

ЗАМОНАВИЙ КИМЁНИНГ ДОЛЗАРБ МУАММОЛАРИ

мавзусидаги Республика микёсидаги хорижий олимлар иштирокидаги онлайн илмий-амалий анжумани

2020 йил 4-5 декабрь

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

БУХОРО ДАВЛАТ УНИВЕРСИТЕТИ ТАБИИЙ ФАНЛАР ФАКУЛЬТЕТИ

"ЗАМОНАВИЙ КИМЁНИНГ ДОЛЗАРБ МУАММОЛАРИ"

мавзусидаги

Республика микёсидаги хорижий олимлар иштирокидаги онлайн илмий-амалий анжумани

ТЎПЛАМИ

Бухоро, 2020 йил 4-5 декабрь

12730; водопоглощение и параметры пористости – по ГОСТ 12730; морозостойкость – по ГОСТ 10060.2-95.

Температурные испытания проводились на образцах оптимального состава: 26 масс.% серы и 12 масс.% золы-уноса и 67 масс.% песок и отсевы дробления. Исследования прочностных характеристик серобетонов в температурном интервале от минус 20 до 40 °C показывают, что изменений прочности В указанном происходит, что позволяет использовать конструкции из серобетона при Водопоглощение строительстве большинства объектов. образцов серобетона не превышало 0,25 %, что объясняется низкой пористостью полученных образцов и гидрофобностью серы.

Использование золауноса в качестве модификатора для серного вяжущего позволяет получать низкопористые и однородные по структуре материалы с высокими физико-механическими и эксплуатационными характеристиками. Содержащийся в золауносах Ангренской ТЭС свободный оксид кремния в виде SiO₂ способствует упрочнению структуры за счет химического взаимодействия с серой.

Литература

1. Бекназаров Х.С., Тураев Х.Х., Хайитова Ж.М. Исследование состава и структуры модифицированного серобетона // Universum: технические науки: электрон. научн. журн. 2020. № 6 (75). URL: https://7universum.com/ru/tech/archive/item/9607.

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ НОВЫХ КАТАЛИЗАТОРОВ НА ОСНОВЕ ОКСИДА ВАНАДИЯ И БЕНТОНИТА

О.Ш. Кодиров¹, Х.Э. Кадиров², Г.К. Ширинов³, Э.Д. Ниёзов³ ¹Национальный университет Узбекистана им. Мирзо Улугбека ²Ташкентский химико-технологический институт. ³Бухарский государственный университет

В нынешнее время производство химических продуктов промышленного масштаба на основе местных сырьевых ресурсов является актуальной проблемой.

В Узбекистане до сих пор не синтезируется фталевый ангидрид из-за отсутствия сырья. В некоторых производствах образуется тяжелое пиролизное масло как вторичный продукт с высоким содержанием нафталина, который пригоден для синтеза фталевого ангидрида. Для этого требуется катализатор окисления.

Нами было синтезировано четыре вида катализаторов на основе бентонита, оксида ванадия (V), сульфата калия: ванадий-бентонитовая смесь (ВБС-10, ВБС-20, ВБС-10-2, ВБС-15-3).

Исследования данных образцов проводилось с использованием спектроскопии комбинационного рассеяния на InVia Raman Spectrometer производства компании «Renishaw», Великобритания, при возбуждении линиями лазера RL785 Class 3B Laser с длиной волны излучения 785 нм. В процессе измерений использовалась дифракционная решётка с периодом 1200 линий/мм, а в качестве регистрирующего устройства — штатный детектор Renishaw CCD Camera.

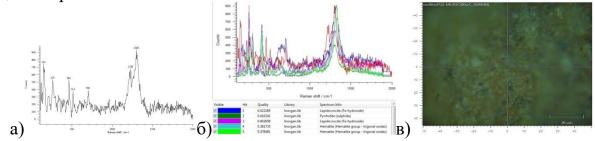


Рис.1. Спектры комбинационного рассеяния: а) Рамановская спектрограмма катализатора ВБС-10; б) базовый КР — спектрограмма; в) изображения поверхности катализатора ВБС-10.

Идентификация сложных спектров, в которых четко проявляется спектр минеральной основы катализаторов и наложение более слабых колебаний других компонентов, как правило, проблематична, но может осуществляться по полосам поглощения. В этом случае «строгих правил для проведения расшифровки спектров не существует» [1], но исследователи различают в спектрах две основные области: область функциональных групп (4000–1500 см⁻¹) и область «отпечатков пальцев» (1500–625 см⁻¹).

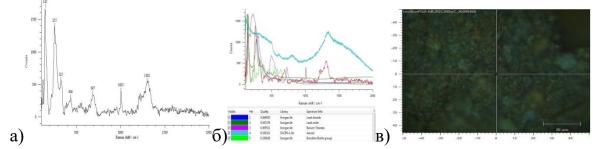


Рис.2. Спектры комбинационного рассеяния: а) Рамановская спектрограмма катализатора ВБС-20; б) базовый КР — спектрограмма; в) изображения поверхности катализатора ВБС-20.

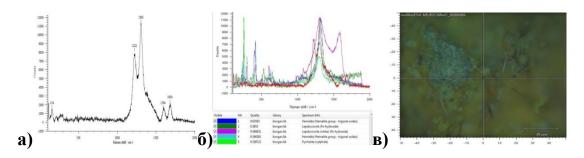


Рис.3. Спектры комбинационного рассеяния: а) Рамановская спектрограмма катализатора ВБС-10-2; б) базовый КР — спектрограмма; в) изображения поверхности катализатора ВБС-10-2.

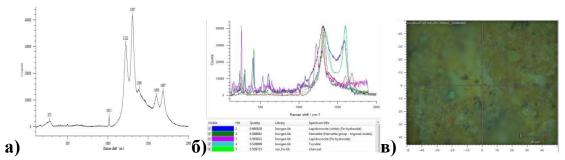


Рис.4. Спектры комбинационного рассеяния: а) Рамановская спектрограмма катализатора ВБС-15-3; б) базовый КР — спектрограмма; в) изображения поверхности катализатора ВБС-15-3.

В настоящей работе авторы предлагают один из возможных примеров определения KP_спектра неизвестного по составу компонента с полосами в области 3360–1150 см⁻¹ (рис. 1-4 б).

ИНВЕРСИОННАЯ-ВОЛЬТАМПЕРОМЕТРИЯ ПРИ ОПРЕДЕЛЕНИИ НЕКОТОРИХ МЕТАЛЛОВ

¹Зияев Д.А. доц. Национальный университет Узбекистана ²Мадусманова Н.К., доц. ТГТУОФ

С аналитической точки зрения важно и необходимо знать, как влияет присутствие небольших количеств ртути(II) на метрологические характеристики и аналитические параметры, а также на полезный, поскольку как известно, небольшие ее концентрации повышают чувствительность и ниюнюю границу определяемых содержаний самого метола.

Для увеличения предела обнаружения и снижения нижней границы определяемых содержаний металлов в анализируемые растворы также вводили небольшие количества ртути(II). Для подтверждения этого факта были сняты ИВ кривые (пики) индия, тория и сурьмы, в присутствии 3-4 капель 0,003 М раствора азотнокислой ртути (II). Полученные экспериментальные результаты оправдали наши предположения и подтвердили известный в литературе факт, повышения чувствительности метода на 2-3 порядка. Некоторые из полученных нами данных, приведенных в таблице 1. и на рисунке 1, показывают, что при одной и той же концентрации индия, тория и сурьмы в присутствии незначительных количеств Hg(II), чувствительность и нижняя граница определяемых концентраций металлов разработанными методиками повышается в несколько раз.

СТАБИЛИЗАЦИЯ ПОЛИВИНИЛХЛОРИДА С ПОМОЩЬЮ	
КОМПЛЕКСА КАЛЬЦИЕВОЙ СОЛИ КРОТОНИЛИДЕНИМИН-О-	
БЕНЗОЙНОЙ КИСЛОТЫ. Н.И. Назаров, Х.С. Бекназаров	406
УЧЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ И ИК- СПЕКТРОС-	
КОПИЧЕСКОЕ ИССЛЕДОВАНИЕ НОВОГО МОДИФИЦИРОВАН-	
НОГО ПОЛИМЕРНОГО СЕРОБЕТОНА. Н.Д. Амонова, Х.Х. Тураев,	
Х.С. Бекназаров	408
МЕТИЛМЕТАКРИЛАТ АСОСИДА КРЕМНИЙ САҚЛАГАН	
АКРИЛАТ СИНТЕЗИ ВА ТАДКИКОТИ. Х.Э. Эшмуродов, Х.Х.	
Тўраев, А.Т. Джалилов, И.А. Умбаров, Ю.А. Гелдиев	409
КРОТОН АЛЬДЕГИД ВА ТИОМАЧЕВИНА АСОСИДА	. 0 /
САМАРАЛИ ОЛИГОМЕР КОРРОЗИЯ ИНГИБИТОРИ СИНТЕЗИ.	
3.И. Нуриллоев, Н.И. Назаров, Х.С.Бекназаров, А.Т. Джалилов	412
СТАБИЛИЗАЦИЯ ПОЛИВИНИЛХЛОРИДА С ПОМОЩЬЮ	
КОМПЛЕКСА СОЛЯМИ ФТАЛАМИНОВОЙ КИСЛОТЫ. Э.М.	
Тогаев, Х.С. Бекназаров	414
ИЗУЧЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ	717
СУБСТАНЦИИ КОЛЛАГЕНА. О.И. Раджабов, Т. Гулямов, А.С.	
Тураев, Н.Т. Муйдинов, А.Ю. Атажанов, Д.А. Буриев	416
ЭЛЕМЕНТНЫЙ АНАЛИЗ СИНТЕЗИРОВАННЫХ КАТАЛИЗА-	710
ТОРОВ НА ОСНОВЕ ОКСИДА ВАНАДИЯ И БЕНТОНИТА. О.Ш.	
Кодиров, Г.К. Ширинов, К.Х. Зиядуллаева, Х.Э. Кадиров	418
ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ	710
ХРОМА С АЗОРЕАГЕНТОМ 2-(5-МЕТИЛПИРИДИЛАЗО)-2'-	
ГИДРОКСИ-5'-МЕТОКСИ-БЕНЗОЛОМ. У.М. Мадатов, Л.М.	
	420
Халилова, О.А. Эрматова, С.Б. Рахимов	420
ОПРЕДЕЛЕНИЕ ЖЕЛЕЗА НОВЫМ АНАЛИТИЧЕСКИМ	
РЕАГЕНТОМ 2-НИТРОЗО-5-МЕТОКСИФЕНОЛОМ. Ф.Б. Исакулов,	400
А.А. Набиев, З.А. Сманова	422
МОДИФИКАЦИЯ СЕРЫ С ИСПОЛЬЗОВАНИЕМ ОТХОДОВ	
ЗОЛАУНОСА АНГРЕНСКОЙ ТЭС. Ж.М. Хайитова, Х.Х. Тураев,	400
Х.С. Бекназаров	423
ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ НОВЫХ КАТАЛИЗА-	
ТОРОВ НА ОСНОВЕ ОКСИДА ВАНАДИЯ И БЕНТОНИТА. О.Ш.	40.7
Кодиров, Х.Э. Кадиров, Г.К. Ширинов, Э.Д. Ниёзов	425
ИНВЕРСИОННАЯ-ВОЛЬТАМПЕРОМЕТРИЯ ПРИ ОПРЕДЕЛЕНИИ	
НЕКОТОРИХ МЕТАЛЛОВ.	
Зияев Д.А, Мадусманова Н.К.	427
ПОТЕНЦИОМЕТРИК ТИТРЛАШ УСУЛЛАРИНИНГ КИМЁДА	
ҚЎЛЛАНИШИ ВА УНИНГ ИСТИКБОЛЛАРИ. Н.К.Мадусмонова,	
Г.Ў.Махмудова	429
МЕТАЛЛ ОКСИДИ ВА ТЕРЕФТАЛ КИСЛОТА АСОСИДА	430