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INITIAL-BOUNDARY PROBLEM FOR 20D SYSTEM OF VISCOELASTICITY
Durdiev D. Q. E|Boltaev A.A. E|

2 o‘lchamli yopishqoq elastiklik sistemasi uchun boshlang‘ich-
chegaraviy masala.

Izotropik muhitda ikki o‘lchamli yopishqoq elastiklik integro-
differensial tenglamalar sistemasi uchun kuchlanish vektori
va tezligini aniqlashning boshlang‘ich-chegaraviy masalasi
o‘rganilgan. Masala yechimining fazoviy o‘zgaruvchilardan
biri bo‘yicha Furye almashtirishiga nisbatan ikkinchi tur
Volterra tipidagi integral tenglamalar sistemasini yechishga
keltirilgan. Uzluksiz funksiyalar sinfida bu sistemaga ketma-
ket yaqginlashishlar usuli qo‘llanilgan. Qo‘yilgan masalaning
yechimlari mavjudligi va yagonaligini ifodalovchi teorema
isbotlangan.

Kalit so‘zlar: giperbolik sistema; to‘g‘ri masala; integral
tenglamalar; qo‘zg‘almas nuqta haqidagi teorema.

Hauanpro-kpaeBas 3agaqa myis 2D-cucteMbl BA3KOYIPYTOCTH.
st AByMepHOM CHCTEMBI HHTErpo-auddepeHImaabHbIX ypaB-
HEHWII BSI3KOYIPYTOCTH B U3O0TPOIHON Cpelie M3ydaeTcsl Mpsi-
Masl 33/[a9a ONPEIeJIEHNsT BEKTOPA HAIPSI?KEHNS U CKOPOCTH Ya-
cruil. 3a/iada CBOIUTCH K SKBUBAJIEHTHON CHCTEME MHTErPajib-
HBIX YpaBHEHMI BTOPOro poja Tuma Bojabreppa OTHOCUTETHHO
mpeobpazoBannss Pypbe MO OMHON M3 MPOCTPAHCTBEHHBIX IIe-
PEMEHHBIX pelleHus TpsiMoit 3asadn. lasee K 3Toit cucreme
MIPUMEHSIETCST METO/T [TOCJI€I0BATE/ILHBIX PUOJINAKEHUI B KJIACCE
HenpepbIBHBIX yHKIII. TakuM 006pa3oM, JOKA3bIBACTCHA CYIIIe-
CTBOBAHME U €JUHCTBEHHOCTD DEIEHUs ITOCTABIEHHOMN 3a/1a4u.
KutroueBble csioBa: runepbosmdeckasi cucreMa; mpsiMasi 3a/ad4a;
CHCTEeMa YPABHEHUI BSI3KOYIIPYTOCTH, HHTEIPAJIHLHOE YPABHEHUE,
IIPUHITAI C’KATBIX OTOOparKeHMUil.

MSC 2010: 41A05, 41A15, 65D30, 65D32.
Keywords: hyperbolic system; direct problem; integral equation; fixed point theorem.

Introduction. Canonical form of viscoelasticity equations

In this work, the deformation of flat bodies (for example, fiberglass) is considered taking into account the
viscoelastic properties. Writing for this case the system of equations of the theory of elasticity in stresses and
velocities of particles as a system of equations of the first order, for it the direct problem is studied. The direct
problem is the initial-boundary problem for this system.
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Let T = (w1,22) € R% We denote by o;; the projection onto the axis x; of the stress acting on the area
with the normal parallel to the axis z;, and @; is the projection onto the axis x; of the particle displacement
vector. According to Hooke’s law for viscoelastic media, stresses and deformations are related by the formulas
[1, p.242]:

ou; = Ouj .
0 (T, ) = p (8Z + 8?) + 03 Adiva +
7 )
t ou; Ou;
Kyt — i 1) 4 5 diva| (7 1
—|—/0 (it —7) [,u <8xj + [“)xi> +5]/\dlvu} (T, 7)dr, (1)

where A = A(z2), p = p(z2) are Lame coefficients, A > 0, pu > 0, ;; is the Kronecker symbol, K;;(t) are the
functions corresponding to the viscosity the medium and K;; = Kj;, 4,5 =1,2.
The equations of motion of particles of a flat body in the absence of external forces have the form

82ﬂi 2 anj
P 8t2 ' al'j 50 ) &y ( )
Jj=1

where p = p(22) > 0 is the medium density, u(Z,t) = (u1(Z,t),U2(Z,t)) is the displacement vector.
Note that can be considered as the integral equations of Volterra of the second kind with respect to the

; 9u; e
expression [ ( oz, + 3

) + d;;Adiv. For each fixed pair (4, j) solving these equations, we obtain

T4

ou; ~ Ouy K
Oij (T, t) =W (8;: + 8132) + (5”)\leﬂ + A Tij (t - T)O’ij (T, T) d’T, (3)
here 7;; are the resolvents of the kernels K;; and they are related by integral relations [2]:
t
Tij(t) = —Kij(t> - / Kij(t - T)’I“ij(T)dT, i,j = 172. (4)
0
From the condition K;; = Kj; implies r;; = rj;.

Differentiating with respect to ¢ and introducing the notation u; = %ﬂ, we obtain

o du;  Ou; , _ ¢ _
a(nj (T, t) =p (axj + 8$Z> + ;5 divu + 745(0)04 (T, t) Jr/o rgj (t—7)oi; (T, 7)dr. (5)

Taking this into account, the system of equations and for the velocity u; and stress o;; can be written
in the form of a system of five first-order integro-differential equations. For convenience, denoting x1 = =, 22 = ¥,
we have

ouU oU ouU t
A== 4+ B== 4+ C—+ DU = t— 1)Uz, 7)d
N + e +C8y + DU /0 R(t — 1)U(Z, T)dr, (6)
where U = (uq1,u2,011, 092,012 = 091)*, * is the sign transposition,
p 0 0 0 O 0 0O -1 0 O
0O p 0 0 O 0 0 0O 0 -1
A= 0 0 1 0 0 |,B=| -A+24) 0 0 0 0 |,
00010 ) 0 0 0 0
00001 0 — 0 0 0
0 0 0o 0 -1 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0
c=1 o0 -2 0 0 0 |,D=]|0 0 —r(0) 0 0 ,
0 —(A+2u) 0 0 0 0 0 0 —122(0) 0
—p 0 0 0 0 0 0 0 0 —712(0)
0 0 0 0 0
0 0 0 0 0
Rt)=| 0 0 —r ) 0 0
00 0  —rhy) 0
00 0 0 —r5(t)
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System () can be reduced to a symmetric hyperbolic system [3, pp.162-169).
System (@ is reduced to canonical form with respect to the variables ¢ and y. For this, we multiply @ on
the left hand on A~! and write the equation

|A™rC —vI| =0, (7)

where [ is the unit matrix, the dimension 5. No, we find roots of respect to the v :

A+ 2
Vg =trs = \/i’ V34 = Fu, = —; ’u, vs = 0. (8)

Here, v, and v, determine the velocities of the transverse and longitudinal seismic waves, respectively.
Now we choose a nondegenerate matrix T'(y, t), so

T rATICT = A, (9)

where A is a diagonal matrix, the diagonal of which contains the eigenvalues (for each fixed z, defined by (8))
of the matrix A=1C, i.e.

A = diag(vs, —vs, vp, —1p, 0).

According to the Formula (9, implies
ATIOT = TA,

which means that the i th column of the matrix T is an eigenvector of the matrix A~!T, corresponding to the
eigenvalue \;. Direct calculations show that a matrix T, satisfying the above conditions can be chosen as (not
the only way)

1 1 0 0 0
0 0o —— 1 0
VeQt2u)  y/p(r+2p)
T= 0 0 =5 = 1
A2p A2p
0 0 1 1 0
Ve \/up 0 0 0

We introduce the vector function U by the equality

U=T9.
Carring out this change in equation @ and then multiplying it on the left by T—!, we obtain

99 L) oY ¢ _
1@ + A(ny + 31% + D10 = /0 Ri(y,t —7)d(z, 7)dr, (10)

where
0 0 a1 ao —QL
0 0 a —%
Bl = T_lA_lBT = as Q4 0 0 0 )
a4 as O 0 O
as as 0 0 0
o _ Vi by _ __JE A _ A V/eO+2m A VEO+2p)
@ = a(y), = - mnm 2T Gaee  m0amy BT 2T 2 et
s — — )
5 A 2p 0
Ci1 €12 €13 Ci4 Cis
C21 C22 C23 Co4 C25
1 41497 —1
Di(y,t) =T A" C—+T "DI'=| c31 c32 €33 ¢34 ¢35 |,

C41 C42 C43 C44 C45
C51 C52 C53 Cs4 Csp
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¢ij = cij(y), ] = L5 en = —cip = 2%78% (Vo) - T332(0)’ €21 = —C22 = ﬁﬁ% (Vp) + TSE‘Q(O)a €33 = C43 =

A2p r22(0 A r22(0
ek (\/p(/\l+2u)> — 0, ey = s = ENT (\/p(Al+2u)> — 20, 5y = csa = stz (r22(0) = rua(0)),

Cs55 = —7"11(0)7 Clp = Cpl = 0) l= 1327 p= 354757 C35 = C45 = 07

Tl Ti2 T3 Tia Ti5

Ty T2 Tog Tos Tos
Ri(y,t) =T 'AT'RT = | T31 T3z T33 Taa T35 |,

T4l Ti2 T4z Tas T4

Ts1 Ts2 Ts3 Tsa Ts5

Tij = Ti(yt), ,j =15 Tp =T =0, 1 =1,2, p=3,4,5, T35 =745 =0, 711 = —T12 = —T91 = Taz =

—Eg Ty = R, g =34 T = Tu = s (a(t) = (1), s =~ (0,

System is convenient in that it disintegrated with respect to the derivatives ¢ and y, and turns out to be
split only through % and . The components ¥;, i = 1,4 of the vector of the function are called the Riemann
invariants of system @ They remain constant along the characteristic of the system in the case when
By =0, Dy =0, Ry =0.

The statement of a problem

Let us consider the system of equations in the domain

D={(z,y,t):z e R,0<y< H,t >0}, H=const
with the boundary ' =T Uy UTs:

Ty ={(z,y,t) ;2 e R0<y < H,t =0},
I ={(z,y,t) : 2 € R,y = 0,¢ > 0},
Ty ={(z,y,t):x € R,y = H,t >0}

For this system, we pose the direct problem as follows: determine the solution of the system of equations
in D =DUT from the data on I"

U

:Soz(mvy)a L= 1753 (11)
To

’l% = ’(/JZ'<$,t), = 1, 3, 191 = ’(/Ji(m,t), 1= 2,4. (12)

Fl F2

It is known that [4,p.164-5, sec.4 | problem , , is well posed. Suppose that the functions
wi(x,y), ¥i(x,y) are finite in x for each fixed y,t and have smoothness of some order. Note that, the class of
functions satisfying these conditions are not empty (see, for example, [6]).

The existence of a finite domain of dependence for system ([10) and the finiteness in x of the data and
implies the finiteness in = of solutions v; to problem 7 (11)) and . Then to functions ¥; can be applied

Fourier transform in x. Denote V;(y,t) := @(f,y,t)‘ , where 5j(§,y,t) = [e%®Y(z,y, t)dzx, j=1,4, E€R
£=0 R
parameter. Direct calculation show that, V(y,t) = V;, (i = 1,5) satisfies the equation

t
ov. oV
I— +A—+D = — . 1
o T 8y+ 4 /Rl(f‘ht)v(f%t T)dT (13)
0

Relations (11, correspond to the conditions

Vi = Szz(y)’ i=1,5, (14)

o
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= (1), i = 2,4, (15)

Iy

Vil =it), i=1,3, Vi

where I; is the projection of r;, j=0,1,2 onto the plane y,t, 3;(y), i = 1,5, ¢;(t), i = 1,4 are the Fourier
images of the corresponding functions from (L1} . ) for £ = 0. We also denote by Dy the projection of D onto
the plane y, t In what follows, we will con51der the system of equations in the domain Dy U [ under the

conditions ) and ( .

Main result and its proof

Let us pass from equalities — to integral relations for the components of the vector V. For this, in the
plane of the variables 1), 7, consider an arbitrary point (y,t) € Dy U I and passing through its characteristic
corresponding to the ith diagonal element of the matrix A. Recall that the characteristics corresponding to v,
and v, have a positive slope, and the characteristics corresponding to —v, and —v, have a negative slope. We

denote
y a3 Yy a5
) = | —=, m2(y) = | —F=-
O/VS(B) O/Vp(ﬁ)

The functions inverse to t = 1 (y), t = pa(y) will be denoted by y = uy ' (t), y = py *(t). Using the introduced
functions, the equation of characteristics passing through the points (y,t) on the plane of the variables 7, 7 can
be written in the form

T=t+ (=0T ) - py), =12 i=14 (16)

for the equations of system .
Consider an arbitrary point (y,t) € Dy on the plane of variables 7, 7 and draw through it the characteristic

of the ith equation of system 1] up to the intersection in the region 7 < t with the boundary I. Point
intersections are denoted by (yj,t}). For the first and third equations, this point lies either on I‘o or Fl, and
for the second and fourth equations, either on FO or Fg By integrating the first four equations of system
along the corresponding characteristics from the point (yg,#}) to the point (y,t) we find

‘/i(yat) = ‘/Oi(y(i)vtz))+

[ S eV n+ [ rmaio.r - ada dr, i=T4, (17
0

j=1 n:u;t“ [(—1)i+ (T =)+t (i) ()]

1, i=1,2
2, i=3,4.
The fifth equation of is equivalent to the following integral equation:

where m(i) =

/ [ch /Zr” da} dr. (18)

Define t{ in . It depends on the coordinates of the point (y,t). It is easy to see that t}(y,t) has the
form

By =i tt (= 1) (i) () + Vittmey (H)s £ > pniy (9), o
o\d» 0, 0<t<ﬂ’m(z)(y)a 7::1’4’

) )

1,3
2,4.

where v; = { (1)’ z

)
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Then, from the condition that the pair (yg,t})) satisfies the equation , it follows
i viH, t > fom(i)(Y)s
1) = — i .
wo(s- 1) { 1 (o () + (1)) 0 <t < iy (), =T, 4
The free terms of integral equations are defined in terms of the initial boundary conditions and
as follows:

i (t+ (=1 foney () + Yibtm(y (H)) s = iy (),
9’51' (M;l(z) (/u'm(z') (y) + (_l)zt)> ) 0<t< Ko (3) (y)v =14

Vi 1) = {

We require the functions ‘N/Z(ZZ), t5) to be continuous in the domain D. Note that, to satisfy these conditions, the
given functions @; and v; should be satisfy the matching conditions at the corner points of the domain Dy:

&z(o) = Ji(o)a 1=1,3; 951(0> = ZZz(H% =24 (19)

Here and below, the values of the functions 1;1 at t = 0 and functions @¢; at y = 0 and y = H are understood
as the limit at these points as the argument tends from the right side of the point where these functions are
defined

Suppose that all given functions in , are continuous functions of their arguments in Dg. Then this
system of equations is a closed system of Voltaire-type integral equations of the second kind with continuous
kernels and free terms. As usual, such a system has a unique solution in the bounded subdomain Dyt = {(y, 1) :
0<y< H, 0<t<T}, where T > 0 is some fixed number, of Dy.

Let us introduce the vector function w(y,t) = 2% (y,t). To obtain a problem for a function w(y, t) similar to
- ([15)), we differentiate equations and boundary conditions ith respect to the variable ¢, and the
condition at ¢ = 0 is found using equations and initial conditions ((14). Thus we get

iy 4
Ow; aw, R
Bn + X -‘rZCU y)wj(y,t :/Zr” n, T)w;(n,t —7 dT—l—ZT” Y, t 1[)]() i=1,4, (20)
0

j=1 j=1 j=1

t

9 . 5 5 N 5 N _
5; + Z ch( UJ] y7 /Z 55 (y7 T)wj (yvt - T)dT + Z rij(y7 t)wj (y)7 (21)
j=1 j=1

j=1
(y7 t) = @Z(y)v 1= 17 5a (22)
t=0
1(y, t) dwl(t)’ 1, 37 i dwl(t)’ — 2’ 47 (23)
y=0 dt y=H dt
where

dp; 5

D,(y) = > )@ i=1,5 (24)
j=1

The main result of this paper is following assertion: B

Theorem. Let be p(y) € C10,00), u(y) € C10,00), A(y) € C1[0,00), H(y) € C[0,00), (t) € C* [0, 00],
p(y) > 0, AMy) >0, u(y) > 0, K;;(¢t) € C*[0,00), i,j = 1,2, and conditions @), @) and (@ are met.
Then, there is a unique classical solution to the problem (@)— i the domain Dgrp.

Proof. Integration along the corresponding characteristics again leads to the problem — to the integral
equations

M»

—cij(mw;(n, 7) + 75 (n, 7)@; (1)) +

¢
w;(y, t) = wilyg, th) "'/{

j=1
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¥ / S o s o, 7 — a)ial

o i=1 n=t,, (5 [(=1) (T =)+ pm iy ()]

dr, i=1,14, (25)

t T

5

slw:0) = 5() + [ |3 (e )yl 1) + Fos B W) + [ STy~ a)da dr. (20
o L=t 0o J=1

For functions w;, additional conditions look like

_ dh(t)
T dt

) Z:1737 Wi

i

I'2,6=0 I',6=0

In equations w; (28, t}) are defined as follows:

Q00 i di; —1)* ) ) (H > ,
wo(yoﬂfo):{ ai (t+ (1) ln(y () + Ykt (H)) ot 2 pmgy (9),

@i (pm(i) (y) + (=1)'F) 0<t<pumm(y), i=14
Let the following conditions are fulfilled:
d@(y)} P dit) |
x| =Y e (0:(0) = Q=13 (25)
dy y=0 = dt —o
dpi(y - ~ i (t ‘
Y { o )] =S ez = |y (29)
Yody=n G5 1=0

It is not difficult to notice that the conditions for the agreement of the initial and boundary data
at the corner points of the domain D coincide with relations and . Hence, it is clear that under the
same equalities and the equations (25]), will have unique continuous solutions w;(y, t), or the same
(%) Vi(y,t). The theorem is proved. a
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