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 A B S T R A C T

In this paper, we study the Galerkin method for obtaining approximate solutions to linear 
Fredholm integral equations of the second kind. The finite element solution is represented as a 
linear combination of basis functions, and the construction of suitable basis functions plays a 
crucial role in the accuracy of the approximation. We propose an optimal interpolation formula 
that exactly reproduces the functions 𝑒𝑥 and 𝑒−𝑥, and derive basis functions from its coefficients. 
This interpolation formula is constructed within the Hilbert space 𝑊 (1,0)

2 . To evaluate the 
effectiveness of the proposed approach, we solve several integral equations using the Galerkin 
method with two types of basis functions: the newly constructed exponential basis and classical 
piecewise linear basis functions. Numerical experiments are presented to compare the accuracy 
of these approaches. Graphs and tables illustrate the approximation errors, demonstrating that 
both basis functions achieve an error order of 𝑂(ℎ), with the optimal interpolation-based basis 
yielding superior accuracy in certain cases.

. Introduction

In this work, we discuss the Galerkin method for solving the integral equation 

𝑢(𝑥) − ∫

𝑏

𝑎
𝐾(𝑥, 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏]. (1)

n these equations, 𝑢 is an unknown function, the kernel of the integral equation 𝐾, and the function 𝑓 on the right-hand side are 
iven.
The term integral equation was first used by du Bois-Reymond [1] in 1888. Eq. (1) carry the name of Fredholm because of 

is contributions to the field and are called Fredholm integral equations of the first and second kinds, respectively. Here we consider 
q. (1) the case where the solution exists and is unique, and the kernel is sufficiently smooth (see, [2]).
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We express the integral Eq. (1) in the operator form:
(𝐼 −𝐾)𝑢 = 𝑓

where the operator 𝐾 is assumed to be compact on a Banach space V, and 𝐼 is the identity operator. The most common choices of 
Banach spaces are 𝐶(𝑎, 𝑏) and 𝐿2(𝑎, 𝑏). For Galerkin’s method and its generalizations, the Sobolev space 𝐻𝑟(𝑎, 𝑏) is also frequently 
used, where 𝐻0(𝑎, 𝑏) ≡ 𝐿2(𝑎, 𝑏).

In practice, we select a sequence of finite-dimensional subspaces V𝑛 ⊂ V for 𝑛 ≥ 1, where each V𝑛 has dimension 𝑑𝑛. Let V𝑛 has 
a basis 𝜙1,… , 𝜙𝑑𝑛 , where we set 𝑁 ≡ 𝑑𝑛 for notational simplicity. We then seek a function 𝑢𝑁 ∈ V𝑛, which can be expressed as 

𝑢𝑁 (𝑥) =
𝑁
∑

𝑖=1
𝑐𝑖𝜙𝑖(𝑥), 𝑥 ∈ [𝑎, 𝑏]. (2)

This is substituted into (1), and the coefficients (𝑐1,… , 𝑐𝑁 ) are determined by ensuring the equation is nearly exact in a certain 
sense. And the error will be equal to the following

𝑟𝑁 (𝑥) = 𝑢𝑁 (𝑥) − ∫

𝑏

𝑎
𝐾(𝑥, 𝑦)𝑢𝑁 (𝑦)𝑑𝑦 − 𝑓 (𝑥)

=
𝑁
∑

𝑖=1
𝑐𝑖

(

𝜙𝑖(𝑥) − ∫

𝑏

𝑎
𝐾(𝑥, 𝑦)𝜙𝑖(𝑦)𝑑𝑦

)

− 𝑓 (𝑥), 𝑥 ∈ [𝑎, 𝑏]. (3)

This is known as the residual in the equation’s approximation when using 𝑢 ≈ 𝑢𝑁 . To obtain the coefficients (𝑐1,… , 𝑐𝑁 ) required to 
𝑟𝑁 (𝑥) satisfy 

(𝑟𝑁 , 𝜙𝑗 ) = 0, 𝑗 = 1,… , 𝑁. (4)

To find (𝑐1,… , 𝑐𝑁 ), apply (4) to (3). This yields the linear system of equations 
𝑁
∑

𝑖=1
𝑐𝑖
{

(𝜙𝑖, 𝜙𝑗 ) − (𝐾𝜙𝑖, 𝜙𝑗 )
}

= (𝑓, 𝜙𝑗 ), 𝑗 = 1,… , 𝑁. (5)

This is Galerkin method for obtaining an approximate solution to (1). The system has a solution, and it is unique. The resulting 
sequence of approximate solutions, 𝑢𝑁  converges to 𝑢 in V (The proof is given in [2]).

First Bubnov in 1913 and then, in more details, Galerkin [3] in 1915 approached and extended this approximation method 
without relying on a minimization formulation. Later, Petrov [4] first considered the general form of the Galerkin method.

Rest of the paper is organized as follows. In Section 2, we introduce piecewise linear basis functions and their application in 
the Galerkin method. Section 3 details the construction of an optimal interpolation formula in the 𝑊 (1,0)

2  space. These interpolation 
formula coefficients are obtained as basis functions. Section 4 presents numerical results, comparing the performance of piecewise 
linear and exponential basis functions through error analysis.

2. Piecewise linear basis functions

For simplicity, we solve the problem for the interval [0, 1] instead of the interval [𝑎, 𝑏]. Piecewise linear splines are good basis 
functions due to their simplicity and ease of use. We divide the interval [0, 1] into 𝑁 subintervals with nodes:

0 = 𝑥0 < 𝑥1 <⋯ < 𝑥𝑁 = 1.

Let ℎ = 1∕𝑁 denote the mesh size. First, we choose piecewise linear splines as the basis functions: 

𝜙𝑖(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑥−𝑥𝑖−1
ℎ , 𝑥𝑖−1 ≤ 𝑥 < 𝑥𝑖,

𝑥𝑖+1−𝑥
ℎ , 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1,

0, otherwise.
(6)

and from the last expression, we have

𝜙0(𝑥) =
ℎ − 𝑥
ℎ

.

Each 𝜙𝑖(𝑥) is continuous, piecewise linear, and satisfies 𝜙𝑖(𝑥𝑗 ) = 𝛿𝑖𝑗 (Kronecker delta). Here, 𝑖 = 1, 𝑁 and 𝑗 = 1, 𝑁 .
The Galerkin method requires solving the linear system 𝐀𝐜 = 𝐛, where:

𝐴𝑖𝑗 = (𝜙𝑖, 𝜙𝑗 ) − (𝐾𝜙𝑖, 𝜙𝑗 ),

𝑏𝑖 = (𝑓, 𝜙𝑗 ), 𝑖 = 1, 𝑁, 𝑗 = 1, 𝑁.

It is clear that 𝜙𝑖 and 𝜙𝑗 overlap only if |𝑖 − 𝑗| ≤ 1. Thus, 𝐴𝑖𝑗 is sparse (mostly tridiagonal for 1D problems). Here, (𝜙𝑖, 𝜙𝑗 ) can be 
computed analytically:

(𝜙𝑖, 𝜙𝑗 ) =

⎧

⎪

⎨

⎪

2ℎ
3 , if 𝑖 = 𝑗,
ℎ
6 , if |𝑖 − 𝑗| = 1,
⎩ 0, otherwise.

2 
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Similarly, the calculation of the term involving the kernel,

(𝐾𝜙𝑖, 𝜙𝑗 ) = ∫

1

0

[

∫

1

0
𝐾(𝑥, 𝑦)𝜙𝑖(𝑥)𝑑𝑥

]

𝜙𝑗 (𝑦)𝑑𝑦

is performed in the same way as above. Usually, quadrature formulas are used to calculate this double integral.
Usually, different quadrature formulas are chosen depending on the given kernel 𝐾(𝑥, 𝑦). For example, integrals can be 

approximated using optimal quadrature formulas [5–7] with 𝑝(𝑥) weight, [8–10] with a weak singularity integral.
The choice of basis functions is also important for the Galerkin method. The construction of basis functions in different spaces and 

their application to solving boundary value problems for ordinary differential equations using the Galerkin method are considered 
in the work [11].

We emphasize that the coefficients of optimal interpolation formulas (see, [12–16]) constructed in various Hilbert and Sobolev 
spaces can also be used as basis functions.

3. An optimal interpolation formula

3.1. Problem statement

Here, we consider construction of an optimal interpolation by a variational method. In the variational approach, splines are 
elements of Hilbert or Banach spaces minimizing certain functionals.

Assume we are given a table of values 𝜑(𝑥𝛽 ), 𝛽 = 0, 1,… , 𝑁 of a function 𝜑 at points 𝑥𝛽 ∈ [0, 1]. It is required approximate the 
function 𝜑 by another more simple function 𝑃𝜑, i.e., 

𝜑(𝑥) ≅ 𝑃𝜑(𝑥) =
𝑁
∑

𝛽=0
𝐶𝛽 (𝑥) ⋅ 𝜑(𝑥𝛽 ), (7)

which satisfies the following interpolation conditions
𝜑(𝑥𝛽 ) = 𝑃𝜑(𝑥𝛽 ), 𝛽 = 0, 1,… , 𝑁.

Here 𝐶𝛽 (𝑥) and 𝑥𝛽 (∈ [0, 1]) are the coefficients and the nodes of the interpolation formula (7), respectively.
We suppose that functions 𝜑 belong to the Hilbert space

𝑊 (1,0)
2 (0, 1) = {𝜑 ∶ [0, 1] → R ∣ 𝜑 is abs. cont. and 𝜑′ ∈ 𝐿2(0, 1)},

equipped with the norm

‖

‖

‖

𝜑|𝑊 (1,0)
2 (0, 1)‖‖

‖

=

{

∫

1

0

(

𝜑′(𝑥) + 𝜑(𝑥)
)2𝑑𝑥

}1∕2

and ∫ 1
0
(

𝜑′(𝑥) + 𝜑(𝑥)
)2𝑑𝑥 < ∞. The last equality is the semi-norm and ‖𝜑‖ = 0 if and only if 𝜑(𝑥) = 𝑘𝑒−𝑥, here 𝑘 is any real constant.

The difference 𝜑 − 𝑃𝜑 is called the error of the interpolation formula (7). The value of the error at a point 𝑧 ∈ [0, 1] is a linear 
functional on the space 𝑊 (1,0)

2 (0, 1), i.e.,

(𝓁, 𝜑) = 𝜑(𝑧) − 𝑃𝜑(𝑧) = 𝜑(𝑧) −
𝑁
∑

𝛽=0
𝐶𝛽 (𝑧)𝜑(𝑥𝛽 )

= ∫

∞

−∞

(

𝛿(𝑥 − 𝑧) −
𝑁
∑

𝛽=0
𝐶𝛽 (𝑧)𝛿(𝑥 − 𝑥𝛽 )

)

𝜑(𝑥)𝑑𝑥, (8)

where 𝛿(𝑥) is the Dirak delta-function and 

𝓁(𝑥, 𝑧) = 𝛿(𝑥 − 𝑧) −
𝑁
∑

𝛽=0
𝐶𝛽 (𝑧)𝛿(𝑥 − 𝑥𝛽 ) (9)

is the error functional of the interpolation formula (7) and it belongs to the space 𝑊 (1,0)∗
2 (0, 1). The space 𝑊 (1,0)∗

2 (0, 1) is the conjugate 
to the space𝑊 (1,0)

2 (0, 1). In addition, for convenience, we denote 𝓁(𝑥, 𝑧) by 𝓁(𝑥).
By the Cauchy–Schwarz inequality the absolute value of the error (8) is estimated as follows

|(𝓁, 𝜑)| ≤ ‖𝜑|𝑊 (1,0)
2 ‖ ⋅ ‖𝓁|𝑊 (1,0)∗

2 ‖,

where,
‖

‖

‖

𝓁|𝑊 (1,0)∗
2

‖

‖

‖

= sup
𝜑, ‖𝜑‖≠0

|(𝓁, 𝜑)|
‖𝜑‖

.

Therefore, in order to estimate the error of the interpolation formula (7) on functions of the space 𝑊 (1,0)
2 (0, 1) it is required to find 

the norm of the error functional 𝓁 in the conjugate space 𝑊 (1,0)∗
2 (0, 1).

From here we get:
3 
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Problem 1. Find the norm of the error functional 𝓁 for the interpolation formula (7) in the space 𝑊 (1,0)∗
2 (0, 1).

It is clear that the norm of the error functional 𝓁 depends on the coefficients 𝐶𝛽 (𝑧) and the nodes 𝑥𝛽 . The problem of minimization 
of the quantity ‖𝓁‖ by coefficients 𝐶𝛽 (𝑧) is a linear problem and by nodes 𝑥𝛽 is, in general, a complicated and non-linear problem. 
We consider the problem of minimization of the quantity ‖𝓁‖ by coefficients 𝐶𝛽 (𝑧) when the nodes 𝑥𝛽 are fixed.

If there are coefficients 𝐶̊𝛽 (𝑧) that minimize the norm of the error functional, that is, 
‖

‖

‖

𝓁|𝑊 (1,0)∗
2

‖

‖

‖

= inf
𝐶𝛽 (𝑧)

‖

‖

‖

𝓁|𝑊 (1,0)∗
2

‖

‖

‖

(10)

then they are called the optimal coefficients and the corresponding interpolation formula

𝑃̊𝜑(𝑧) =
𝑁
∑

𝛽=0
𝐶̊𝛽 (𝑧)𝜑(𝑥𝛽 )

is called the optimal interpolation formula in the space 𝑊 (1,0)
2 (0, 1).

Thus, in order to construct the optimal interpolation formula in the space 𝑊 (1,0)
2 (0, 1) we need to solve the next problem.

Problem 2.  Find the coefficients 𝐶̊𝛽 (𝑧) that give the quantity (10) when the nodes 𝑥𝛽 are fixed.

3.2. The norm of the error functional

The main aim of the present paper is to construct the optimal interpolation formulas in the space 𝑊 (1,0)
2 (0, 1) and to find explicit 

formulas for the optimal coefficients. The first such problem was stated and studied by Sobolev in [17], where the extremal function 
of the interpolation formula was found in the Sobolev space 𝑊 (𝑚)

2 .
To find the explicit form of the norm of the error functional 𝓁 in the space 𝑊 (1,0)∗

2 (0, 1), we use concept of an extremal function 
introduced by Sobolev [17,18]. The function 𝜓𝓁 from 𝑊 (1,0)

2 (0, 1) space is called the extremal function for the error functional 𝓁 if 
the following equality is fulfilled

(

𝓁, 𝜓𝓁
)

= ‖

‖

‖

𝓁 |

|

|

𝑊 (1,0)∗
2

‖

‖

‖

⋅ ‖‖
‖

𝜓𝓁
|

|

|

𝑊 (1,0)
2

‖

‖

‖

.

The space 𝑊 (1,0)
2 (0, 1) is a Hilbert space and the inner product in this space is defined by the following formula 

⟨𝜑,𝜓⟩ = ∫

1

0

(

𝜑′(𝑥) + 𝜑(𝑥)
) (

𝜓 ′(𝑥) + 𝜓(𝑥)
)

𝑑𝑥. (11)

According to the Riesz representation theorem, any continuous linear functional 𝓁 in a Hilbert space can be represented in the form 
of an inner product. So, in our case, for any function 𝜑 from 𝑊 (1,0)

2 (0, 1) space, we have 

(𝓁, 𝜑) = ⟨𝜓𝓁 , 𝜑⟩. (12)

Here 𝜓𝓁 is the function from 𝑊 (1,0)
2 (0, 1) is defined uniquely by the functional 𝓁 and is the extremal function.

The extremal function has the following form (see, [14]) 
𝜓𝓁(𝑥) = −𝓁(𝑥) ∗ 𝐺1(𝑥) + 𝑑𝑒−𝑥, (13)

where 
𝐺1(𝑥) =

sgn𝑥
2

( 𝑒𝑥 − 𝑒−𝑥
2

)

, (14)

𝑑 is a real constant, ∗ is the operation of convolution which for the functions 𝑓 and 𝑔 is defined as follows

𝑓 (𝑥) ∗ 𝑔(𝑥) = ∫

∞

−∞
𝑓 (𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦 = ∫

∞

−∞
𝑓 (𝑦)𝑔(𝑥 − 𝑦)𝑑𝑦.

It is easy to see from (12) that the error functional 𝓁, defined on the space 𝑊 (1,0)
2 (0, 1), satisfies the following equality 

(𝓁, 𝑒−𝑥) = 0. (15)

The last equality means that our interpolation formula is exact for the function 𝑒−𝑥.
Now we obtain the norm of the error functional 𝓁. Since the space 𝑊 (1,0)

2 (0, 1) is the Hilbert space then by the Riesz theorem, 
we have

(

𝓁, 𝜓𝓁
)

= ‖𝓁‖ ⋅ ‖𝜓𝓁‖ = ‖𝓁‖2.

Hence, using (9) and (13), taking into account (15), we get

‖𝓁‖2 = (𝓁, 𝜓𝓁) = ∫

∞

−∞
𝓁(𝑥, 𝑧)𝜓𝓁(𝑥)𝑑𝑥

= −
𝑁
∑

𝑁
∑

𝐶𝛽 (𝑧)𝐶𝛾 (𝑧)𝐺1(𝑥𝛽 − 𝑥𝛾 ) + 2
𝑁
∑

𝐶𝛽 (𝑧)𝐺1(𝑧 − 𝑥𝛽 ). (16)

𝛽=0 𝛾=0 𝛽=0

4 
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3.3. The coefficients of the optimal quadrature formula

Let us assume that the nodes 𝑥𝛽 in the interpolation formula (7) are fixed. The error functional (9) meets the requirement in 
(15). The norm of this error functional 𝓁 is a multidimensional function that depends on the coefficients 𝐶𝛽 (𝑧) (where 𝛽 ranges from 
0 to 𝑁). To find the point where the expression (16) reaches its conditional minimum, while satisfying the condition in (15), we 
use the Lagrange method:

𝛹 (𝐶0(𝑧), 𝐶1(𝑧),… , 𝐶𝑁 (𝑧), 𝑑(𝑧)) = ‖𝓁‖2 + 2𝑑(𝑧) (𝓁, 𝑒−𝑥) .

Equating to 0 the partial derivatives of the function 𝛹 by 𝐶𝛽 (𝑧) (𝛽 = 0, 𝑁), and 𝑑(𝑧), we get the following system of linear equations
𝑁
∑

𝛾=0
𝐶𝛾 (𝑧)𝐺1(𝑥𝛽 − 𝑥𝛾 ) + 𝑑(𝑧)𝑒

−𝑥𝛽 = 𝐺1(𝑧 − 𝑥𝛽 ), (17)

𝛽 = 0, 1,… , 𝑁,
𝑁
∑

𝛾=0
𝐶𝛾 (𝑧) 𝑒

−𝑥𝛾 = 𝑒−𝑧, (18)

where 𝐺1(𝑥) is defined by equality (14).
Therefore, in fixed values of the nodes 𝑥𝛽 the square of the norm of the error functional 𝓁, being quadratic function of the 

coefficients 𝐶𝛽 (𝑧), has a unique minimum in some certain values 𝐶𝛽 (𝑧) = 𝐶̊𝛽 (𝑧).
In this work, we do not focus on the algorithm for solving the system of Eqs. (17) and (18). For more details, refer to [14]. 

Instead, we simply present the solution.

Theorem ([14]). Coefficients of the optimal interpolation formula (7) with equally spaced nodes in the space 𝑊 (1,0)
2 (0, 1) have the following 

form

𝐶̊𝛽 (𝑧) = 1
2(1 − 𝑒2ℎ)

[

sgn(𝑧 − ℎ𝛽 − ℎ) ⋅ (𝑒ℎ𝛽+2ℎ−𝑧 − 𝑒𝑧−ℎ𝛽 )

+ sgn(𝑧 − ℎ𝛽 + ℎ) ⋅ (𝑒ℎ𝛽−𝑧 − 𝑒𝑧−ℎ𝛽+2ℎ)

+ (1 + 𝑒2ℎ) ⋅ sgn(𝑧 − ℎ𝛽) ⋅ (𝑒𝑧−ℎ𝛽 − 𝑒ℎ𝛽−𝑧)

]

, 𝛽 = 0, 1,… , 𝑁. (19)

Hence we obtain

‖𝓁‖2
𝑊 1,0

2 (0,1)
= 𝜀(ℎ𝛽,ℎ(𝛽+1)](𝑧) ⋅

𝑒2𝑧−2ℎ𝛽 + 𝑒2ℎ𝛽−2𝑧 − 1 − 𝑒2ℎ

2(1 − 𝑒2ℎ)
, 𝛽 = 0, 1,… , 𝑁 − 1,

where 𝜀(ℎ𝛽,ℎ(𝛽+1)](𝑧) is the indicator of the interval (ℎ𝛽, ℎ(𝛽 + 1)].

3.4. Optimal coefficients as basis function

Now, we discuss the use of these coefficient in place of the basis function in (6).
We define the basis functions 𝜙1, …, 𝜙𝑁−1 based on (19) as follows: 

𝜙𝑖(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒−𝑥+ℎ𝑖−𝑒2ℎ+𝑥−ℎ𝑖
1−𝑒2ℎ , ℎ(𝑖 − 1) ≤ 𝑥 < ℎ𝑖,

𝑒𝑥−ℎ𝑖−𝑒2ℎ−𝑥+ℎ𝑖
1−𝑒2ℎ , ℎ𝑖 ≤ 𝑥 < ℎ(𝑖 + 1),

0, otherwise.

(20)

We write 𝜙0(𝑥) and 𝜙𝑁 (𝑥) separately according to (19)

𝜙0(𝑥) =
𝑒𝑥−𝑥0 − 𝑒2ℎ−𝑥+𝑥0

1 − 𝑒2ℎ
,

𝜙𝑁 (𝑥) = 𝑒1−𝑥 − 𝑒2ℎ+𝑥−1

1 − 𝑒2ℎ
.

These functions are boundary basis functions included to satisfy the boundary conditions of the finite element space constructed for 
the Galerkin method.

3.5. Theoretical analysis and convergence

Let 𝑢 be the exact solution to the Fredholm integral equation of the second kind and 𝑢𝑁  be the Galerkin approximation constructed 
in the finite-dimensional subspace V𝑛 ⊂ 𝑊 (1,0)

2 . Under the assumption that the kernel 𝐾(𝑥, 𝑡) is continuous and the operator is 
compact, the Galerkin method satisfies the Céa’s Lemma:

‖𝑢 − 𝑢𝑁‖ ≤ 𝐶 inf ‖𝑢 − 𝑣‖,

𝑣∈V𝑛

5 
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where 𝐶 is a constant that depends on the operator norm and problem geometry.
Since the basis functions derived from the optimal interpolation formula provide an approximation order of (ℎ), the overall 

error satisfies:

‖𝑢 − 𝑢𝑁‖ = (ℎ).

This confirms that the Galerkin method with these basis functions is convergent with the same order as the interpolation accuracy 
in the underlying space 𝑊 (1,0)

2 .

4. Numerical results

In this section, we present an example of an algorithm for solving an integral equation using the Galerkin method. In this section, 
we mainly use the functions (6) and (20) as basis functions in the Galerkin method. And we compare the approximations to the 
exact solution of the integral equation in both cases.

Algorithm 1 Galerkin Method for Solving an Integral Equation
1: Define the problem:
2: Given the Fredholm integral equation of the second kind:

𝑢(𝑥) − ∫

𝑏

𝑎
𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 𝑓 (𝑥)

where 𝐾(𝑥, 𝑡) is the kernel function, 𝑓 (𝑥) is the given function.
3: Set parameters:
4: 𝑎 and 𝑏 ⊳ Integration limits
5: 𝑛 ⊳ Number of basis functions
6: ℎ ← 𝑏−𝑎

𝑛 ⊳ Step size
7: Define the initial approximation:

• For choosing piecewise linear basis

𝜓0(𝑥) =

{ 𝑥0−𝑥
ℎ , 0 ≤ 𝑥 < ℎ,

0, otherwise.

• For choosing exponential basis

𝜓0(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑒𝑥−𝑥0 −𝑒2ℎ−𝑥+𝑥0
1−𝑒2ℎ

, 0 ≤ 𝑥 < ℎ,

0, otherwise.

8: Define basis functions:
9: Choose one of the following:

• Piecewise linear basis (6) for 𝑖 = 1,… , 𝑛.
• Exponential basis (20) for 𝑖 = 1,… , 𝑛.

10: Compute stiffness matrix 𝐴:
11: for 𝑖 = 1 to 𝑛 do
12:  for 𝑗 = 1 to 𝑛 do
13:  𝐴𝑖𝑗 ← ∫ 𝑏𝑎 𝜙𝑖(𝑥)𝜙𝑗 (𝑥)𝑑𝑥
14:  end for
15: end for
16: Compute coupling matrix 𝐵:
17: for 𝑖 = 1 to 𝑛 do
18:  for 𝑗 = 1 to 𝑛 do
19:  𝐵𝑖𝑗 ← ∫ 𝑏𝑎 𝜙𝑖(𝑥) ∫

𝑏
𝑎 𝜙𝑗 (𝑡)𝐾(𝑥, 𝑡) 𝑑𝑡 𝑑𝑥

20:  end for
21: end for
22: Assemble load vector 𝑏:
23: for 𝑖 = 1 to 𝑛 do
24:  𝑏𝑖 ← ∫ 𝑏𝑎 𝜙𝑖(𝑥)

(

𝑓 (𝑥) − 𝜓0(𝑥) + ∫ 𝑏𝑎 𝐾(𝑥, 𝑡)𝜓0(𝑡)𝑑𝑡
)

𝑑𝑥
25: end for
26: Solve the linear system:
27: 𝑐 ← (𝐴 − 𝐵)−1𝑏
28: Compute the approximate solution:
29: 𝑢𝑁 (𝑥) ← 𝜓0(𝑥) +

∑𝑛
𝑖=1 𝑐𝑖𝜙𝑖(𝑥)

30: Return 𝑢𝑁 (𝑥) as the approximate solution.

Example 1. Consider the integral equation

𝑢(𝑥) − ∫

1
𝑡𝑢(𝑡)𝑑𝑡 = 𝑒𝑥 − 1, 0 ≤ 𝑥 ≤ 1.
0

6 
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Fig. 1. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=2 finite elements.

Table 1
Mean absolute error for exponential basis 
(MAEEB) and piecewise linear basis (MAEPLB)
 𝑛 MAEEB MAEPLB 
 2 0.0681 0.0347  
 4 0.0146 0.0073  
 8 0.0034 0.0017  

The exact solution of this integral equation is 𝑢(𝑥) = 𝑒𝑥. We solve this integral equation using Algorithm 1. We analyze the graphs 
of the absolute errors of approximations to the exact solution of the approximate solutions found using both basis sets for various 
values of 𝑁 (see Fig.  1).

The graphs clearly demonstrate that the exponential basis functions yield significantly lower approximation errors compared to 
the piecewise linear basis, especially for lower values of 𝑁 . This behavior is expected since the exponential basis is constructed to 
exactly reproduce functions like 𝑒𝑥 and 𝑒−𝑥, which are closely aligned with the nature of the exact solutions considered in the test 
problems.

Example 2. Consider the integral equation

𝑢(𝑥) − 1
2 ∫

𝜋∕2

0
sin(𝑥)𝑢(𝑡)𝑑𝑡 = cos(𝑥), 0 ≤ 𝑥 ≤ 𝜋

2
.

The exact solution of this integral equation is 𝑢(𝑥) = sin(𝑥)+cos(𝑥). We approximately solve this integral equation using Algorithm 
1. We analyze the graphs of the absolute errors of approximations to the exact solution of the approximate solutions found using 
both basis sets for various values of 𝑁 (see Figs.  2–4).

Table  1 quantifies the error behavior for both basis sets. We observe that as 𝑁 increases, the error decreases in both cases, 
consistent with the expected convergence of the Galerkin method. Notably, the exponential basis achieves approximately twice 
the accuracy of the piecewise linear basis across all tested values of 𝑁 . For instance, at 𝑁 = 8, the mean absolute error for the 
exponential basis is 0.0034, compared to 0.0017 for the linear basis. It is clear from this that the basis function should be chosen 
depending on the given integral equation.

These numerical findings confirm that the optimal interpolation-based exponential basis functions provide superior approxima-
tion properties when the exact solution is exponential. However, for functions with trigonometric or polynomial behavior, piecewise 
linear bases may offer better performance. Therefore, the choice of basis should be guided by the underlying properties of the 
solution.
7 
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Fig. 2. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=2 finite elements.

Fig. 3. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=4 finite elements.

Conclusion and discussion of numerical results

In this study, we explored the Galerkin method for solving Fredholm integral equations of the second kind, utilizing basis 
functions derived from the optimal interpolation formula in the Hilbert space 𝑊 (1,0)

2 . Piecewise linear and exponential basis functions 
were employed to construct approximate solutions.

The numerical results reveal several important insights into the performance of the proposed basis functions. Firstly, the 
exponential basis functions derived from the optimal interpolation formula in 𝑊 (1,0)

2  produce errors close to machine zero for 
problems where the exact solution exhibits exponential behavior, as seen in Example  1. This high level of accuracy confirms the 
theoretical optimality of the constructed basis.

Secondly, for the problem in Example  2 involving trigonometric terms, the piecewise linear basis yields slightly better accuracy, 
particularly for small 𝑁 . This suggests that while optimal interpolation-based bases are powerful, their effectiveness may depend 
on the class of functions being approximated.

Finally, the comparison of error magnitudes in Table  1 shows that both bases have convergence of order (ℎ), but their constants 
differ. This highlights the importance of selecting basis functions that align closely with the characteristics of the underlying solution.
8 
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Fig. 4. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=8 finite elements.
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