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MSC: In this paper, we study the Galerkin method for obtaining approximate solutions to linear
65N30 Fredholm integral equations of the second kind. The finite element solution is represented as a
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linear combination of basis functions, and the construction of suitable basis functions plays a
crucial role in the accuracy of the approximation. We propose an optimal interpolation formula
Keywords: that exactly reproduces the functions e¢* and ¢™*, and derive basis functions from its coefficients.
Integra.l equation This interpolation formula is constructed within the Hilbert space WZ“'O). To evaluate the
Galerk%“ me_thOd . effectiveness of the proposed approach, we solve several integral equations using the Galerkin
An optimal interpolation formula . . . . . .

. method with two types of basis functions: the newly constructed exponential basis and classical
Finite element method . . R X . . )
Basis function piecewise linear basis functions. Numerical experiments are presented to compare the accuracy
Hilbert space of these approaches. Graphs and tables illustrate the approximation errors, demonstrating that
Optimal coefficients both basis functions achieve an error order of O(h), with the optimal interpolation-based basis
yielding superior accuracy in certain cases.
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1. Introduction
In this work, we discuss the Galerkin method for solving the integral equation

b
u(x) — / K(x, pu(yydy = f(x), x € [a,b]. (€Y

In these equations, « is an unknown function, the kernel of the integral equation K, and the function f on the right-hand side are
given.

The term integral equation was first used by du Bois-Reymond [1] in 1888. Eq. (1) carry the name of Fredholm because of
his contributions to the field and are called Fredholm integral equations of the first and second kinds, respectively. Here we consider
Eq. (1) the case where the solution exists and is unique, and the kernel is sufficiently smooth (see, [2]).
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We express the integral Eq. (1) in the operator form:
I-Ku=f

where the operator K is assumed to be compact on a Banach space V, and I is the identity operator. The most common choices of
Banach spaces are C(a, b) and L?(a, b). For Galerkin’s method and its generalizations, the Sobolev space H’(a, b) is also frequently
used, where H'(a, b) = L%(a, b).

In practice, we select a sequence of finite-dimensional subspaces V, c V for n > 1, where each V, has dimension d,. Let V, has

a basis ¢y, ..., ¢, , where we set N = d, for notational simplicity. We then seek a function uy € V,, which can be expressed as
N
uy(x) =Y ¢ (x), x € la,b]. @
i=1
This is substituted into (1), and the coefficients (c,,...,cy) are determined by ensuring the equation is nearly exact in a certain

sense. And the error will be equal to the following

b
ry(x) = uN(X)—/ K, puy(y)dy = f(x)

N b
=Y <¢,-(x) - / K(x, y)¢,-<y)dy> - f(), x€la,bl. ®3)
i=1 a
This is known as the residual in the equation’s approximation when using u = u,. To obtain the coefficients (¢, ..., cy) required to
ry (x) satisfy
(ry-9))=0, j=1,...,N. @

To find (¢, ..., cn), apply (4) to (3). This yields the linear system of equations

N
Y e {@n¢) - (Kb} =(fr)), j=1,....N. ©)
i=1

This is Galerkin method for obtaining an approximate solution to (1). The system has a solution, and it is unique. The resulting
sequence of approximate solutions, u, converges to u in V (The proof is given in [2]).

First Bubnov in 1913 and then, in more details, Galerkin [3] in 1915 approached and extended this approximation method
without relying on a minimization formulation. Later, Petrov [4] first considered the general form of the Galerkin method.

Rest of the paper is organized as follows. In Section 2, we introduce piecewise linear basis functions and their application in
the Galerkin method. Section 3 details the construction of an optimal interpolation formula in the WZ(]‘O) space. These interpolation
formula coefficients are obtained as basis functions. Section 4 presents numerical results, comparing the performance of piecewise
linear and exponential basis functions through error analysis.

2. Piecewise linear basis functions

For simplicity, we solve the problem for the interval [0, 1] instead of the interval [a, b]. Piecewise linear splines are good basis
functions due to their simplicity and ease of use. We divide the interval [0, 1] into N subintervals with nodes:
O=xy<x; <--<xy=L

Let h = 1/N denote the mesh size. First, we choose piecewise linear splines as the basis functions:

HTH X1 £ X <X,
X;. —X

Fix) =9 =, X <x <Xy, (6)
0, otherwise.

and from the last expression, we have

do0) = 22,

Each ¢,(x) is continuous, piecewise linear, and satisfies ¢;(x ) =6 (Kronecker delta). Here, i =1, N and j = 1, N.
The Galerkin method requires solving the linear system Ac = b, where:

Ajj = (¢, b)) — (K¢i, ¢)),

bj=(f.¢;), i=1LN,j=1,N.
It is clear that ¢; and ¢; overlap only if |i — j| < 1. Thus, A;; is sparse (mostly tridiagonal for 1D problems). Here, (¢;, ¢;) can be
computed analytically:
2, ifi=j,

3
D) =9 2. ifli-jl=1,
0, otherwise.
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Similarly, the calculation of the term involving the kernel,

1 1
(K¢,-,¢,-)=/O [/0 K(X,y)ti)[(X)dX] ¢;(»dy

is performed in the same way as above. Usually, quadrature formulas are used to calculate this double integral.

Usually, different quadrature formulas are chosen depending on the given kernel K(x,y). For example, integrals can be
approximated using optimal quadrature formulas [5-7] with p(x) weight, [8-10] with a weak singularity integral.

The choice of basis functions is also important for the Galerkin method. The construction of basis functions in different spaces and
their application to solving boundary value problems for ordinary differential equations using the Galerkin method are considered
in the work [11].

We emphasize that the coefficients of optimal interpolation formulas (see, [12-16]) constructed in various Hilbert and Sobolev
spaces can also be used as basis functions.

3. An optimal interpolation formula
3.1. Problem statement

Here, we consider construction of an optimal interpolation by a variational method. In the variational approach, splines are
elements of Hilbert or Banach spaces minimizing certain functionals.

Assume we are given a table of values ¢(x4), f# =0,1,..., N of a function ¢ at points x; € [0, 1]. It is required approximate the
function ¢ by another more simple function P, i.e.,

N
P(x) = P,(x) = Y Cy(x) - plxp), @)
=0

which satisfies the following interpolation conditions
(P(Xﬂ) = P(p(xﬂ)! p=0,1,...,N.

Here Cj(x) and x; (€[0,1]) are the coefficients and the nodes of the interpolation formula (7), respectively.
We suppose that functions ¢ belong to the Hilbert space

w0.1) = {¢ : [0.1] > R | ¢ is abs. cont. and ¢’ € L,(0, 1)},

equipped with the norm

12
|letws 0. 0] = {/01 (qa’(x)+<p(x))2dx}

and ﬂ)l ((p’ (x) + ¢(x))2dx < 0. The last equality is the semi-norm and ||¢|| = 0 if and only if ¢(x) = ke™, here k is any real constant.
The difference ¢ — P, is called the error of the interpolation formula (7). The value of the error at a point z € [0, 1] is a linear
functional on the space VVZ(I‘O)(O, 1), i.e.,

N
P(2) = Py(2) = 9(2) = Y Cp(2)p(xy)

0 =
4=0
Py N
= / <5(x —z)— Z Cp(2)5(x — x,})> o(x)dx, ®)
oo i
where §(x) is the Dirak delta-function and
N
£(x,2) = 8(x — z) — z Cp(2)8(x — xp) ©)
$=0

is the error functional of the interpolation formula (7) and it belongs to the space VV;I’O)*(O, 1). The space Wz(l’o)*(O, 1) is the conjugate
to the spaceWz(l‘O) (0, 1). In addition, for convenience, we denote #(x, z) by £(x).
By the Cauchy-Schwarz inequality the absolute value of the error (8) is estimated as follows
. @)l < oIy Ol - 121wy 0",
where,
.ol
o llolizo Nl

(1,0)%
|e1w;

Therefore, in order to estimate the error of the interpolation formula (7) on functions of the space WZ(I’O)(O, 1) it is required to find
the norm of the error functional ¢ in the conjugate space W;I’O)*(O, D).
From here we get:
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Problem 1. Find the norm of the error functional # for the interpolation formula (7) in the space WZ(I‘O)*(O, 1).

It is clear that the norm of the error functional # depends on the coefficients Cy(z) and the nodes x;. The problem of minimization
of the quantity ||#|| by coefficients Cy(z) is a linear problem and by nodes x; is, in general, a complicated and non-linear problem.
We consider the problem ofominimization of the quantity ||#|| by coefficients Cy(z) when the nodes x; are fixed.

If there are coefficients Cy(2) that minimize the norm of the error functional, that is,

= inf

Hb’le(]’O)* le(I,())*
2 Cpl) 2

10

then they are called the optimal coefficients and the corresponding interpolation formula
N
Py(2) = Y Cy(2)p(xp)
4=0

is called the optimal interpolation formula in the space Wz(l’o)(O, 1).
Thus, in order to construct the optimal interpolation formula in the space Wz(l’o)(O, 1) we need to solve the next problem.

Problem 2. Find the coefficients C‘ﬂ(z) that give the quantity (10) when the nodes x; are fixed.
3.2. The norm of the error functional

The main aim of the present paper is to construct the optimal interpolation formulas in the space 1/1/2“'0)(0, 1) and to find explicit
formulas for the optimal coefficients. The first such problem was stated and studied by Sobolev in [17], where the extremal function
of the interpolation formula was found in the Sobolev space Wz("').

To find the explicit form of the norm of the error functional # in the space Wz“’(”*(o, 1), we use concept of an extremal function
introduced by Sobolev [17,18]. The function y, from VVZ(I‘O)(O, 1) space is called the extremal function for the error functional ¢ if
the following equality is fulfilled

(¢w,) = ”f ‘qu,r»* ) HW )W;w) “

The space VI/ZU’O)(O, 1) is a Hilbert space and the inner product in this space is defined by the following formula

1
(o) = / (@) + @) (v'(x) + y(x) dx. an
0

According to the Riesz representation theorem, any continuous linear functional # in a Hilbert space can be represented in the form
of an inner product. So, in our case, for any function ¢ from Wz“’o)(o, 1) space, we have

@, 0) = (ws» @) (12)

Here y, is the function from W;"O)(O, 1) is defined uniquely by the functional # and is the extremal function.
The extremal function has the following form (see, [14])

W (x) = —£(x) * G(x) + de™™, (13)
where
_ sgnx eX —e™X
G0 =5 (55—). (14)

d is a real constant, = is the operation of convolution which for the functions f and g is defined as follows
S(x) x g(x) = / flx—ygydy = / Fgx = y)dy.
It is easy to see from (12) that the error functional #, defined on the space 1/1/2(1'0)(0, 1), satisfies the following equality
(Z,e7%)=0. (15)

The last equality means that our interpolation formula is exact for the function ™.
Now we obtain the norm of the error functional #. Since the space W;"O)(O, 1) is the Hilbert space then by the Riesz theorem,
we have

(Zowe) =121 lwell = 1211

Hence, using (9) and (13), taking into account (15), we get

11 = (C,w,) = / £(x, 2wp (D)dx
N N N
= =) Y CHC, (G, (x5 = x,) +2 Y C4(2)Gy (2 = Xp). (16)
p=07=0 p=0
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3.3. The coefficients of the optimal quadrature formula

Let us assume that the nodes Xg in the interpolation formula (7) are fixed. The error functional (9) meets the requirement in
(15). The norm of this error functional # is a multidimensional function that depends on the coefficients C;(z) (where f ranges from
0 to N). To find the point where the expression (16) reaches its conditional minimum, while satisfying the condition in (15), we
use the Lagrange method:

¥(Cy(2),Cy(2), ..., Cy(2),d(2) = I£|* +2d(2) (£, 7).

Equating to O the partial derivatives of the function ¥ by Cy(z) (§ = 0, N), and d(z), we get the following system of linear equations

N

Z C,(2)G (x5 — x,) + d(z)e™ = G(z - Xp), a7
y=0

p=0,1,...,N,

N

Y C e =eF, (18)
y=0

where G (x) is defined by equality (14).

Therefore, in fixed values of the nodes x; the square of the norm ofothe error functional #, being quadratic function of the
coefficients Cy(z), has a unique minimum in some certain values C;(z) = Cy(2).

In this work, we do not focus on the algorithm for solving the system of Eqs. (17) and (18). For more details, refer to [14].
Instead, we simply present the solution.

Theorem ([14]). Coefficients of the optimal interpolation formula (7) with equally spaced nodes in the space WZ(I’O) (0, 1) have the following
form

: I S hp+2h—z _ z—hp
Cp(z) = 0 — sgn(z —hp —h)- (e —e )

+ sgn(z — hp + h) - ("P~% — eZhB+2hy
+ (1 +e*y . sgn(z—hp)- (&P -5 |, p=0,1,...,N. (19)

Hence we obtain
23-2hB 4 2hB=2z _ | _ 2h

2(1 — e2h)
where Enpnp+1)(2) 18 the indicator of the interval (hf, h(f + 1)].

2
20 o

w, 0,1)

= egpnpen (@ - . F=0,1,..,N—1,

3.4. Optimal coefficients as basis function
Now, we discuss the use of these coefficient in place of the basis function in (6).
We define the basis functions ¢, ..., ¢,y_, based on (19) as follows:

e~ X+hi _ 2h+x—hi

h(i—1) <x < hi,

1=k
¢ =g T pi<x <R+ ), (20)
0, otherwise.

We write ¢ (x) and ¢ (x) separately according to (19)
eX—X0 — 2h—x+x(
ho(x) = T i
1-x 2h+x—1
e —e
on(x) = o
These functions are boundary basis functions included to satisfy the boundary conditions of the finite element space constructed for
the Galerkin method.

3.5. Theoretical analysis and convergence

Let u be the exact solution to the Fredholm integral equation of the second kind and u, be the Galerkin approximation constructed
in the finite-dimensional subspace V, C W;I‘O). Under the assumption that the kernel K(x,t) is continuous and the operator is
compact, the Galerkin method satisfies the Céa’s Lemma:

lu—unll £ C inf lu— o,
vev,
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where C is a constant that depends on the operator norm and problem geometry.

Since the basis functions derived from the optimal interpolation formula provide an approximation order of O(h), the overall
error satisfies:

llu—upll = OCh).
This confirms that the Galerkin method with these basis functions is convergent with the same order as the interpolation accuracy
in the underlying space Wz(l’o).

4. Numerical results

In this section, we present an example of an algorithm for solving an integral equation using the Galerkin method. In this section,
we mainly use the functions (6) and (20) as basis functions in the Galerkin method. And we compare the approximations to the
exact solution of the integral equation in both cases.

Algorithm 1 Galerkin Method for Solving an Integral Equation

1: Define the problem:
2: Given the Fredholm integral equation of the second kind:

b
u(x) 7/ K(x,Hu(t)dt = f(x)

where K(x,1) is the kernel function, f(x) is the given function.
: Set parameters:
a and b > Integration limits
n > Number of basis functions
h« ? > Step size
: Define the initial approximation:

NQThw

« For choosing piecewise linear basis

0 o<x<h,
wo(x) = h

0, otherwise.
« For choosing exponential basis
XmX0 _o2h—x+x

wo(x) = 1-¢2h
0, otherwise.

0<x<h,

e

: Define basis functions:
9: Choose one of the following:

« Piecewise linear basis (6) for i=1,...,n.
« Exponential basis (20) for i=1,...,n.

10: Compute stiffness matrix A:
11: for i=1 to n do
12: for j=1to n do

13: Aij < [P 6o x0dx
14: end for
15: end for

16: Compute coupling matrix B:
17: for i=1 to n do
18: for j =1 to n do

19: Byj < [ ¢ [ #; 0K (x.0)d1 dx
20: end for
21: end for

22: Assemble load vector b:

23: for i=1 to n do

24 b [ 000 (£00 - v + [ K owo(0dr ) dx
25: end for

26: Solve the linear system:

27: ¢~ (4-B)'b

28: Compute the approximate solution:

29: un(x) < yo(x) + 27:1 cii(x)

30: Return uy(x) as the approximate solution.

Example 1. Consider the integral equation

1
u(x)—/ w@dt=e"—1, 0<x<1.
0
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le-15 Error: Exponential Basis Error: Piecewise Linear Basis
sl Absolute Error (Exp, n=2) —— Absolute Error (Linear, n=2)
1.50 0.04
1.25
0.03 1
1.00 4
= =
o o
E E
& &
0.75 4 0.02
0.50
0.01
0.25
0.00 4 0.00
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Fig. 1. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=2 finite elements.

Table 1
Mean absolute error for exponential basis
(MAEEB) and piecewise linear basis (MAEPLB)

n MAEEB MAEPLB
2 0.0681 0.0347
4 0.0146 0.0073
8 0.0034 0.0017

The exact solution of this integral equation is u(x) = e*. We solve this integral equation using Algorithm 1. We analyze the graphs
of the absolute errors of approximations to the exact solution of the approximate solutions found using both basis sets for various
values of N (see Fig. 1).

The graphs clearly demonstrate that the exponential basis functions yield significantly lower approximation errors compared to
the piecewise linear basis, especially for lower values of N. This behavior is expected since the exponential basis is constructed to
exactly reproduce functions like ¢ and e~*, which are closely aligned with the nature of the exact solutions considered in the test
problems.

Example 2. Consider the integral equation

/2
u(x) — / sin(x)u()dt = cos(x), 0<x< Z.
2 Jo 2

The exact solution of this integral equation is u(x) = sin(x)+cos(x). We approximately solve this integral equation using Algorithm
1. We analyze the graphs of the absolute errors of approximations to the exact solution of the approximate solutions found using
both basis sets for various values of N (see Figs. 2-4).

Table 1 quantifies the error behavior for both basis sets. We observe that as N increases, the error decreases in both cases,
consistent with the expected convergence of the Galerkin method. Notably, the exponential basis achieves approximately twice
the accuracy of the piecewise linear basis across all tested values of N. For instance, at N = 8, the mean absolute error for the
exponential basis is 0.0034, compared to 0.0017 for the linear basis. It is clear from this that the basis function should be chosen
depending on the given integral equation.

These numerical findings confirm that the optimal interpolation-based exponential basis functions provide superior approxima-
tion properties when the exact solution is exponential. However, for functions with trigonometric or polynomial behavior, piecewise
linear bases may offer better performance. Therefore, the choice of basis should be guided by the underlying properties of the
solution.
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Error: Exponential Basis Error: Piecewise Linear Basis
—— Absolute Error (Exp, n=2) —— Absolute Error (Linear, n=2)
0.14
0.07
0.12
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0.10
0.05
0.08
= 0.04
o
E
&
01064 0.03
0.04 4 0.02 4
0.02 0.01 4
0.00 0.00
0.0 02 04 06 08 10 12 14 16 0.0 02 04 06 08 10 12 14 16
X X

Fig. 2. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=2 finite elements.

Error: Exponential Basis Error: Piecewise Linear Basis
00407 —— Absolute Error (Exp, n=4) 0.0200 4 —— Absolute Error (Linear, n=4)
0.035 0.0175
0.030 0.0150 4
0.025 0.0125 4
0.020 ‘g 0.0100 4
&

0.015 0.0075 1
0.010 0.0050 1
0.005 0.0025 4
0.000 0.0000 4

0.0 02 04 06 08 10 12 14 16 0.0 02 0.4 06 08 10 12 14 16

X X

Fig. 3. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=4 finite elements.

Conclusion and discussion of numerical results

In this study, we explored the Galerkin method for solving Fredholm integral equations of the second kind, utilizing basis

functions derived from the optimal interpolation formula in the Hilbert space Wz(l’o). Piecewise linear and exponential basis functions
were employed to construct approximate solutions.

The numerical results reveal several important insights into the performance of the proposed basis functions. Firstly, the

exponential basis functions derived from the optimal interpolation formula in WZ(I’O) produce errors close to machine zero for
problems where the exact solution exhibits exponential behavior, as seen in Example 1. This high level of accuracy confirms the
theoretical optimality of the constructed basis.

Secondly, for the problem in Example 2 involving trigonometric terms, the piecewise linear basis yields slightly better accuracy,

particularly for small N. This suggests that while optimal interpolation-based bases are powerful, their effectiveness may depend
on the class of functions being approximated.

Finally, the comparison of error magnitudes in Table 1 shows that both bases have convergence of order O(h), but their constants

differ. This highlights the importance of selecting basis functions that align closely with the characteristics of the underlying solution.
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Error: Exponential Basis Error: Piecewise Linear Basis
—— Absolute Error (Exp, n=8) —— Absolute Error (Linear, n=8)
0.008 0.004
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Fig. 4. Graphs of absolute errors of obtained approximate solutions using the Galerkin method with linear and exponential basis for N=8 finite elements.
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