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Initial-boundary problem for 2D system of viscoelasticity
Durdiev D. Q. 1 Boltaev A. A. 2

2 o‘lchamli yopishqoq elastiklik sistemasi uchun boshlang‘ich-
chegaraviy masala.
Izotropik muhitda ikki o‘lchamli yopishqoq elastiklik integro-
differensial tenglamalar sistemasi uchun kuchlanish vektori
va tezligini aniqlashning boshlang‘ich-chegaraviy masalasi
o‘rganilgan. Masala yechimining fazoviy o‘zgaruvchilardan
biri bo‘yicha Furye almashtirishiga nisbatan ikkinchi tur
Volterra tipidagi integral tenglamalar sistemasini yechishga
keltirilgan. Uzluksiz funksiyalar sinfida bu sistemaga ketma-
ket yaqinlashishlar usuli qo‘llanilgan. Qo‘yilgan masalaning
yechimlari mavjudligi va yagonaligini ifodalovchi teorema
isbotlangan.
Kalit so‘zlar: giperbolik sistema; to‘g‘ri masala; integral
tenglamalar; qo‘zg‘almas nuqta haqidagi teorema.

Начально-краевая задача для 2D-системы вязкоупругости.
Для двумерной системы интегро-дифференциальных урав-
нений вязкоупругости в изотропной среде изучается пря-
мая задача определения вектора напряжения и скорости ча-
стиц. Задача сводится к эквивалентной системе интеграль-
ных уравнений второго рода типа Вольтерра относительно
преобразования Фурье по одной из пространственных пе-
ременных решения прямой задачи. Далее к этой системе
применяется метод последовательных приближений в классе
непрерывных функций. Таким образом, доказывается суще-
ствование и единственность решения поставленной задачи.
Ключевые слова: гиперболическая система; прямая задача;
система уравнений вязкоупругости, интегральное уравнение,
принцип сжатых отображений.
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Introduction. Canonical form of viscoelasticity equations
In this work, the deformation of flat bodies (for example, fiberglass) is considered taking into account the
viscoelastic properties. Writing for this case the system of equations of the theory of elasticity in stresses and
velocities of particles as a system of equations of the first order, for it the direct problem is studied. The direct
problem is the initial-boundary problem for this system.
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Let x = (x1, x2) ∈ R2. We denote by σij the projection onto the axis xi of the stress acting on the area
with the normal parallel to the axis xj , and ui is the projection onto the axis xi of the particle displacement
vector. According to Hooke’s law for viscoelastic media, stresses and deformations are related by the formulas
[1, p.242]:

σij(x, t) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλdivu+

+

∫ t

0

Kij(t− τ)

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλdivu

]
(x, τ) dτ, (1)

where λ = λ(x2), µ = µ(x2) are Lame coefficients, λ > 0, µ > 0, δij is the Kronecker symbol, Kij(t) are the
functions corresponding to the viscosity the medium and Kij = Kji, i, j = 1, 2.

The equations of motion of particles of a flat body in the absence of external forces have the form

ρ
∂2ui
∂t2

=

2∑
j=1

∂σij
∂xj

, i = 1, 2, (2)

where ρ = ρ(x2) > 0 is the medium density, u(x, t) =
(
u1(x, t), u2(x, t)

)
is the displacement vector.

Note that (1) can be considered as the integral equations of Volterra of the second kind with respect to the
expression µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ δijλdivu. For each fixed pair (i, j) solving these equations, we obtain

σij(x, t) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλdivu+

∫ t

0

rij(t− τ)σij (x, τ) dτ, (3)

here rij are the resolvents of the kernels Kij and they are related by integral relations [2]:

rij(t) = −Kij(t)−
∫ t

0

Kij(t− τ)rij(τ)dτ, i, j = 1, 2. (4)

From the condition Kij = Kji implies rij = rji.
Differentiating (3) with respect to t and introducing the notation ui = ∂

∂tu, we obtain

∂

∂t
σij(x, t) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλdivu+ rij(0)σij(x, t) +

∫ t

0

r′ij(t− τ)σij (x, τ) dτ. (5)

Taking this into account, the system of equations (1) and (2) for the velocity ui and stress σij can be written
in the form of a system of five first-order integro-differential equations. For convenience, denoting x1 = x, x2 = y,
we have

A
∂U

∂t
+B

∂U

∂x
+ C

∂U

∂y
+DU =

∫ t

0

R(t− τ)U(x, τ)dτ, (6)

where U = (u1, u2, σ11, σ22, σ12 = σ21)∗, ∗ is the sign transposition,

A =


ρ 0 0 0 0
0 ρ 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , B =


0 0 −1 0 0
0 0 0 0 −1

−(λ+ 2µ) 0 0 0 0
−λ 0 0 0 0
0 −µ 0 0 0

 ,

C =


0 0 0 0 −1
0 0 0 −1 0
0 −λ 0 0 0
0 −(λ+ 2µ) 0 0 0
−µ 0 0 0 0

 , D =


0 0 0 0 0
0 0 0 0 0
0 0 −r11(0) 0 0
0 0 0 −r22(0) 0
0 0 0 0 −r12(0)

 ,

R(t) =


0 0 0 0 0
0 0 0 0 0
0 0 −r′11(t) 0 0
0 0 0 −r′22(t) 0
0 0 0 0 −r′12(t)

.
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System (6) can be reduced to a symmetric hyperbolic system [3, pp.162-169].
System (6) is reduced to canonical form with respect to the variables t and y. For this, we multiply (6) on

the left hand on A−1 and write the equation

|A−1C − νI| = 0, (7)

where I is the unit matrix, the dimension 5. No, we find roots of (7) respect to the ν :

ν1,2 = ±νs =

√
µ

ρ
, ν3,4 = ±νp =

√
λ+ 2µ

ρ
, ν5 = 0. (8)

Here, νs and νp determine the velocities of the transverse and longitudinal seismic waves, respectively.
Now we choose a nondegenerate matrix T (y, t), so

T−1A−1CT = Λ, (9)

where Λ is a diagonal matrix, the diagonal of which contains the eigenvalues (for each fixed x, defined by (8))
of the matrix A−1C, i.e.

Λ = diag(νs,−νs, νp,−νp, 0).

According to the Formula (9), implies
A−1CT = TΛ,

which means that the i th column of the matrix T is an eigenvector of the matrix A−1T, corresponding to the
eigenvalue λi. Direct calculations show that a matrix T, satisfying the above conditions can be chosen as (not
the only way)

T =


1 1 0 0 0
0 0 − 1√

ρ(λ+2µ)

1√
ρ(λ+2µ)

0

0 0 λ
λ+2µ

λ
λ+2µ 1

0 0 1 1 0
−√µρ √

µρ 0 0 0

 .

We introduce the vector function U by the equality

U = Tϑ.

Carring out this change in equation (6) and then multiplying it on the left by T−1, we obtain

I
∂ϑ

∂t
+ Λ

∂ϑ

∂y
+B1

∂ϑ

∂x
+D1ϑ =

∫ t

0

R1(y, t− τ)ϑ(x, τ)dτ, (10)

where

B1 = T−1A−1BT =


0 0 a1 a2 − 1

2ρ

0 0 a2 a1 − 1
2ρ

a3 a4 0 0 0
a4 a3 0 0 0
a5 a5 0 0 0

 ,

ai = ai(y), a1 = −
√
µ

2ρ
√
λ+2µ

− λ
2ρ(λ+2µ) , a2 =

√
µ

2ρ
√
λ+2µ

− λ
2ρ(λ+2µ) , a3 = −λ2 −

√
µ(λ+2µ)

2 , a4 = −λ2 +

√
µ(λ+2µ)

2 ,

a5 = − 4µ(λ+µ)
λ+2µ ,

D1(y, t) = T−1A−1C
∂T

∂y
+ T−1DT =


c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55

 ,
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cij = cij(y), i, j = 1, 5 c11 = −c12 = 1
2ρ

∂
∂y

(√
µρ
)
− r33(0)

2 , c21 = −c22 = 1
2ρ

∂
∂y

(√
µρ
)

+ r33(0)
2 , c33 = c43 =

λ+2µ
2

∂
∂y

(
1√

ρ(λ+2µ)

)
− r22(0)

2 , c34 = c44 = λ+2µ
2

∂
∂y

(
1√

ρ(λ+2µ)

)
− r22(0)

2 , c53 = c54 = λ
λ+2µ (r22(0)− r11(0)) ,

c55 = −r11(0), clp = cpl = 0, l = 1, 2, p = 3, 4, 5, c35 = c45 = 0,

R1(y, t) = T−1A−1RT =


r̃11 r̃12 r̃13 r̃14 r̃15

r̃21 r̃22 r̃23 r̃24 r̃25

r̃31 r̃32 r̃33 r̃34 r̃35

r̃41 r̃42 r̃43 r̃44 r̃45

r̃51 r̃52 r̃53 r̃54 r̃55

 ,

r̃ij = r̃ij(y, t), i, j = 1, 5 r̃lp = r̃pl = 0, l = 1, 2, p = 3, 4, 5, r̃35 = r̃45 = 0, r̃11 = −r̃12 = −r̃21 = r̃22 =

− r
′
12(t)
2 , r̃ij = − r

′
22(t)
2 , i, j = 3, 4, r̃53 = r̃54 = λ

λ+2µ (r′22(t)− r′11(t)) , r̃55 = −r′11(t).

System (10) is convenient in that it disintegrated with respect to the derivatives t and y, and turns out to be
split only through ∂ϑ

∂x and ϑ. The components ϑi, i = 1, 4 of the vector of the function are called the Riemann
invariants of system (6). They remain constant along the characteristic of the system (10) in the case when
B1 = 0, D1 = 0, R1 = 0.

The statement of a problem
Let us consider the system of equations (10) in the domain

D = {(x, y, t) : x ∈ R, 0 < y < H, t > 0}, H = const

with the boundary Γ = Γ0 ∪ Γ1 ∪ Γ2:

Γ0 = {(x, y, t) : x ∈ R, 0 ≤ y ≤ H, t = 0},

Γ1 = {(x, y, t) : x ∈ R, y = 0, t > 0},

Γ2 = {(x, y, t) : x ∈ R, y = H, t > 0}.

For this system, we pose the direct problem as follows: determine the solution of the system of equations
(10) in D = D ∪ Γ from the data on Γ

ϑi

∣∣∣∣
Γ0

= ϕi(x, y), i = 1, 5, (11)

ϑi

∣∣∣∣
Γ1

= ψi(x, t), i = 1, 3, ϑi

∣∣∣∣
Γ2

= ψi(x, t), i = 2, 4. (12)

It is known that [4,p.164–5, sec.4 ] problem (10), (11), (12) is well posed. Suppose that the functions
ϕi(x, y), ψi(x, y) are finite in x for each fixed y, t and have smoothness of some order. Note that, the class of
functions satisfying these conditions are not empty (see, for example, [6]).

The existence of a finite domain of dependence for system (10) and the finiteness in x of the data (11) and
(12) implies the finiteness in x of solutions vi to problem (10), (11) and (12). Then to functions ϑi can be applied

Fourier transform in x. Denote Vi(y, t) := ϑ̃i(ξ, y, t)

∣∣∣∣
ξ=0

, where ϑ̃j(ξ, y, t) =
∫
R
eiξxϑj(x, y, t)dx, j = 1, 4, ξ ∈ R

parameter. Direct calculation show that, V (y, t) = Vi, (i = 1, 5) satisfies the equation

I
∂V

∂t
+ Λ

∂V

∂y
+D1V =

t∫
0

R1(y, t)V (y, t− τ)dτ. (13)

Relations (11), (12) correspond to the conditions

Vi

∣∣∣∣
Γ̃0

= ϕ̃i(y), i = 1, 5, (14)
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Vi

∣∣∣∣
Γ̃1

= ψ̃i(t), i = 1, 3, Vi

∣∣∣∣
Γ̃2

= ψ̃i(t), i = 2, 4, (15)

where Γ̃i is the projection of Γj , j = 0, 1, 2 onto the plane y, t, ϕ̃i(y), i = 1, 5, ψ̃i(t), i = 1, 4 are the Fourier
images of the corresponding functions from (11), (12) for ξ = 0. We also denote by DH the projection of D onto
the plane y, t. In what follows, we will consider the system of equations (13) in the domain DH ∪ Γ̃ under the
conditions (14) and (15).

Main result and its proof
Let us pass from equalities (13)-(15) to integral relations for the components of the vector V. For this, in the
plane of the variables η, τ, consider an arbitrary point (y, t) ∈ DH ∪ Γ̃ and passing through its characteristic
corresponding to the ith diagonal element of the matrix Λ. Recall that the characteristics corresponding to νs
and νp have a positive slope, and the characteristics corresponding to −νs and −νp have a negative slope. We
denote

µ1(y) =

y∫
0

dβ

νs(β)
, µ2(y) =

y∫
0

dβ

νp(β)
.

The functions inverse to t = µ1(y), t = µ2(y) will be denoted by y = µ−1
1 (t), y = µ−1

2 (t). Using the introduced
functions, the equation of characteristics passing through the points (y, t) on the plane of the variables η, τ can
be written in the form

τ = t+ (−1)i+1(µj(η)− µj(y)), j = 1, 2, i = 1, 4 (16)

for the equations of system (13).
Consider an arbitrary point (y, t) ∈ DH on the plane of variables η, τ and draw through it the characteristic

of the ith equation of system (13) up to the intersection in the region τ ≤ t with the boundary Γ̃. Point
intersections are denoted by (yi0, t

i
0). For the first and third equations, this point lies either on Γ̃0 or Γ̃1, and

for the second and fourth equations, either on Γ̃0 or Γ̃2. By integrating the first four equations of system (13)
along the corresponding characteristics from the point (yi0, t

i
0) to the point (y, t) we find

Vi(y, t) = V i0 (yi0, t
i
0)+

+

t∫
ti0

 4∑
j=1

cij(η)Vj(η, τ) +

τ∫
0

4∑
j=1

r̃ij(η, α)Vj(η, τ − α)dα

 ∣∣∣∣
η=µ−1

m(i)[(−1)i+1(τ−t)+µm(i)(y)]
dτ, i = 1, 4, (17)

where m(i) =

{
1, i = 1, 2
2, i = 3, 4.

The fifth equation of (13) is equivalent to the following integral equation:

V5(y, t) =

t∫
0

[ 5∑
j=1

cij(y)Vj(y, τ) +

τ∫
0

5∑
j=1

r̃ij(y)Vj(y, τ)dα

]
dτ. (18)

Define ti0 in (17), (18). It depends on the coordinates of the point (y, t). It is easy to see that ti0(y, t) has the
form

ti0(y, t) =

{
t+ (−1)iµm(i)(y) + γiµm(i)(H), t ≥ µm(i)(y),
0, 0 < t < µm(i)(y), i = 1, 4,

where γi =

{
1, i = 1, 3,
0, i = 2, 4.
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Then, from the condition that the pair (yi0, t
i
0) satisfies the equation (17), it follows

yi0(y, t) =

{
γiH, t ≥ µm(i)(y),
µ−1

1

(
µm(i)(y) + (−1)it

)
, 0 < t < µm(i)(y), i = 1, 4.

The free terms of integral equations (17) are defined in terms of the initial boundary conditions (14) and
(15) as follows:

V i0 (yi0, t
i
0) =

{
ψ̃i
(
t+ (−1)iµm(i)(y) + γiµm(i)(H)

)
, t ≥ µm(i)(y),

ϕ̃i

(
µ−1
m(i)(µm(i)(y) + (−1)it)

)
, 0 < t < µm(i)(y), i = 1, 4.

We require the functions Ṽi(zi0, ti0) to be continuous in the domain D. Note that, to satisfy these conditions, the
given functions ϕ̃i and ψ̃i should be satisfy the matching conditions at the corner points of the domain DH :

ϕ̃i(0) = ψ̃i(0), i = 1, 3; ϕ̃i(0) = ψ̃i(H), i = 2, 4. (19)

Here and below, the values of the functions ψ̃i at t = 0 and functions ϕ̃i at y = 0 and y = H are understood
as the limit at these points as the argument tends from the right side of the point where these functions are
defined

Suppose that all given functions in (17), (18) are continuous functions of their arguments in DH . Then this
system of equations is a closed system of Voltaire-type integral equations of the second kind with continuous
kernels and free terms. As usual, such a system has a unique solution in the bounded subdomain DHT = {(y, t) :
0 < y < H, 0 < t < T}, where T > 0 is some fixed number, of DH .

Let us introduce the vector function ω(y, t) = ∂V
∂t (y, t). To obtain a problem for a function ω(y, t) similar to

(13) - (15), we differentiate equations (13) and boundary conditions (17) with respect to the variable t, and the
condition at t = 0 is found using equations (13) and initial conditions (14). Thus we get

∂ωi
∂t

+ λi
∂ωi
∂y

+

4∑
j=1

cij(y)ωj(y, t) =

t∫
0

4∑
j=1

r̃ij(η, τ)ωj(η, t− τ)dτ +

4∑
j=1

r̃ij(y, t)ψ̃j(y), i = 1, 4, (20)

∂ω5

∂t
+

5∑
j=1

c5j(y)ωj(y, t) =

t∫
0

5∑
j=1

r̃5j(y, τ)ωj(y, t− τ)dτ +

5∑
j=1

r̃ij(y, t)ψ̃j(y), (21)

ωi(y, t)

∣∣∣∣
t=0

= Φi(y), i = 1, 5, (22)

ωi(y, t)

∣∣∣∣
y=0

=
dψ̃i(t)

dt
, i = 1, 3, ωi

∣∣∣∣
y=H

=
dψ̃i(t)

dt
, i = 2, 4, (23)

where

Φi(y) = −λi
dϕ̃i(y)

dy
−

5∑
j=1

cij(y)ϕ̃i(y), i = 1, 5. (24)

The main result of this paper is following assertion:
Theorem. Let be ρ(y) ∈ C1[0,∞), µ(y) ∈ C1[0,∞), λ(y) ∈ C1[0,∞), ϕ̃(y) ∈ C1[0,∞), φ̃(t) ∈ C1 [0,∞] ,

ρ(y) > 0, λ(y) > 0, µ(y) > 0, Kij(t) ∈ C1 [0,∞) , i, j = 1, 2, and conditions (19), (28) and (29) are met.
Then, there is a unique classical solution to the problem (20)-(23) in the domain DHT .

Proof. Integration along the corresponding characteristics again leads to the problem (20)-(23) to the integral
equations

ωi(y, t) = ωi(y
i
0, t

i
0) +

t∫
ti0

[ 4∑
j=1

(−cij(η)ωj(η, τ) + r̃ij(η, τ)ϕ̃j(η)) +



Bulletin of the Institute of Mathematics, 2021, Vol. 4, №2, ISSN-2181-9483 20

+

τ∫
0

4∑
j=1

r̃ij(η, α)ωj(η, τ − α)dα

]∣∣∣∣
η=µ−1

m(i)[(−1)i+1(τ−t)+µm(i)(y)]
dτ, i = 1, 4, (25)

ω5(y, t) = Φ5(y) +

t∫
0

 5∑
j=1

(−c5j(y)ωj(y, τ) + r̃5j(y, τ)ϕ̃j(y)) +

τ∫
0

5∑
j=1

r̃5j(y, α)ωj(y, τ − α)dα

 dτ. (26)

For functions ωi, additional conditions (15) look like

ωi

∣∣∣∣
Γ2,ξ=0

=
dh̃i(t)

dt
, i = 1, 3, ωi

∣∣∣∣
Γ1,ξ=0

=
dh̃i(t)

dt
, i = 2, 4, 5. (27)

In equations (25) ωi(z
i
0, t

i
0) are defined as follows:

ωi0(yi0, t
i
0) =

{
dψ̃i

dt

(
t+ (−1)iµm(i)(y) + γiµm(i)(H)

)
, t ≥ µm(i)(y),

Φi
(
µm(i)(y) + (−1)it

)
, 0 < t < µm(i)(y), i = 1, 4.

Let the following conditions are fulfilled:

−λi
[
dϕ̃i(y)

dy

]
y=0

−
5∑
j=1

cij(0)ϕ̃i(0) =

[
dψ̃i(t)

dt

]
t=0

, i = 1, 3, (28)

−λi
[
dϕ̃i(y)

dy

]
y=H

−
5∑
j=1

cij(H)ϕ̃i(H) =

[
dψ̃i(t)

dt

]
t=0

, i = 2, 4. (29)

It is not difficult to notice that the conditions for the agreement of the initial (22) and boundary (23) data
at the corner points of the domain D coincide with relations (28) and (29). Hence, it is clear that under the
same equalities (28) and (29) the equations (25), (26) will have unique continuous solutions ωi(y, t), or the same(
d
dt

)
Vi(y, t). The theorem is proved. 2

References
1. Galin L. A. Contact problems of the theory of elasticity and viscoelasticity, Nauka, Moscow, 1980 p. 242

(in Russian).

2. Durdiev D. K., Totieva Zh. D. The problem of determining the one-dimensional kernel of the viscoelasticity
equation, Sib. Zh. Ind. Mat., 16:2, 2013, pp. 72–82.

3. Godunov S. K. Equations of mathematical physics, Nauka, Moscow, 1979 (in Russian).

4. Romanov V. G. Inverse Problem of Mathematical Physics, Moscow: Nauka, 1984 (in Russian).

5. Romanov V. G. Inverse Problem for Differential Equations, Novosibirsk: Novosib. Gos. Univ., 1973 (in
Russian).

6. Romanov V. G. The problem of determining the coefficients of a linear hyperbolic system, Differ. Uravn.,
14:1, 1978, pp. 94–103 (in Russian).

Received: 18/02/2021

Accepted: 07/05/2021

Cite this article
Durdiyev D. Q., Boltayev A. A. Initial-boundary problem for 2D system of viscoelasticity.

Bull. Inst. Math., 2021, Vol.4, №2, pp. 14-20 .


