya, “Numerical solution of a quasilinear parabolic equation with a fractional time

derivative,” Lobachevskii J. Math. 41, 2673–2686 (2020).
7. A. Lapin, S. Lapin, and S. Zhang, “Approximation of a mean field game problem with Caputo time-fractional

derivative,” Lobachevskii J. Math. 42, 2876–2889 (2021).
8. S. I. Solov’ev, “Quadrature finite element method for elliptic eigenvalue problems,” Lobachevskii J. Math. 38,

856–863 (2017).
9. A. M. Burden, J. D. Faires, and R. L. Burden, Numerical Analysis, 10th ed. (Cengage Learning, Boston,

MA, 2016).
10. A. Sard, “Best approximate integration formulas; best approximation formulas,” Am. J. Math. 71, 80–91

(1949).
11. S. M. Nikolskii, Quadrature Formulas (Nauka, Moscow, 1988) [in Russian].
12. G. V. Demidenko and V. L. Vaskevich, Selected Works of S. L. Sobolev (Springer, New York, 2006).
13. S. L. Sobolev and V. L. Vaskevich, The Theory of Cubature Formulas (Kluwer Academic, Dordrecht, 1997).
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