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Abstract. In this study, we address the inverse problem of determining the convolution kernel function
in the third-order Moore-Gibson—-Thompson (MGT) equation, which is commonly used to model fluid
motion with memory effects. Specifically, we focus on the determination of the unknown kernel, which
governs the memory term in the equation. First, we employ the Fourier spectral method to solve the direct
initial-boundary-value problem for a non-homogeneous MGT equation with the memory term. The Fourier
spectral method allows us to leverage the problem’s inherent linearity and spatial homogeneity, leading
to an efficient and explicit construction of the solution. The direct problem is analyzed under appropriate
initial and boundary conditions, which are carefully specified to ensure mathematical consistency. To solve
the inverse problem, we introduce an additional condition—typically a form of observational data such
as at certain points—which provides the necessary constraints for determining the kernel. We prove local
existence and uniqueness theorems for solution of the problem.
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1. Introduction

The Moore-Gibson—Thompson theory was developed beginning from a third order

differential equation, constracted in the context of some consideration related fluid mechanics.
Subsequently the equation was considered as a heat conduction equation because it has been
obtained by considering a relaxation parameter into the type III heat conduction [1-4]. Since
the apparition of the Moore-Gibson—Thompson theory, the number of studies on this theory
has increased considerably. The Moore-Gibson—Thompson equation also modifies and defines
equations for thermal conduction and mass diffusion that occur in solids.

Inverse problems for integro-differential equations are important mathematical problems

in science and engineering. They have wide applications in computed tomography, biology,
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mineral exploration, acoustics, communication theory, signal processing, medical imaging and
many other fields. Fundamentals of the theory of inverse problems for mathematic physical
equations were developed by many authors, especially the works [5-9] (see also the references
in them).

Inverse convolution kernel problems for linear parabolic and hyperbolic integro-differential
equations of the second order were considered in a number of papers (see, for example, [10—
16]). In [10-12], the authors have discussed the local existence and global uniqueness of the
recovering convolution kernels in hyperbolic integro-differential equations. The works [13, 14]
deal with the problems of identifying the one-dimensional kernel of the hyperbolic integro-
differential equation with a source of explosive type. A wide class of inverse problems for
identifying one- and multidimensional convolution kernels in second-order hyperbolic integro-
differential equations was studied in the recently published monograph [15]. The paper [16]
studies the global solvability of two kernels determination problems in the parabolic integro-
differential equation. For close problems related to other models, we refer to [17-20].

In the work [21], it is considered the derivation of the MGT equation and the list of
references therein. These equations are the subject of several recent research due to their wide
range of applications in the medical and industrial fields of high intensity ultrasound waves.
The well-posedness of linearized MGT equation and the uniform decay of its energy is studied
under suitable functional setting and initial-boundary conditions in [22]. Inverse coefficient
problem for MGT was treated in [23], where it is proved uniqueness and also showed stability
by Carleman estimates.

In the works [24, 25], the authors investigate the inverse problems of determining kernel
function and three unknown parameters by using the Laplace transform. The research method
in these papers is local, but it uses the fact that the direct problem is considered with the
Neumann type boundary conditions.

In this paper, we propose a method for studying the determination of the convolution
kernel in MGT equation using the Fourier spectral method and the method of integral
equations. The results obtained are of a local nature. However, we can prove local solvability
theorem for inverse problem, taking into consideration that the nonlinearity has a convolution
structure (see [26, 27]).

We consider the one-dimensional MGT equation:

t
Utpr + Ut — Uggt — Ugy + /g(t - T)umm(xa T) dr =0, (1)
0

in the domain
D =(0,1) x (0,77,

where T" > ( is an arbitrary fixed number with initial conditions
u(z,0) = a(z), wuz,0)=0b(z), uu(x,0)=c(x), xel0,1], (2)
and boundary conditions
u(0,t) =u(l,t) =0, te€][0,T]. (3)

The problem of determining a function u(x,t) € Ci’f (D)ﬂCg:? (D) that satisfies (1)~(3) with
known functions a(z), b(z), c(z) and g(t) will be called the direct problem.

In the inverse problem, it is required to determine the function g¢(t), ¢ € [0,7], using
overdetermination conditions about the solution of the direct problem (1)—(3):

u(zo, t) = h(t), tel0,T), (4)
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where zg € (0,1) is fixed number and h(t) is sufficiently smooth given function.

The rest of this paper is organized as follows. In Section 2, we present our investigations
on the direct problem (2)—(4). We find differential properties and stability estimates for the
solution of this problem. Section 3 devoted to the formulation and proof of the main results
of this work, which are the theorems of local existence and uniqueness for solution of inverse
problem. Section 4 contains the conclusion.

2. Investigation of Direct Problem

As we shall use separation of variables methods, let us denote by A, its eigenvalues and
eigenfunctions by X, (z), i.e.,

X (z) + M Xp(z) =0 in (0,1), (5)
Xa(0) =0, Xp(1)=0, n=1,2, (6)

It is know that
Ao = (mn)?, X, = sin(mnz),

and the set {X,,},>1 is a basis for L(0,1).
The solution u(z,t), can be written as

where

1
un(t) = Q/U(x,t)Xn(x) dx. (8)
0

Multiply (1) by X, (z) and integrate over (0,1), we have

1 1 1
2/umxt dx+2/utt dx—Q/umtxt () dx
0 0 0
1 t 1
Q/Umxt dﬂc—|—2/gt—7/um (z)dxdr =0,
0 0 0

which reduces to the functional equation. Used to (5), (6) and (8), we get

W () 4 0 (1) + Aty (£) + Antin(t) = An / ot = P)un(r) dr. (9)
0

From the initial conditions (2), we arrive at the following

1
Ay = u,(0) = Q/a(x)Xn(x) dr, By :=ul(0)= 2/b(x)Xn(x) dx, (10)
0
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Cp :=u(0) = 2/c(x)Xn(x) dr, n=>1 (11)

Let us consider the third-order ordinary differential equation (9) with the right-hand side
of the form A, fgg(t — T)un (1) dr with the Cauchy data (10), (11). Solving this problem for
each fixed n > 1, it is easy to conclude that it is equivalent to the following Volterra-type
integral equation:

un(t) = An1+ - (m(An + B+ \/LA_n (B, + cn)> sin /At

1 —t
+ P [()\nAn +Cp)e "+ (A, — Cp) cos \/Et]

T

An /
+ Nl O/Fn(t —7) /g(T — $)un(s)dsdr, (12)

0

where

1
Fot)=e '+ Now sin v/ A\t — cos v/ Apt.

We now obtain sufficient conditions for the given functions a(z), b(x), ¢(z) and kernel g(t),
under which the integral equation (12) has a unique classical solution.
Estimating each function u,(t), for t € [0,T], we get the following integral inequalities

Uy (t 2|A,] + B,| + — C—l—Qg/t—Tun dr,
un (t)] < ||\/—|| |Cnl + 2]l |un (7]

where |[|g|| = max,c(o.7) |9(t)|. Applying the Gronwall lemma here, we obtain

un(t)] < [Q\A |+ — yc \] ellol®® ¢ e 0, 7). (13)

Calculating the first derivative of (12) and using (13), we find an estimate for u/,(t):

lun, ()] < 2[An| + By |+\/_|C|

# VAl 21401+ = Bal + -
\/_
As above the second derivative of (12) taking into account (13), u/.(t) estimated as follows:

|ult ()] < 33/ An [An| + VA | Ba| + 3(Chl

+ 2\l g|It2 [2|A | +

c,, y] ldl®  teo,7].  (14)

=2 llgllt?
\/_|B |+ |C @ , tel0,T]. (15)

Estimate for /() is obtained by the equation (12) using (13). It has the form
[up (1) < 220 [An| 4+ An [Bal + 2¢/An |G|

gl (14 V/nt) {2 Aul +

= llgllt?
\/_yB \+ \C ]] , telo,T].  (16)
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Combining the (13)-(16), we get
Lemma 1. The following estimates are valid t € [0, T and for each n € N:

1 1 1
()] < Bo (140l + 21Bul + 51Cul ) (0] < 1 (il + 18]+ 7101

[un (8)] < B2 (n*[An] + 0| Bu| +1Cal) . |uy ()] < B3 (n*|An| + 12| Ba| + n|Chl) |

where f3;, 1 = 1,2, 3, are positive constants independent of a(z), b(x), ¢(x), g(t) and number T.

Formally termwise differentiating the series in formula (7), we get the following series:

U = Z uﬁ(t) Sin v/ Ap, Ut = Z Ulyil(t) sin V An, (17)
n=1 n=1

Upy = — Z Antn (t) sin mx, Uppt = — Z Anul, (t) sin mx (18)
n=1 n=1

In view of Lemma 1 series (7) and (17), (18) with any (x,t) € D are majorized by the series

3 2 R .
/321(n [Anl + 12| Ba| +nlCal) . B = max . (19)

Here is the following auxiliary lemma:

Lemma 2. If the conditions are met
a(z) € C3[0,1], a'V(z) € L2(0,1), a(0)=a(l) =d"(0) =a"(1) =0,

b(x) € C*0,1], b"(z) € Ly(0,1), b(0) =b(1) =0b"(0)="b

c(x) € C0,1], '(z) € Ly(0,1), ¢(0) =¢(1) =0,

then the following representations are valid:

A, = AW B,

1 1
= B®, ¢, =-—C?; 20

here Aslg), BY and O are coefficients of the expansion of functions a(x), b(z) and c(z) in
series with respect to the function system {1;cos v/A,z} and {sinv/A,z}, such that

Z 1AP? < Ha(IV)HLz(O,l)a Z IBY)|? < 16”1 £ (0,1) Z CPP? < 1" o0y, (21)
n=1 n=1

n=1

where %a(:c) = a!V(z).

Integrating by parts in the integral for A,, four times, B, three times and C,, two times
(see (10) and (11)) taking into account the conditions of Lemma 2, we obtain equalities (20).
Inequalities (21) are based the Bessel inequalities for the coefficients of the Fourier expansions
of the functions a!V(z), ¥"(z) and ¢”'(z) in the system of cosines {3;cos/A,z} and sines
{siny/ Az} on the interval [0,1], respectively. If the functions a(z), b(x), and c(z) satisfy
the conditions of Lemma 2, then, due to representations (20) and (21), series (7) and (17),
(18) converge uniformly in the D, therefore, function (7) satisfies equation (12). Under
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the conditions of Lemma 2 and g¢(t) € C[0,T], this is a classical solution of the Cauchy
problem (9)—(11).

The proven assertion implies the next theorem.

Theorem 1. If a(x), b(x), c(x) satisfies conditions of Lemma 2 and ¢(t) € C[0,T], then
problem (1)—(3) has a unique solution, which is defined by series (7) and belongs to class
u(z,t) € C2Y(D)NCYE (D).

Now, we will give some estimates for the solution and its first derivative of the direct
problem (1)—(3).

Let w, be solution of the integral equation (12) corresponding to the functions Zn, En,
Cn, and g. Let us derive an estimate for the norm of the difference between the solution of the
original integral equations (12) and the solution of this equation with functions An, Bn7 Cn,
and g. After making obvious estimates, we have

1|5 B R
il < |2 B, || 2lane
[ | [ + N N ]e
+ [4 + 2 By | + 6 ~n] H§H62(Ilgll+llﬁll)t2 (22)
Vo 7
N N 2 |~
4, \2‘An +‘Bn +—=1Cn [Q\A | + —|B, \+ yc @ 5] t2ellol®
@] " \/_
~ 1 ~ 9
+ Q‘An +—— |By| + || £2]g)|e2lelt
2]+ = C,|| 21l
I T
Q‘An B+ 2 gl +IgMeE (93
+ 2|3+ o= [B] + (]| raiane (29

where A, = A, — A,, B, = B, — By, Cp = Cyp, — Ch, g = g — g. Indeed, the inequality (22)
is stability estimate for the solution to the integral equation (12). The uniqueness of this
solution follows from (22).

3. The Local Existence and Uniqueness Theorem for the Inverse Problem
In this section, it is studied the main goal of this article, which is the inverse problem
of determining of functions u(z,t), g(t) from relations (1)-(4). In doing so, we will use the

contraction mapping principle.
From (7) and taking into account conditions (4), we get the following equality:

= Zun(t) sin mxo, t €[0,T]. (24)
n=1

Substituting the right side (12) instead of u,(¢) in (24) and then differentiating four times,
after simple transformations, we obtain an integral equation with respect to g(t) :

g(t) = ——=h"(1)

Z)\ +1)\\/7 (An + By) + By + Cy) sin v/ Apt sin\/Apzg  (
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" Z)\ _|_1[ n(An + Cple " + X2 (A, COS\/it}sln\/ich

a

/g [ t—T)—i—un(t—T)] dr
0

1 & f
(o) Zl Aji 7510V Ano / / g(1 — s)un(s)ELV(t — 7)dsdr,  (26)
n= 00

where a”(xg) # 0.
We require the fulfillment of the following matching conditions

h(0) = a(0), A'(0) =0b(0), h"(0) = c(0). (27)
Rewrite (26) in the form of the operator equation
g =Ag, (28)
where A is defined by the right side of equation (26):

(Ag)(t) = go(t

/g [ t—T)—l—un(t—T)]dT
’ (29)

I — M f
Z sin v/ A\p2o / / g(1 — 8)un(s)EIV(t — 1) ds dr,
0) n—1 An+1 0

where
_ 1 v
g()(t) - a//(xo)h (t)
1 = 1
_a//(xo);)\n+1(>‘nv)‘ (>\ (A + B, )+B —|—C 5111\/ plsin /A, xg

- ! [An(An—i-C)*t—i—)\Q( cos\/it]sm\/ixo

The main result of this work is the following theorem:

Theorem 2. Let the conditions of Theorem 1 are satisfied, besides a(x) € C°[0,1],
b(z) € C*0,1], c¢(z) € C3[0,1], a’V(0) = o'V (1) = ¢"(1) = 0, a"(z0) # 0 and matching
condition (27) hold. Then there exists a number T* € (0, T, such that there exists a unique
solution g(t) € C[0,T*] of the inverse problem (1)—(4).

< For simplicity, we denote

ap = |lallcsior),  bo = [Ibllcapa), o = lellespags ho == hllcajo -

We consider the functional space C[0,T] with the usual norm given by the relation ||g|| =
max,e(o,7) |9(t)] . Direct calculations show that we have the estimate

7T2
lgoll < ’,,( <h0+a0 Z 3 —bo+—60>
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In the space C[0,T], by B(go,||gol|) we denote the ball with the center gy and radius | go]|,
ie.
B(go, llgoll) := {g(t) € C10,T] : Ilg — goll < llgoll}-

The fact that the function g(¢) belongs to the ball B(go, ||go||) implies the inequality

lgll < 2llgo- (30)

Let us show that A is a contraction operator in the ball B(go,||go||) provided that T
is sufficiently small number.

Let us verify the first condition of a fixed point argument. After making obvious estimates
from (29) based on (13), (14) and (30) for g(t) € B(go, ||90l|), we get

’Ag gO‘ Z Ap Sin \/7,%'0/ [ t — 7—) + un(t _ T)] dr

! Z An sin v/ Ao //g(T — $)un(s)FW (t — 7) ds dr
0) ne1 )\n +1 50

C 2 2
< m(ao + bo + co)llgol| <t + 2290l 1 3] o || el90lt ) = |lgol| K1ma(t),

where C' is positive number, K1 = Ia”(xo)\ (ap + bo + cg). By T1 we denote the positive root
of the following trancendent equation:

mi(t) =: t + 221901 4 43| go|| 2901,

Note that mq(t) is positive monotonically increasing function of ¢, and m;(0) = 0. It follows
that the equation mq(t) = KLI have unique positive root. If we choose t € (0,73], then

Ag € B(go: llgoll)-
We now check the second condition of a fixed point argument. Further

t

Z)\ 81n\/7:v0/( g (t —7) — g(7)un(t — 7)) dr

0

|Ag — Ag| <

t

1 = : / ~¢ N~
gy 25w in V[ (gl =) 900 =)

0

1 < M r o
o) nz:l pw— sin \/_mo/F(4 (t—1) O/ (g(s)un(T —8) — g(s)un(r — 3)) ds dr

1 a A~
< 1o (z0)]| E (Ant(l + Ant) |9t — Giin| + Ant gy —QUH)-
n=1

The integrands in the integral can be estimated as follows:

|gtn = Gtin| = [(un = Un)g + un(g — 9)| < 2goll [[unll + llun | 9]l -

Thus, we get
g — Agl < Ko [0l 2SIl 53] go] Mol
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where Ky = m (ag + bo + co) . Therefore, if Ty is the positive root of the equation
tellloollt® 4 42 8llgoll* tSHQOHBSHQOHtQ = L,
Ky

then for t € (0,7>] the operator A contracts the distance between the elements g(t),
g(t) € B(go; ||lgol|). Consequently, if we choose T* < min{T},T>} < T, then the operator A
is a contraction in the ball B(go; ||go||). However, in accordance with the Banach theorem [28],
the operator A has unique fixed point in the ball B(go; ||go]|), i. e., there exists a unique solution
of equation (28). Theorem 2 is proven. >

4. Conclusion

In this work, inverse problem was considered for determining the kernel g(¢) included
in the equation (1) by using additional condition (4) of the solution of problem with the initial
and boundary conditions (2), (3). Sufficient conditions for given functions are obtained, under
which the inverse problem has a unique solution for a sufficiently small interval. Interesting
problems arise in the case when, simultaneously in addition to the convolution kernel g(t),
some of initial functions a(z), b(x), ¢(z) in (2) is also to be determined. Then, it is clear that
two additional conditions must be specified, so far such a problem is open.
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BiragukaBka3ckuii MaTeMaTHIeCKHE XKy PHAJT

2024, Tom 26, Beiryck 4, C. 55-65

SAJAYA OITPEAEJIEHUSA A1PA B OJTHOMEPHOM YPABHEHUIN TPETBHEI'O
MHOPAIKA MYPA — TMBCOHA — TOMIICOHA C [TAMATBIO

Boaraes A. A.M2) ITypmues /1. K.1'3, Paxamonos A. A.L3

! Byxapckuit rocyziapcTBeHHbBI YHUBEPCUTET,
V3b6ekucran, 705018, Byxapa, yi. M. Ux6ou, 11;
2 Ceepo-Kapkasckuii rientp MaTemaTndeckux uccregosanmit BHIT PAH,
Poccus, 363110, c. Muxaitmosckoe, yia. Burbsamca, 1;
3 Mucruryr maremaruxy um. B. 1. PomaroBckoro
Akanevun Hayk PecniyGimkn Y36ekucras,
V3bekucran, 100174, Tamkent, ya. YHUBEpCUTETCKAsI, 9;

E-mail: asliddinboltayev@mail.ru, d.durdiev@mathinst.uz, araxmonov@mail.ru

Amnnoranusi. B nansom ucciieioBannn paccMaTrpuBaeTcs obpaTHasl 3a/1a4a ONPEeEesIeHNs] si/[pa CBEPTKU
B ypasrenuun Mypa — I'mbcona — Tommcona (MI'T) Tperpero mopsiaka, KOTOpoe OOBIMHO HCIOIb3YETCs NI
MOJIEJIMPOBAHUSA JIBUKEHUS YKUJIKOCTH C 3pdekTom mamMsaTu. B gacrHocTn, ocoboe BHUMaHUE oOpalaercs Ha
OIIpe/IeJIEH e HEU3BECTHOIO s1/Ipa, KOTOPOE yIIPABJISIET YJIEHOM IIaMSITH B yPABHEHNN. BHAYAIE MBI HCIIOIb3yeM
creKTpaJibHbIA MeTo); Pyphe /It pereHns MpsiMoii HauaIbHO-KPAeBON 3a/1a4H JJIsl HEOHOPO/IHOIO Y PAaBHEHU ST
MI'T ¢ unenom nmamsitu. CrekrpasbHblit MeTo; Pypbe MO3BOJISIET UCIIOIH30BATh €CTECTBEHHYIO JIMHEHHOCTD 1
[IPOCTPAHCTBEHHYIO OJTHOPOJIHOCTD 33/1a9H, ITO HIPUBOJINT K 3P DEKTUBHOMY U SIBHOMY ITOCTPOEHHIO PEIIEHUSI.
[Ipsimast 3a/1a1a aHAIM3UPYETCs IIPU COOTBETCTBYIOIINX HAYAIbHBIX U IPAHUYHBIX YCIOBUAX, KOTOPBIE JETAIb-
HO YTOUHSIIOTCS JJIsi ODeCIIeveHNsI MaTeMaTHIeCKO KoppekTHocTh. [y pertennst oOpaTHOi 3a/1a491 BBOAUTCS
JIOIIOJIHUTEJILHOE YCJIOBHE — OOBIYHO 9T0 (bopMa JaHHBIX HAOJIIOJEHII, HAIIPUMED, B OLPEIEJIEHHBIX TOUKAX, —
KOTOpOe obecIiednBaeT HeoOXOIMMble OTPAHUYEHNs JJIs OLpejesenns sapa. JJoka3bpIBaloTCsl JIOKAJIbHBIE TEO-
PEeMBI CyIIeCTBOBAHMS U €IMHCTBEHHOCTH JIJIsI PEIIeHHsT STON 3aatIu.

Kuarouessbie cioBa: ypasuenne MI'T, naganbHO-KpaeBast 3a7a4da, obpaTHas 3a7a4a, CIIEKTPAJIBHBIN METO/T
®ypoe, npunnun banaxa.

AMS Subject Classification: 35R30,35Q70, 35L05, 35L35.

O6pasern nurupoBanusi: Boltaev A. A., Durdiev D. K., Rahmonov A. A. Kernel Determination Problem

in the Third Order 1D Moore-Gibson—Thompson Equation with Memory // Baaaukask. mar. »kypH.—2024.—
T. 26, Ne 4.—C. 55-65 (in English). DOI: 10.46698,/k7942-9915-9840-k.



