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Abstract. In this study, we address the inverse problem of determining the convolution kernel function
in the third-order Moore–Gibson–Thompson (MGT) equation, which is commonly used to model fluid
motion with memory effects. Specifically, we focus on the determination of the unknown kernel, which
governs the memory term in the equation. First, we employ the Fourier spectral method to solve the direct
initial-boundary-value problem for a non-homogeneous MGT equation with the memory term. The Fourier
spectral method allows us to leverage the problem’s inherent linearity and spatial homogeneity, leading
to an efficient and explicit construction of the solution. The direct problem is analyzed under appropriate
initial and boundary conditions, which are carefully specified to ensure mathematical consistency. To solve
the inverse problem, we introduce an additional condition—typically a form of observational data such
as at certain points—which provides the necessary constraints for determining the kernel. We prove local
existence and uniqueness theorems for solution of the problem.
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1. Introduction

The Moore–Gibson–Thompson theory was developed beginning from a third order
differential equation, constracted in the context of some consideration related fluid mechanics.
Subsequently the equation was considered as a heat conduction equation because it has been
obtained by considering a relaxation parameter into the type III heat conduction [1–4]. Since
the apparition of the Moore–Gibson–Thompson theory, the number of studies on this theory
has increased considerably. The Moore–Gibson–Thompson equation also modifies and defines
equations for thermal conduction and mass diffusion that occur in solids.

Inverse problems for integro-differential equations are important mathematical problems
in science and engineering. They have wide applications in computed tomography, biology,
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mineral exploration, acoustics, communication theory, signal processing, medical imaging and
many other fields. Fundamentals of the theory of inverse problems for mathematic physical
equations were developed by many authors, especially the works [5–9] (see also the references
in them).

Inverse convolution kernel problems for linear parabolic and hyperbolic integro-differential
equations of the second order were considered in a number of papers (see, for example, [10–
16]). In [10–12], the authors have discussed the local existence and global uniqueness of the
recovering convolution kernels in hyperbolic integro-differential equations. The works [13, 14]
deal with the problems of identifying the one-dimensional kernel of the hyperbolic integro-
differential equation with a source of explosive type. A wide class of inverse problems for
identifying one- and multidimensional convolution kernels in second-order hyperbolic integro-
differential equations was studied in the recently published monograph [15]. The paper [16]
studies the global solvability of two kernels determination problems in the parabolic integro-
differential equation. For close problems related to other models, we refer to [17–20].

In the work [21], it is considered the derivation of the MGT equation and the list of
references therein. These equations are the subject of several recent research due to their wide
range of applications in the medical and industrial fields of high intensity ultrasound waves.
The well-posedness of linearized MGT equation and the uniform decay of its energy is studied
under suitable functional setting and initial-boundary conditions in [22]. Inverse coefficient
problem for MGT was treated in [23], where it is proved uniqueness and also showed stability
by Carleman estimates.

In the works [24, 25], the authors investigate the inverse problems of determining kernel
function and three unknown parameters by using the Laplace transform. The research method
in these papers is local, but it uses the fact that the direct problem is considered with the
Neumann type boundary conditions.

In this paper, we propose a method for studying the determination of the convolution
kernel in MGT equation using the Fourier spectral method and the method of integral
equations. The results obtained are of a local nature. However, we can prove local solvability
theorem for inverse problem, taking into consideration that the nonlinearity has a convolution
structure (see [26, 27]).

We consider the one-dimensional MGT equation:

uttt + utt − uxxt − uxx +

t∫

0

g(t− τ)uxx(x, τ) dτ = 0, (1)

in the domain
D = (0, 1) × (0, T ],

where T > 0 is an arbitrary fixed number with initial conditions

u(x, 0) = a(x), ut(x, 0) = b(x), utt(x, 0) = c(x), x ∈ [0, 1], (2)

and boundary conditions
u(0, t) = u(1, t) = 0, t ∈ [0, T ]. (3)

The problem of determining a function u(x, t) ∈ C
2,3
x,t (D)∩C

0,2
x,t

(
D
)

that satisfies (1)–(3) with
known functions a(x), b(x), c(x) and g(t) will be called the direct problem.

In the inverse problem, it is required to determine the function g(t), t ∈ [0, T ], using
overdetermination conditions about the solution of the direct problem (1)–(3):

u(x0, t) = h(t), t ∈ [0, T ], (4)
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where x0 ∈ (0, 1) is fixed number and h(t) is sufficiently smooth given function.

The rest of this paper is organized as follows. In Section 2, we present our investigations
on the direct problem (2)–(4). We find differential properties and stability estimates for the
solution of this problem. Section 3 devoted to the formulation and proof of the main results
of this work, which are the theorems of local existence and uniqueness for solution of inverse
problem. Section 4 contains the conclusion.

2. Investigation of Direct Problem

As we shall use separation of variables methods, let us denote by λn its eigenvalues and
eigenfunctions by Xn(x), i. e.,

X ′′
n(x) + λnXn(x) = 0 in (0, 1), (5)

Xn(0) = 0, Xn(1) = 0, n = 1, 2, . . . (6)

It is know that

λn = (πn)2, Xn = sin(πnx),

and the set {Xn}n>1 is a basis for L2(0, 1).

The solution u(x, t), can be written as

u(x, t) =
∞∑

n=1

un(t)Xn(x) in L2(0, 1), (7)

where

un(t) = 2

1∫

0

u(x, t)Xn(x) dx. (8)

Multiply (1) by Xn(x) and integrate over (0, 1), we have

2

1∫

0

uttt(x, t)Xn(x) dx+ 2

1∫

0

utt(x, t)Xn(x) dx− 2

1∫

0

uxxt(x, t)Xn(x) dx

−2

1∫

0

uxx(x, t)Xn(x) dx+ 2

t∫

0

g(t− τ)

1∫

0

uxx(x, t)Xn(x) dx dτ = 0,

which reduces to the functional equation. Used to (5), (6) and (8), we get

u′′′n (t) + u′′n(t) + λnu
′
n(t) + λnun(t) = λn

t∫

0

g(t− τ)un(τ) dτ. (9)

From the initial conditions (2), we arrive at the following

An := un(0) = 2

1∫

0

a(x)Xn(x) dx, Bn := u′n(0) = 2

1∫

0

b(x)Xn(x) dx, (10)
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Cn := u′′n(0) = 2

1∫

0

c(x)Xn(x) dx, n > 1. (11)

Let us consider the third-order ordinary differential equation (9) with the right-hand side
of the form λn

∫ t

0 g(t − τ)un(τ) dτ with the Cauchy data (10), (11). Solving this problem for
each fixed n > 1, it is easy to conclude that it is equivalent to the following Volterra-type
integral equation:

un(t) =
1

λn + 1

(√
λn (An +Bn) +

1√
λn

(Bn + Cn)

)
sin
√

λnt

+
1

λn + 1

[
(λnAn + Cn) e

−t + (An − Cn) cos
√

λnt
]

+
λn

λn + 1

t∫

0

Fn(t− τ)

τ∫

0

g(τ − s)un(s) ds dτ, (12)

where

Fn(t) = e−t +
1√
λn

sin
√

λnt− cos
√

λnt.

We now obtain sufficient conditions for the given functions a(x), b(x), c(x) and kernel g(t),
under which the integral equation (12) has a unique classical solution.

Estimating each function un(t), for t ∈ [0, T ], we get the following integral inequalities

|un(t)| 6 2 |An|+
1√
λn

|Bn|+
3

λn

|Cn|+ 2‖g‖
t∫

0

(t− τ)|un(τ)|dτ,

where ‖g‖ = maxt∈[0,T ] |g(t)|. Applying the Gronwall lemma here, we obtain

|un(t)| 6
[
2 |An|+

1√
λn

|Bn|+
3

λn

|Cn|
]
e‖g‖t

2

, t ∈ [0, T ]. (13)

Calculating the first derivative of (12) and using (13), we find an estimate for u′n(t):

∣∣u′n(t)
∣∣ 6 2 |An|+ |Bn|+

2√
λn

|Cn|

+
√

λn‖g‖t2
[
2 |An|+

1√
λn

|Bn|+
3

λn

|Cn|
]
e‖g‖t

2

, t ∈ [0, T ]. (14)

As above the second derivative of (12) taking into account (13), u′′n(t) estimated as follows:

∣∣u′′n(t)
∣∣ 6 3

√
λn |An|+

√
λn |Bn|+ 3 |Cn|

+ 2λn‖g‖t2
[
2 |An|+

1√
λn

|Bn|+
3

λn

|Cn|
]
e‖g‖t

2

, t ∈ [0, T ]. (15)

Estimate for u′′′n (t) is obtained by the equation (12) using (13). It has the form

∣∣u′′′n (t)
∣∣ 6 2λn |An|+ λn |Bn|+ 2

√
λn |Cn|

+ λn‖g‖t
(
1 +

√
λnt
)[

2 |An|+
1√
λn

|Bn|+
3

λn

|Cn|
]
e‖g‖t

2

, t ∈ [0, T ]. (16)
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Combining the (13)–(16), we get

Lemma 1. The following estimates are valid t ∈ [0, T ] and for each n ∈ N :

|un(t)| 6 β0

(
|An|+

1

n
|Bn|+

1

n2
|Cn|

)
, |u′n(t)| 6 β1

(
n|An|+ |Bn|+

1

n
|Cn|

)
,

|u′′n(t)| 6 β2
(
n2|An|+ n|Bn|+ |Cn|

)
, |u′′′n (t)| 6 β3

(
n3|An|+ n2|Bn|+ n|Cn|

)
,

where βi, i = 1, 2, 3, are positive constants independent of a(x), b(x), c(x), g(t) and number T .

Formally termwise differentiating the series in formula (7), we get the following series:

utt =

∞∑

n=1

u′′n(t) sin
√

λnx, uttt =

∞∑

n=1

u′′′n (t) sin
√

λnx, (17)

uxx = −
∞∑

n=1

λnun(t) sin
√

λnx, uxxt = −
∞∑

n=1

λnu
′
n(t) sin

√
λnx. (18)

In view of Lemma 1 series (7) and (17), (18) with any (x, t) ∈ D are majorized by the series

β

∞∑

n=1

(
n3|An|+ n2|Bn|+ n|Cn|

)
, β := max

16i63
βi. (19)

Here is the following auxiliary lemma:

Lemma 2. If the conditions are met

a(x) ∈ C3[0, 1], aIV (x) ∈ L2(0, 1), a(0) = a(1) = a′′(0) = a′′(1) = 0,

b(x) ∈ C2[0, 1], b′′′(x) ∈ L2(0, 1), b(0) = b(1) = b′′(0) = b′′(1) = 0,

c(x) ∈ C1[0, 1], c′′(x) ∈ L2(0, 1), c(0) = c(1) = 0,

then the following representations are valid:

An =
1

λn

√
λn

A(4)
n , Bn =

1

λn

√
λn

B(3)
n , Cn =

1

λn

C(2)
n ; (20)

here A
(3)
n , B

(3)
n and C

(2)
n are coefficients of the expansion of functions a(x), b(x) and c(x) in

series with respect to the function system {1
2 ; cos

√
λnx} and {sin

√
λnx}, such that

∞∑

n=1

|A(4)
n |2 6 ‖a(IV )‖L2(0,1),

∞∑

n=1

|B(3)
n |2 6 ‖b′′′‖L2(0,1),

∞∑

n=1

|C(2)
n |2 6 ‖c′′‖L2(0,1), (21)

where d4

dx4 a(x) := aIV (x).

Integrating by parts in the integral for An four times, Bn three times and Cn two times
(see (10) and (11)) taking into account the conditions of Lemma 2, we obtain equalities (20).
Inequalities (21) are based the Bessel inequalities for the coefficients of the Fourier expansions
of the functions aIV (x), b′′′(x) and c′′(x) in the system of cosines {1

2 ; cos
√
λnx} and sines

{sin
√
λnx} on the interval [0, 1], respectively. If the functions a(x), b(x), and c(x) satisfy

the conditions of Lemma 2, then, due to representations (20) and (21), series (7) and (17),
(18) converge uniformly in the D, therefore, function (7) satisfies equation (12). Under
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the conditions of Lemma 2 and g(t) ∈ C[0, T ], this is a classical solution of the Cauchy
problem (9)–(11).

The proven assertion implies the next theorem.

Theorem 1. If a(x), b(x), c(x) satisfies conditions of Lemma 2 and g(t) ∈ C[0, T ], then

problem (1)–(3) has a unique solution, which is defined by series (7) and belongs to class

u(x, t) ∈ C
2,3
x,t (D) ∩ C

0,2
x,t

(
D
)
.

Now, we will give some estimates for the solution and its first derivative of the direct
problem (1)–(3).

Let ũn be solution of the integral equation (12) corresponding to the functions Ãn, B̃n,

C̃n, and g̃. Let us derive an estimate for the norm of the difference between the solution of the
original integral equations (12) and the solution of this equation with functions Ãn, B̃n, C̃n,

and g̃. After making obvious estimates, we have

|ûn| 6
[
2
∣∣∣Ân

∣∣∣+ 1√
λn

∣∣∣B̂n

∣∣∣+ 3

λn

∣∣∣Ĉn

∣∣∣
]
e2‖g̃‖t

2

+

[
4
∣∣∣Ãn

∣∣∣+ 2√
λn

∣∣∣B̃n

∣∣∣+ 6

λn

∣∣∣C̃n

∣∣∣
]
‖ĝ‖e2(‖g‖+‖g̃‖)t2 , (22)

∣∣û′n
∣∣ 6 2

∣∣∣Ân

∣∣∣+
∣∣∣B̂n

∣∣∣+ 2√
λn

∣∣∣Ĉn

∣∣∣+
[
2 |An|+

1√
λn

|Bn|+
3

λn

|Cn|
]
‖ĝ‖ t2e‖g‖t2

+

[
2
∣∣∣Ân

∣∣∣+ 1√
λn

∣∣∣B̂n

∣∣∣+ 3

λn

∣∣∣Ĉn

∣∣∣
]
t2‖g̃‖e2‖g‖t2

+

[
2
∣∣∣Ãn

∣∣∣+ 1√
λn

∣∣∣B̃n

∣∣∣+ 3

λn

∣∣∣C̃n

∣∣∣
]
t2‖g̃‖‖ĝ‖e2(‖g‖+‖g̃‖)t2 , (23)

where Ân = An − Ãn, B̂n = Bn − B̃n, Ĉn = Cn − C̃n, ĝ = g − g̃. Indeed, the inequality (22)
is stability estimate for the solution to the integral equation (12). The uniqueness of this
solution follows from (22).

3. The Local Existence and Uniqueness Theorem for the Inverse Problem

In this section, it is studied the main goal of this article, which is the inverse problem
of determining of functions u(x, t), g(t) from relations (1)–(4). In doing so, we will use the
contraction mapping principle.

From (7) and taking into account conditions (4), we get the following equality:

h(t) =

∞∑

n=1

un(t) sin
√
λnx0, t ∈ [0, T ]. (24)

Substituting the right side (12) instead of un(t) in (24) and then differentiating four times,
after simple transformations, we obtain an integral equation with respect to g(t) :

g(t) =
1

a′′(x0)
h(IV )(t)

− 1

a′′(x0)

∞∑

n=1

1

λn + 1
(λn

√
λn (λn(An +Bn) +Bn + Cn) sin

√
λnt sin

√
λnx0 (25)
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− 1

a′′(x0)

∞∑

n=1

1

λn + 1

[
(λn(An + Cn)e

−t + λ2
n(An − Cn) cos

√
λnt
]
sin
√

λnx0

− 1

a′′(x0)

∞∑

n=1

λn sin
√

λnx0

t∫

0

g(τ)
[
u′n(t− τ) + un(t− τ)

]
dτ

− 1

a′′(x0)

∞∑

n=1

λn

λn + 1
sin
√

λnx0

t∫

0

τ∫

0

g(τ − s)un(s)F
IV
n (t− τ) ds dτ, (26)

where a′′(x0) 6= 0.
We require the fulfillment of the following matching conditions

h(0) = a(0), h′(0) = b(0), h′′(0) = c(0). (27)

Rewrite (26) in the form of the operator equation

g = Λg, (28)

where Λ is defined by the right side of equation (26):

(Λg)(t) = g0(t)−
1

a′′(x0)

∞∑

n=1

λn sin
√

λnx0

t∫

0

g(τ)
[
u′n(t− τ) + un(t− τ)

]
dτ

− 1

a′′(x0)

∞∑

n=1

λn

λn + 1
sin
√

λnx0

t∫

0

τ∫

0

g(τ − s)un(s)F
IV
n (t− τ) ds dτ,

(29)

where

g0(t) =
1

a′′(x0)
hIV (t)

− 1

a′′(x0)

∞∑

n=1

1

λn + 1
(λn

√
λn (λn(An +Bn) +Bn + Cn) sin

√
λnt sin

√
λnx0

− 1

a′′(x0)

∞∑

n=1

1

λn + 1

[
λn(An + Cn)e

−t + λ2
n(An − Cn) cos

√
λnt
]
sin
√

λnx0.

The main result of this work is the following theorem:

Theorem 2. Let the conditions of Theorem 1 are satisfied, besides a(x) ∈ C5[0, 1],
b(x) ∈ C4[0, 1], c(x) ∈ C3[0, 1], aIV (0) = aIV (1) = c′′(1) = 0, a′′(x0) 6= 0 and matching

condition (27) hold. Then there exists a number T ∗ ∈ (0, T ], such that there exists a unique

solution g(t) ∈ C[0, T ∗] of the inverse problem (1)–(4).

⊳ For simplicity, we denote

a0 = ‖a‖C5[0,1], b0 = ‖b‖C4[0,1], c0 = ‖c‖C3[0,1], h0 := ‖h‖C4[0,T ].

We consider the functional space C[0, T ] with the usual norm given by the relation ‖g‖ =
maxt∈[0,T ] |g(t)| . Direct calculations show that we have the estimate

‖g0‖ 6
1

|a′′(x0)|

(
h0 + a0 ·

∞∑

n=1

3

n3
+

π2

3
b0 +

π2

2
c0

)
.
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In the space C[0, T ], by B(g0, ‖g0‖) we denote the ball with the center g0 and radius ‖g0‖,
i. e.

B(g0, ‖g0‖) :=
{
g(t) ∈ C[0, T ] : ‖g − g0‖ 6 ‖g0‖

}
.

The fact that the function g(t) belongs to the ball B(g0, ‖g0‖) implies the inequality

‖g‖ 6 2‖g0‖. (30)

Let us show that Λ is a contraction operator in the ball B(g0, ‖g0‖) provided that T

is sufficiently small number.
Let us verify the first condition of a fixed point argument. After making obvious estimates

from (29) based on (13), (14) and (30) for g(t) ∈ B(g0, ‖g0‖), we get

|Λg − g0| 6

∣∣∣∣∣∣
1

a′′(x0)

∞∑

n=1

λn sin
√

λnx0

t∫

0

g(τ)
[
u′n(t− τ) + un(t− τ)

]
dτ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

a′′(x0)

∞∑

n=1

λn

λn + 1
sin
√

λnx0

t∫

0

τ∫

0

g(τ − s)un(s)F
(4)
n (t− τ) ds dτ

∣∣∣∣∣∣

6
C

|a′′(x0)|
(a0 + b0 + c0)‖g0‖

(
t+ t2e2‖g0‖t

2

+ t3‖g0‖e2‖g0‖t
2
)
:= ‖g0‖K1m1(t),

where C is positive number, K1 = C
|a′′(x0)|

(a0 + b0 + c0). By T1 we denote the positive root
of the following trancendent equation:

m1(t) =: t+ t2e2‖g0‖t
2

+ t3‖g0‖e2‖g0‖t
2

.

Note that m1(t) is positive monotonically increasing function of t, and m1(0) = 0. It follows
that the equation m1(t) = 1

K1
have unique positive root. If we choose t ∈ (0, T1], then

Λg ∈ B(g0, ‖g0‖).
We now check the second condition of a fixed point argument. Further

|Λg − Λg̃| 6

∣∣∣∣∣∣
1

a′′(x0)

∞∑

n=1

λn sin
√

λnx0

t∫

0

(
g(τ)un(t− τ)− g̃(τ)ũn(t− τ)

)
dτ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

a′′(x0)

∞∑

n=1

λn sin
√

λnx0

t∫

0

(
g(τ)u′n(t− τ)− g̃(τ)ũ′n(t− τ)

)
dτ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

a′′(x0)

∞∑

n=1

λn

λn + 1
sin
√

λnx0

t∫

0

F (4)(t− τ)

τ∫

0

(
g(s)un(τ − s)− g̃(s)ũn(τ − s)

)
ds dτ

∣∣∣∣∣∣

6
1

|a′′(x0)|

∞∑

n=1

(
λnt (1 + λnt) |gun − g̃ũn|+ λnt

∣∣gu′n − g̃ũ′n
∣∣
)
.

The integrands in the integral can be estimated as follows:

|gun − g̃ũn| = |(un − ũn)g + ũn(g − g̃)| 6 2‖g0‖ ‖ûn‖+ ‖ũn‖ ‖ĝ‖ .

Thus, we get

|Λg − Λg̃| 6 K2

[
te4‖g0‖t

2

+ t2e8‖g0‖t
2

+ t3‖g0‖e8‖g0‖t
2
]
‖ĝ‖,
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where K2 =
C

|a′′(x0)|
(a0 + b0 + c0) . Therefore, if T2 is the positive root of the equation

te4‖g0‖t
2

+ t2e8‖g0‖t
2

+ t3‖g0‖e8‖g0‖t
2

=
1

K2
,

then for t ∈ (0, T2] the operator Λ contracts the distance between the elements g(t),
g̃(t) ∈ B(g0; ‖g0‖). Consequently, if we choose T ∗ < min{T1, T2} 6 T , then the operator Λ
is a contraction in the ball B(g0; ‖g0‖). However, in accordance with the Banach theorem [28],
the operator Λ has unique fixed point in the ball B(g0; ‖g0‖), i. e., there exists a unique solution
of equation (28). Theorem 2 is proven. ⊲

4. Conclusion

In this work, inverse problem was considered for determining the kernel g(t) included
in the equation (1) by using additional condition (4) of the solution of problem with the initial
and boundary conditions (2), (3). Sufficient conditions for given functions are obtained, under
which the inverse problem has a unique solution for a sufficiently small interval. Interesting
problems arise in the case when, simultaneously in addition to the convolution kernel g(t),
some of initial functions a(x), b(x), c(x) in (2) is also to be determined. Then, it is clear that
two additional conditions must be specified, so far such a problem is open.
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ЗАДАЧА ОПРЕДЕЛЕНИЯ ЯДРА В ОДНОМЕРНОМ УРАВНЕНИИ ТРЕТЬЕГО
ПОРЯДКА МУРА — ГИБСОНА — ТОМПСОНА С ПАМЯТЬЮ
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Аннотация. В данном исследовании рассматривается обратная задача определения ядра свертки
в уравнении Мура — Гибсона — Томпсона (МГТ) третьего порядка, которое обычно используется для
моделирования движения жидкости с эффектом памяти. В частности, особое внимание обращается на
определение неизвестного ядра, которое управляет членом памяти в уравнении. Вначале мы используем
спектральный метод Фурье для решения прямой начально-краевой задачи для неоднородного уравнения
МГТ с членом памяти. Спектральный метод Фурье позволяет использовать естественную линейность и
пространственную однородность задачи, что приводит к эффективному и явному построению решения.
Прямая задача анализируется при соответствующих начальных и граничных условиях, которые деталь-
но уточняются для обеспечения математической корректности. Для решения обратной задачи вводится
дополнительное условие — обычно это форма данных наблюдений, например, в определенных точках, —
которое обеспечивает необходимые ограничения для определения ядра. Доказываются локальные тео-
ремы существования и единственности для решения этой задачи.

Ключевые слова: уравнение МГТ, начально-краевая задача, обратная задача, спектральный метод
Фурье, принцип Банаха.
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