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of Fourier integrals in the space W
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Abstract. The present paper is devoted to construction of an optimal
quadrature formula for approximation of Fourier integrals in the Hilbert space
W

(1,0)
2 [a, b] of non-periodic, complex valued functions. Here the quadrature sum

consists of linear combination of the given function values on uniform grid. The
di�erence between integral and quadrature sum is estimated by the norm of the
error functional. The optimal quadrature formula is obtained by minimizing the
norm of the error functional with respect to coe�cients. In addition, analytic
formulas for optimal coe�cients are obtained using the discrete analogue of the
di�erential operator d2/dx2−1. Further, the order of convergence of the optimal
quadrature formula is studied.
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1 Introduction

In [1] and [2], based on Sobolev method, the problem of construction of optimal
quadrature formulas for numerical calculation of Fourier coe�cients

I(ϕ) =

1Z
0

e2πiωxϕ(x) dx (1.1)

with ω ∈ Z was studied in Hilbert spaces L
(m)
2 (0, 1) and W

(m,m−1)
2 (0, 1),

respectively. In these works explicit formulas of optimal coe�cients were obtained
for m ≥ 1. In particular, for the case m = 1 the order of convergence of optimal
quadrature formulas was studied.

In [5] authors studied approximate computation of univariate Fourier
coe�cients for the standard Sobolev spaces Hs of periodic and non-periodic
functions with an arbitrary integer s ≥ 1. They found matching lower and upper
bounds on the minimal worst case error of algorithms that use n function or
derivative values. They also found sharp bounds on the information complexity
which is the minimal n for which the absolute or normalized error is at most ε.

It should be noted that in practice due to the fact that we have discrete values
of an integrand the Fourier transforms are reduced to approximation of integrals of
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type (1.1) with ω ∈ R. For example, the problem of X-ray Computed Tomography
(CT) is to reconstruct the function from its Radon transform. One of the widely
used analytic methods of CT reconstruction is the �ltered back-projection method
in which the Fourier transforms are used (see [4]).

In [3] was studied the problem of construction of optimal quadrature formulas
in the sense of Sard for approximate calculation of Fourier integrals of the form
(1.1) with ω ∈ R in the space L

(1)
2 .

It should be noted for numerical calculation of integrals (1.1) with real ω a
quadrature formula with explicit coe�cients is required. Therefore, in the present
work we study the problem of construction of optimal quadrature formulas in
the sense of Sard for approximate calculation of Fourier integrals of the form
(1.1) with ω ∈ R in the space W

(1,0)
2 . We obtain explicit formulas for optimal

coe�cients and calculate the norm of the error functional of the obtained optimal
quadrature formula. We note that the obtained optimal quadrature formula can
be used for approximation of Fourier integrals and reconstruction of a function
from its discrete Radon transform.

2 Construction of optimal quadrature formula

We examine the following quadrature formula

1Z
0

e2πiωxϕ(x) dx ∼=
NX
β=0

Cβϕ(hβ) (2.1)

accompanied by the error

(`, ϕ) =

1Z
0

e2πωixϕ(x) dx−
NX
β=0

Cβϕ(hβ) (2.2)

where

(`, ϕ) =

∞Z
−∞

`(x)ϕ(x) dx

and respective error functional

`(x) = e2πiωxε[0,1](x)−
NX
β=0

Cβδ(x− hβ). (2.3)

Here i2 = −1, ω ∈ R with ω 6= 0, Cβ are coe�cients of the formula (2.1), h = 1/N ,
N ∈ N, ε[0,1](x) is the characteristic function of the interval [0, 1], and δ is Dirac's
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delta-function. Function ϕ belongs to the space W
(1,0)
2 [0, 1] which is de�ned as

W
(1,0)
2 [0, 1] = {ϕ : [0, 1] → C | ϕ is abs.cont

and ϕ′ ∈ L2[0, 1]},

the Hilbert space of complex valued functions.
The inner product in this space is de�ned by the equality

〈ϕ,ψ〉 =

1Z
0

(ϕ′(x) + ϕ(x))(ψ̄′(x) + ψ̄(x)) dx, (2.4)

where ψ̄ is the complex conjugate function to the function ψ and the semi-norm
of the function ϕ is de�ned by the formula‚‚‚ϕ|W (1,0)

2 (0, 1)
‚‚‚ = 〈ϕ,ϕ〉

1
2 , (2.5)

and
1R
0

(ϕ′(x) + ϕ(x))(ϕ̄′(x) + ϕ̄(x)) dx <∞.

We note that the coe�cients Cβ of the formula (2.1) depend on ω and h, i.e.,
Cβ = Cβ(ω, h).

The error (2.2) of the quadrature formula (2.1) is a linear functional in

W
(1,0)∗
2 [0, 1], where W

(1,0)∗
2 [0, 1] is the conjugate space to the space W

(1,0)
2 [0, 1].

The norm of the error functional (2.3) de�ned as

‖`‖
W

(1,0)∗
2 [0,1]

= sup
‖ϕ‖

W
(1,0)
2 [0,1]

=1

|(`, ϕ)| (2.6)

By the Cauchy-Schwarz inequality the absolute value of the error (2.2) is
estimated as

|(`, ϕ)| ≤ ‖ϕ‖
W

(1,0)
2 [0,1]

· ‖`‖
W

(1,0)∗
2 [0,1]

,

The problem of construction of the optimal quadrature formula (2.1) in the
sense of Sard [6] consists in �nding the minimum of the norm (2.6) of the error
functional ` by coe�cients Cβ when the nodes are �xed. We note that here
distances between neighbor nodes of the formula (2.1) are equal. This problem,
for the quadrature formulas of the form (2.1) with ω = 0, was �rst studied in

the space W
(m,m−1)
2 in [7], where W

(m,m−1)
2 is the space of real-valued functions

which are square integrable with mth generalized derivative.
Therefore, for constructing optimal quadrature formulas of the form (2.1) in

the sense of Sard in the space W
(1,0)
2 [0, 1] we need to solve the following problem.

Problem 1 Find the coe�cients C̊β that give minimum value to ‖`‖
W

(1,0)∗
2 [0,1]

,

and calculate ‚‚‚˚̀‚‚‚
W

(1,0)∗
2 [0,1]

= inf
C

β

‖`‖
W

(1,0)∗
2 [0,1]

.
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Further, we solve Problem 1 for the case ω ∈ R with ω 6= 0 by �nding the
norm (2.6) and minimizing it by coe�cients Cβ .

2.1 The norm of the error functional (2.3)

For �nding the norm (2.6) we use the extremal function for the error functional `
(see, [8, 9]) which satis�es the following equality

(`, ψ`) = ‖`‖
W

(1,0)∗
2 [0,1]

· ‖ψ`‖W (1,0)
2 [0,1]

. (2.7)

SinceW
(1,0)
2 [0, 1] is a Hilbert space, then the extremal function ψ` in this space

is found by using the Riesz theorem on the general form of a linear continuous
functional on a Hilbert space. Then for the functional ` and for any ϕ ∈W (1,0)

2 [0, 1]

there exists the function ψ` ∈W (1,0)
2 [0, 1] for which the following equation holds

(`, ϕ) = 〈ψ`, ϕ〉 . (2.8)

Furthermore the equality ‖`‖
W

(1,0)∗
2 [0,1]

= ‖ψ`‖W (1,0)
2 [0,1]

is ful�lled. Then from

(2.7), we get
(`, ψ`) = ‖`‖2

W
(1,0)∗
2 [0,1]

. (2.9)

For the error functional (2.3) to be de�ned on the space W
(1,0)
2 [0, 1] it should

be imposed the following condition

(`, e−x) = 0, (2.10)

which means that the quadrature formula (2.1) is exact for e−x.
From (2.8) for the extremal function ψ` we have the following boundary value

problem

ψ̄′′` (x)− ψ̄`(x) = −`(x), (2.11)

(ψ̄′`(x) + ψ̄`(x))|x=1
x=0 = 0,

where ¯̀ is the complex conjugate to `. Then the following holds

Theorem 2.1. The solution of the boundary value problem (2.11) is the extremal
function ψ` of the error functional ` and is expressed as

ψ`(x) = −¯̀(x) ∗G(x) + d̄ e−x, (2.12)

where
G(x) =

sgnx

2
sh(x), (2.13)

d̄ = dR + idI , a complex number, and ∗ is the operation of convolution.
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Next, we assume that
Cβ = CRβ + iCIβ , (2.14)

where CRβ and CIβ are real numbers. Then, keeping (2.9) in mind and using (2.10)
and (2.12) for the norm of the error functional ` we have

‖`‖2 = (`, ψ`)

=

∞Z
−∞

`(x)ψ`(x) dx = −
∞Z
−∞

`(x) · (¯̀(x) ∗G(x)) dx.

Hence, taking (2.14) into account, by direct calculation we get

‖`‖2 = −

"
NX
β=0

NX
γ=0

(CRβ C
R
γ + CIβC

I
γ) G(hβ − hγ)

−2

NX
β=0

CRβ

1Z
0

cos 2πωx ·G(x− hβ) dx

−2

NX
β=0

CIβ

1Z
0

sin 2πωx ·G(x− hβ) dx

+

1Z
0

1Z
0

cos[2πω(x− y)] ·G(x− y) dxdy

#
. (2.15)

Then from (2.10), keeping (2.14) in mind, we obtain the following equalities

NX
β=0

CRβ e−hβ =

1Z
0

cos(2πωx) · e−x dx, (2.16)

NX
β=0

CIβ e−hβ =

1Z
0

sin(2πωx) · e−x dx. (2.17)

Thus, we have got the expression (2.15) for the norm of the error functional
(2.3).

Further, in the next section we solve Problem 1.

2.2 Minimization of the expression (2.15) by
coe�cients Cβ

Problem 1 is equivalent to the problem of minimization of the expression (2.15)
by CRβ and CIβ using Lagrange method under the conditions (2.16)-(2.17).
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Now we consider the function

Ψ(CR0 , C
R
1 , ..., C

R
N , C

I
0 , C

I
1 , ..., C

I
N , d

R, dI)

= ‖`‖2 + 2dR

0@Z 1

0

cos(2πωx) · e−x dx−
NX
β=0

CRβ · e−hβ

1A
+2dI

0@Z 1

0

sin(2πωx) · e−x dx−
NX
β=0

CIβ · e−hβ

1A .

Equating to zero the partial derivatives of Ψ by CRβ , C
I
β , (β = 0, N), dR and dI ,

we get the following system of linear equations

NX
γ=0

CRγ G(hβ − hγ) + dR e−hβ =

1Z
0

cos(2πωx)G(x− hβ) dx,

β = 0, ..., N, (2.18)

NX
γ=0

CRγ e−hγ =

1Z
0

cos 2πωx · e−x dx, (2.19)

NX
γ=0

CIγG(hβ − hγ) + dI e−hβ =

1Z
0

sin 2πωxG(x− hβ) dx,

β = 0, ..., N, (2.20)

NX
γ=0

CIγ e−hγ =

1Z
0

sin 2πωx · e−x dx. (2.21)

Now multiplying both sides of (2.20) and (2.21) by i and adding to both sides
of (2.18) and (2.19), respectively, we get the following system of (N + 2) linear
equations with (N + 2) unknowns Cγ , γ = 0, 1, ..., N and d:

NX
γ=0

CγG(hβ − hγ) + d e−hβ =

Z 1

0

e2πiωxG(x− hβ) dx,

β = 0, ..., N, (2.22)

NX
γ=0

Cγ · e−hγ =
e2πiω−1 − 1

2πiω − 1
, (2.23)

where G(x) is de�ned by (2.13).
The system (2.22)-(2.23) has a unique solution. The uniqueness of the solution

of this system can be proved as uniqueness of the solution of the system (3.1)-(3.2)
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of the work [7]. The solution of the system (2.22)-(2.23) gives the minimum to
‖`‖2 in certain value of Cβ = C̊β . The quadrature formula of the form (2.1) with
coe�cients C̊β is called the optimal quadrature formula in the sense of Sard and
C̊β are said to be the optimal coe�cients.

For the convenience, the optimal coe�cients C̊β will be denoted as Cβ .

The aim of this section is to get the analytic solution of the system (2.22)-
(2.23). For this we use the concept of discrete argument functions and operations.
The theory of discrete argument functions is given in [8, 9].

Assume that the nodes xβ are equally spaced, i.e., xβ = hβ, h is a positive
small parameter, and functions ϕ(x) and ψ(x) are complex-valued and de�ned on
the real line R or on an interval of R.

The function ϕ(hβ) is a function of discrete argument if it is given on some
set of integer values of β.

Further, we need the discrete analogue D(hβ) of the di�erential operator
d2/dx2 − 1 which satis�es the following equality

D(hβ) ∗G(hβ) = δ d(hβ), (2.24)

where δ d(hβ) =


0, |β| 6= 0,
1, β = 0

, δ d(hβ) is the discrete delta-function.

Theorem 2.2. The discrete analogue D(hβ) of the di�erential operator d2/dx2−
1 satisfying (2.24) has the form

D(hβ) =
1

1− e2h

8<:
0, |β| ≥ 2,

−2 eh, |β| = 1,

2(1 + e2h), β = 0
(2.25)

and satis�es the equalities

D(hβ) ∗ ehβ = 0; D(hβ) ∗ e−hβ = 0; D(hβ) ∗G(hβ) = δ(hβ). (2.26)

Now we return to our problem.

We consider the coe�cients Cβ as a discrete argument function and assume
Cβ = 0 for β < 0 and β > N . Then the system (2.22) and (2.23) can be rewriting
as follows:

Cβ ∗G(hβ) + d e−hβ = f(hβ), β = 0, 1, ..., N, (2.27)

NX
β=0

Cβ e−hβ = g0, (2.28)
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where

f(hβ) =
e−hβ

4
· e2πiω+1 + 1

2πiω + 1
− ehβ

4
· e2πiω−1 + 1

2πiω − 1
+

e2πiωhβ

(2πiω + 1)(2πiω − 1)
,

(2.29)

g0 =
e2πiω−1 − 1

2πiω − 1
, (2.30)

and G(x) is de�ned by (2.13).
Now we have the following problem.
Problem 2 Find Cβ (β = 0, 1, .., N) and d which satisfy the system (2.27)-

(2.28) for given f(hβ) and g0.
Note that Problem 2 is equivalent to Problem 1. The main result of this section

is the following.

Theorem 2.3. Coe�cients of the optimal quadrature formulas of the form (2.1)

in the sense of Sard for ω ∈ R with ω 6= 0 in the space W
(1,0)
2 [0, 1] have the form

C0 =
1 + e2h + 2πiω( e2h − 1)− 2 e(2πiω+1)h

( e2h − 1)((2πω)2 + 1)
,

Cβ =
2(1 + e2h − 2 eh cos 2πωh)

( e2h − 1)((2πω)2 + 1)
· e2πiωhβ , β = 1, 2, ..., N − 1,

CN =
e2πiω(1 + e2h − 2πiω( e2h − 1)− 2 e(1−2πiω)h)

( e2h − 1)((2πω)2 + 1)
.

(2.31)

Furthermore, for the square of the norm of the error functional (2.3) of the optimal

quadrature formula (2.1) on the space W
(1,0)∗
2 [0, 1] the following holds‚‚‚˚̀‚‚‚2

W
(1,0)∗
2

= 1
(4π2ω2+1)2

“
4π2ω2 + 1− 2(1+ e2h−2 eh cos(2πωh))

h( e2h−1)

”
. (2.32)

Proof. We consider the following discrete argument function

u(hβ) = Cβ ∗G(hβ) + d e−hβ . (2.33)

Then, taking (2.24) and (2.26) into account, we have

Cβ = D(hβ) ∗ u(hβ). (2.34)

For calculating the convolution (2.34) we need the representation of the function
u(hβ) for all integer values of β. From (2.27) we have

u(hβ) = f(hβ) for β = 0, 1, ..., N. (2.35)

Now we should �nd the representation of u(hβ) for β < 0 and β > N .
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For β ≤ 0 and β ≥ N , using (2.13) and (2.28), respectively, we get the following

u(hβ) =

8>>>><>>>>:
− ehβ

4
g0 +

 
1
4

NP
γ=0

Cγ ehγ + d

!
e−hβ , β ≤ 0,

ehβ

4
g0 +

 
− 1

4

NP
γ=0

Cγ ehγ + d

!
e−hβ , β ≥ N,

(2.36)

where g0 is de�ned by (2.30),
NP
γ=0

Cγ ehγ and d are unknowns. We denote

a− =
1

4

NX
γ=0

Cγ ehγ + d,

a+ = −1

4

NX
γ=0

Cγ ehγ + d.

Then from (2.36) when β = 0 and β = N for these unknowns we obtain the
system of two linear equations

a− − 1

4
g0 = f(0),

a+ e−1 +
e

4
g0 = f(1).

Hence, solving this system, using (2.29) and (2.30), we get

a− =
e2πiω+1 − 1

4(2πiω + 1)
, a+ = − e2πiω+1 − 1

4(2πiω + 1)
.

Hence
d = 0, (2.37)

1

4

NX
γ=0

Cγ ehγ =
e2πiω+1 − 1

4(2πiω + 1)
. (2.38)

Keeping (2.37) and (2.38) in mind, and combining (2.35) and (2.36) we get

u(hβ) =

8><>:
− ehβ

4
· e2πiω−1−1

2πiω−1
+ e−hβ

4
· e2πiω+1−1

2πiω+1
, β ≤ 0,

f(hβ), 0 ≤ β ≤ N,
ehβ

4
· e2πiω−1−1

2πiω−1
− e−hβ

4
· e2πiω+1−1

2πiω+1
, β ≥ N.

Now, taking (2.25) and (2.26) into account, using the last representation of
u(hβ), and from (2.34) by direct calculation for the optimal coe�cients Cβ ,
β = 0, 1, ..., N , we obtain analytic formulas (2.31).
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Now we go to get (2.32). We rewrite the equality (2.15) in the following form

‖˚̀‖2 = −

"
NX
β=0

CRβ

0@ NX
γ=0

CRγ G(hβ − hγ)−
1Z

0

cos 2πωx G(x− hβ) dx

1A
+

NX
β=0

CIβ

0@ NX
γ=0

CIγG(hβ − hγ)−
1Z

0

sin 2πωx G(x− hβ) dx

1A
−

NX
β=0

CRβ

1Z
0

cos 2πωx G(x− hβ) dx−
NX
β=0

CIβ

1Z
0

sin 2πωx G(x− hβ) dx

+

1Z
0

1Z
0

cos[2πω(x− y)]G(x− y) dxdy

#
. (2.39)

Since d = dR + idI , taking (2.37) into account, we have

dR = 0 and dI = 0.

Therefore, using these last two equalities, from (2.18) and (2.20) we get the
following equalities

NX
γ=0

CRγ G(hβ − hγ)−
1Z

0

cos 2πωx G(x− hβ) dx = 0, β = 0, ..., N

and

NX
γ=0

CIγG(hβ − hγ)−
1Z

0

sin 2πωx G(x− hβ) dx = 0, β = 0, ..., N.

Then the expression (2.39) for ‖˚̀‖2 takes the form

‖˚̀‖2 =

NX
β=0

CRβ

1Z
0

cos 2πωx G(x− hβ) dx+

NX
β=0

CIβ

1Z
0

sin 2πωx G(x− hβ) dx

−
1Z

0

1Z
0

cos[2πω(x− y)]G(x− y) dxdy.

Hence calculating the de�nite integrals, keeping (2.14) in mind and using (2.31),
after some simpli�cations we get (2.32). Theorem 2.3 is proved. �

We note that in Theorem 2.3 the formulas for the optimal coe�cients Cβ
are decomposed into two parts � real and imaginary parts. Therefore from the
formulas (2.31) of Theorem 2.3 we get the following results.
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Corollary 2.4. Coe�cients for the optimal quadrature formula of the form

1Z
0

cos 2πωx · ϕ(x) dx ∼=
NX
β=0

CRβ ϕ(hβ)

in the sense of Sard in W
(1,0)
2 [0, 1] for ω ∈ R with ω 6= 0 have the form

CR0 =
1 + e2h − 2 eh cos 2πωh

( e2h − 1)((2πω)2 + 1)
,

CRβ =
2(1 + e2h − 2 eh cos 2πωh)

( e2h − 1)((2πω)2 + 1)
· cos(2πωhβ), β = 1, 2, ..., N − 1,

CRN =
(1 + e2h) cos 2πω − 2 eh cos(2πω(1 + h)) + 2πω sin 2πω( e2h − 1)

( e2h − 1)((2πω)2 + 1)
.

Corollary 2.5. Coe�cients for the optimal quadrature formula of the form

1Z
0

sin 2πωx · ϕ(x) dx ∼=
NX
β=0

CIβϕ(hβ)

in the sense of Sard in W
(1,0)
2 [0, 1] for ω ∈ R with ω 6= 0 have the form

CI0 =
2πω( e2h − 1)− 2 eh sin 2πωh

( e2h − 1)((2πω)2 + 1)
,

CIβ =
2(1 + e2h − 2 eh cos 2πωh)

( e2h − 1)((2πω)2 + 1)
· sin(2πωhβ), β = 1, 2, ..., N − 1,

CIN =
(1 + e2h) sin 2πω − 2 eh sin(2πω(1 + h))− 2πω cos 2πω( e2h − 1)

( e2h − 1)((2πω)2 + 1)
.

It is easy to see that for ω → 0 from Theorem 2.3 we get the optimal of the
trapezoidal quadrature formula in W

(1,0)
2 [0, 1] [7].

Corollary 2.6. Coe�cients of the optimal quadrature formula of the form

1Z
0

ϕ(x) dx ∼=
NX
β=0

Cβϕ(hβ) (2.40)

in the space W
(1,0)
2 [0, 1] have the form

C0 =
eh − 1

eh + 1
,

Cβ =
2( eh − 1)

eh + 1
, β = 1, 2, ..., N − 1,

CN =
eh − 1

eh + 1
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and for the square of the norm of the error functional of the optimal quadrature
formula (2.40) on the space W

(1,0)∗
2 [0, 1] the following holds‚‚‚˚̀‚‚‚2

W
(1,0)∗
2

= 1− 2( eh − 1)

eh + 1
.

Remark 2.7. It should be noted that for �xed ω from (2.32) we get

‖˚̀‖2 =
1

12
h2 − 4π2ω2 + 3

360
h4 +O(h6),

i.e., the order of convergence of the optimal quadrature formula of the form (2.1)
is O(h).

Remark 2.8. In particular, from Theorem 2.3 in the case ω ∈ Z with ω 6= 0, we
get the results of [2].

Remark 2.9. The equality (2.38) means that the optimal quadrature formula of
the form (2.1) with coe�cients (2.31) is exact to ϕ(x) = e−x because

1Z
0

e2πiωx e−x dx =
e2πiω−1 − 1

2πiω − 1
.

The equalities (2.38) and (2.28) provide exactness of our optimal quadrature
formula to ex and e−x respectively.

3 Optimal quadrature formulas for the
interval [a,b]

Here from the results of the previous section by a linear transform we get optimal
quadrature formulas for the interval [a, b].

We consider construction of optimal quadrature formula of the form

bZ
a

e2πiωxϕ(x) dx ∼=
NX
β=0

Cβ,ω[a, b]ϕ(xβ) (3.1)

in the Hilbert space W
(1,0)
2 [a, b]. Here Cβ,ω[a, b] are coe�cients and xβ = hβ + a

(∈ [a, b]) are nodes of the formula (3.1), ω ∈ R, i2 = −1, h = b−a
N

, N ∈ N.
Now by linear transformation x = (b− a)y + a, where 0 ≤ y ≤ 1, we get

bZ
a

e2πiωxϕ(x) dx = (b− a) e2πiωa

1Z
0

e2πiω(b−a)yϕ((b− a)y + a) dy.
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Finally, applying Theorem 2.3 and Corollary 2.6 to the integral on the right-hand
side of the last equality, we get the following main result of the present work.

Theorem 3.1. Coe�cients of the optimal quadrature formula of the form

bZ
a

e2πiωxϕ(x) dx ∼=
NX
β=0

Cβ,ω[a, b]ϕ(hβ + a)

in the sense of Sard in the space W
(1,0)
2 [a, b] for ω ∈ R with ω 6= 0 have the form

C0,ω[a, b] = (b− a) e2πiωa 1 + e
2h

b−a + 2πiω(b− a)( e
2h

b−a − 1)− 2 e
h

b−a e2πiωh

(4π2ω2(b− a)2 + 1)( e
2h

b−a − 1)
,

Cβ,ω[a, b] = e2πiω(hβ+a) · 2(b− a)(1 + e
2h

b−a − 2 e
h

b−a cos 2πωh)

(4π2ω2(b− a)2 + 1)( e
2h

b−a − 1)
,

β = 1, 2, ..., N − 1,

CN,ω[a, b] = (b− a) e2πiωb 1 + e
2h

b−a − 2πiω(b− a)( e
2h

b−a − 1)− 2 e
h

b−a
−2πiωh

(4π2ω2(b− a)2 + 1)( e
2h

b−a − 1)
,

and for ω = 0 take the form

C0,0[a, b] = (b− a)
e

h
b−a − 1

e
h

b−a + 1
,

Cβ,0[a, b] = 2(b− a)
e

h
b−a − 1

e
h

b−a + 1
, β = 1, 2, ..., N − 1,

CN,0[a, b] = (b− a)
e

h
b−a − 1

e
h

b−a + 1
,

where h = b−a
N

.

4 Conclusions

Here for approximation of Fourier integrals in the space W
(1,0)
2 [0, 1] the optimal

quadrature formula in the sense of Sard is constructed. By linear transformation
the results are extended to the case of arbitrary interval [a, b]. That is, for

approximation of Fourier integrals in the spaceW
(1,0)
2 [a, b] the optimal quadrature

formula is obtained. The obtained optimal quadrature formula can be applied to
approximate reconstruction of Computed Tomography images from projections.

Acknowledgement. The work has been done while Samandar S. Babaev
was visiting Department of Mathematical Sciences at KAIST, Daejeon, Republic
of Korea, as fellow of an 'El yurt umidi'(EYUF) Foundation of Uzbekistan for
Advanced training course.



36 Babaev S. S., Hayotov A.R., Khayriev U.N.

References

1. Boltaev N.D., Hayotov A.R., Khudayberdiev M. Optimal quadrature
formula for approximate calculation of Fourier coe�cients in W

(1,0)
2 space.

Problems of Computational and applied Mathematics, 2015, No1, P. 71-77.

2. Boltaev N.D., Hayotov A.R., Milovanovi�c G.V. and Shadimetov Kh.M.
Optimal quadrature formulas for Fourier coe�cients in W

(m,m−1)
2 space,

Journal of applied analysis and computation, 7 (2017), 1233-1266.

3. Hayotov A.R., Jeon. S , Lee.C-O. On an optimal quadrature formula
for approximation of Fourier integrals in the space L

(1)
2 . Journal of

Computational and Applied Mathematics Volume 372, July 2020, 112713.

4. Kak A.C. and Slaney M. Principles of Computerized Tomographic imaging,
IEEE Press, New York, 1988.

5. Novak. E, Ullrich. M, and Wo�zniakowski. H, Complexity of oscillatory
integration for univariate Sobolev space, Journal of Complexity, 31 (2015),
15-41.

6. Sard A. Best approximate integration formulas; best approximation
formulas, Amer. J. Math., 71 (1949), 80-91.

7. Shadimetov Kh.M. and Hayotov A.R. Optimal quadrature formulas in the
sense of Sard in W

(m,m−1)
2 (0, 1) space. Calcolo (2014), 51, 211-243.

8. Sobolev S.L. Introduction to the theory of cubature formulas (Russian),
Nauka, Moscow, 1974.

9. Sobolev S.L. and Vaskevich V.L. The theory of cubature formulas, Kluwer
Academic Publishers Group, Dordrecht, 1997.

1 Bukhara State University, 11, M.Ikbol str., Bukhara 200114,
Uzbekistan;
2 V.I.Romanovskiy Institute of Mathematics, Uzbekistan
Academy of Sciences, 81, M.Ulugbek str., Tashkent 100170,
Uzbekistan;
3 National University of Uzbekistan named after Mirzo Ulugbek,
4, University str., Tashkent 100174, Uzbekistan


	Introduction
	Renormalization of PL circle maps with two breaks
	Poof of Theorem 1.4
	Introduction
	Generalized exponential function
	Results and Discussion
	Conclusion
	Introduction

	Construction of optimal quadrature formula
	The norm of the error functional (2.3)
	Minimization of the expression (2.15) by coefficients C
	Optimal quadrature formulas for the interval [a,b]
	Conclusions
	Preliminaries

	Main results
	Introduction
	2 2 operator matrices
	Family of generalized Friedrichs models and its spectrum
	New branches of the essential spectrum
	Introduction

	Infinite differentiability of unknown functions
	Passing from a local information to a global one
	Main result for the asymmetric case
	Main result for the symmetric case and the proof of Theorem 1.2

	Introduction
	Preliminary Lemmas 
	The main theorems
	 Construction of a cubature formula of fourth degree
	Construction of a cubature formula of the fifth degree
	Introduction
	Basic facts about the forward and inverse spectral problems
	Evolution of the Spectral Parameters
	Introduction
	Preliminaries
	Main Part
	Introduction
	Functional limit theorem
	Proof of main results
	Introduction
	Preliminaries
	The coordinate representation
	The momentum representation
	Main results
	Spectral properties of the operators H0 and H0
	Spectral properties of the operators H

	Conclusions


	Acknowledgements
	Introduction
	Block operator matrix and its spectrum
	Essential spectrum of A2 and its new branches
	Point spectrum of A2
	Introduction

	Main definitions and known facts
	Model with an external field
	Model with a periodic external field
	A system of linear equations for finding the coefficients of quadrature formulas

	Existence and uniqueness of the optimal quadrature formula for approximate solution of the Abel generalized integral equation
	Introduction
	Preliminaries
	Main Part




















